
Journal of Singularities
Volume 10 (2014), 225-234

Proc. of 12th International Workshop
on Singularities, São Carlos, 2012

DOI: 10.5427/jsing.2014.10o

LIPSCHITZ GEOMETRY OF COMPLEX CURVES

WALTER D NEUMANN AND ANNE PICHON

Abstract. We describe the Lipschitz geometry of complex curves. To a large part this is well

known material, but we give a stronger version even of known results. In particular, we give
a quick proof, without any analytic restrictions, that the outer Lipschitz geometry of a germ

of a complex plane curve determines and is determined by its embedded topology. This was
first proved by Pham and Teissier, but in an analytic category. We also show the embedded

topology of a plane curve determines its ambient Lipschitz geometry.

1. Introduction

The germ of a complex set (X, 0) ⊂ (CN , 0) has two metrics induced from the standard
hermitian metric on CN : the outer metric given by distance in CN and the inner metric given
by arc-length of curves on X. Both are well defined up to bilipschitz equivalence, i.e., they only
depend on the analytic type of the germ (X, 0) and not on the embedding (X, 0) ⊂ (CN , 0).
Studies of what information can be extracted from this metric structure have generally worked
under analytic restrictions, e.g., that equivalences be restricted to be analytic or semi-algebraic
or similar. In this note we prove the metric classification of germs of complex plane curves, but
without any analytic restrictions (equivalence of item (1) of the following theorem with the other
items):

Theorem 1.1. Let (C1, 0) ⊂ (C2, 0) and (C2, 0) ⊂ (C2, 0) be two germs of complex curves. The
following are equivalent:

(1) (C1, 0) and (C2, 0) have same Lipschitz geometry, i.e., there is a homeomorphism of
germs φ : (C1, 0)→ (C2, 0) which is bilipschitz for the outer metric;

(2) there is a homeomorphism of germs φ : (C1, 0)→ (C2, 0), holomorphic except at 0, which
is bilipschitz for the outer metric;

(3) (C1, 0) and (C2, 0) have the same embedded topology, i.e., there is a homeomorphism of
germs h : (C2, 0)→ (C2, 0) such that h(C1) = C2;

(4) there is a bilipschitz homeomorphism of germs h : (C2, 0)→ (C2, 0) with h(C1) = C2.

The equivalence of (1), (3) and (4) is our new contribution. The equivalence of (2) and (3)
was first proved by Pham and Teissier [7]. By Teissier [8, Remarque, p.354] (see also Fernandes
[5]) it then also follows that the outer bilipschitz geometry of any curve germ (X, 0) ⊂ (CN , 0)
determines the embedded topology of its general plane projection (Corollary 5.2).

For completeness we give quick proofs of all the equivalences. We start with the result for
inner geometry, which will be used in examining outer geometry.
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2. Inner geometry

An algebraic germ (X, 0) ⊂ (CN , 0) is homeomorphic to the cone on its link X ∩Sε, where Sε
is the sphere of radius ε about the origin with ε sufficiently small. If it is endowed with a metric,
it is metrically conical if it is bilipschitz equivalent to the metric cone on its link. This basically
means that the metric tells one no more than the topology (and is therefore uninteresting).

Proposition 2.1. Any space curve germ (C, 0) ⊂ (CN , 0) is metrically conical for the inner
geometry.

Proof. Take a linear projection p : CN → C which is generic for the curve (C, 0) (i.e., its kernel
contains no tangent line of C at 0) and let π := p|C , which is a branched cover of germs. Let
Dε = {z ∈ C : |z| ≤ ε} with ε small, and let Cε be the part of C which branched covers Dε. Since
π is holomorphic away from 0 we have a local Lipschitz constant K(x) at each point x ∈ Cr{0}
given by absolute value of the derivative map of π at x. On each branch of C this K(x) extends
continuously over 0, so the infimum and supremum K− and K+ of K(x) on Cεr{0} are defined
and positive. For any arc γ in Cε which is smooth except where it passes through 0 we have
K−`(γ) ≤ `′(γ) ≤ K+`(γ), where ` respectively `′ represent arc length using inner metric on Cε
respectively the metric lifted from Bε. Since Cε with the latter metric is strictly conical, we are
done. �

3. Outer geometry determines embedded topological type

In this section, we prove (1) ⇒ (3) of Theorem 1.1, i.e., that the embedded topological type
of a plane curve germ (C, 0) ⊂ (C2, 0) is determined by the outer Lipschitz geometry of (C, 0).

We first prove this using the analytic structure and the outer metric on (C, 0). The proof is
close to Fernandes’ approach in [5]. We then modify the proof to make it purely topological and
to allow a bilipschitz change of the metric.

The tangent space to C at 0 is a union of lines L(j), j = 1, . . . ,m, and by choosing our
coordinates we can assume they are all transverse to the y-axis.

There is ε0 > 0 such that for any ε ≤ ε0 the curve C meets transversely the set

Tε :=
{

(x, y) ∈ C2 : |x| = ε
}
.

Let µ be the multiplicity of C. The lines x = t for t ∈ (0, ε0] intersect C in µ points
p1(t), . . . , pµ(t) which depend continuously on t. Denote by [µ] the set {1, 2, . . . , µ}. For each

j, k ∈ [µ] with j < k, the distance d(pj(t), pk(t)) has the form O(tq(j,k)), where q(j, k) = q(k, j)
is either a characteristic Puiseux exponent for a branch of the plane curve C or a coincidence
exponent between two branches of C in the sense of e.g., [1, Chapitre 1, p. 12]. We call such
exponents essential. For j ∈ [µ] define q(j, j) =∞.

Lemma 3.1. The map q : [µ] × [µ] → Q ∪ {∞}, (j, k) 7→ q(j, k), determines the embedded
topology of C.

Proof. There are many combinatorial objects that encode the embedded topology of C, for
example the Eisenbud-Neumann splice diagram [4] of the curve or the Eggers tree [3] (both are
described, with the relationship between them, in C.T.C. Wall’s book [9]). The “carrousel tree”
described below is closely related (first described in [6]). All three are rooted trees with edges
or vertices decorated with numeric labels.

To prove the lemma we will construct the carrousel tree from q. We also describe how one
derives the splice diagram from it.

The q(j, k) have the property that q(j, l) ≥ min(q(j, k), q(k, l)) for any triple j, k, l. So for any
q ∈ Q ∪ {∞}, q > 0, the relation on the set [µ] given by j ∼q k ⇔ q(j, k) ≥ q is an equivalence
relation.
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Name the elements of the set q([µ]× [µ]) ∪ {1} in decreasing order of size:

∞ = q0 > q1 > q2 > · · · > qs = 1.

For each i = 0, . . . , s let Gi,1, . . . , Gi,µi be the equivalence classes for the relation ∼qi . So µ0 = µ
and the sets G0,j are singletons while µs = 1 and Gs,1 = [µ]. We form a tree with these
equivalence classes Gi,j as vertices, and edges given by inclusion relations: the singleton sets
G0,j are the leaves and there is an edge between Gi,j and Gi+1,k if Gi,j ⊆ Gi+1,k. The vertex
Gs,1 is the root of this tree. We weight each vertex with its corresponding qi.

The carrousel tree is the tree obtained from this tree by suppressing valence 2 vertices: we
remove each such vertex and amalgamate its two adjacent edges into one edge. We will describe
how one gets from this to the splice diagram, but we first give an illustrative example.

We will use the plane curve C with two branches given by

y = x3/2 + x13/6, y = x7/3 .

Fig. 1 gives pictures of sections of C with complex lines x = 0.1, 0.05, 0.025 and 0. The
central three-points set corresponds to the branch y = x7/3 while the two lateral three-points
sets correspond to the other branch.

0.1

0.05

0.025

0

Figure 1. Sections of C

The carrousel tree for this example is the tree on the left in Fig. 2 and the procedure we will
describe for getting from it to the splice diagram is then illustrated in the middle and right trees.
We will follow the computer science convention of drawing the tree with its root vertex at the
top, descending to its leaves at the bottom. At any non-leaf vertex v of the carrousel tree we
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Figure 2. Carrousel tree to splice diagram

have a weight qv, 1 ≤ qv ≤ q1, which is one of the qi’s. We write it as mv/nv, where nv is the lcm
of the denominators of the q-weights at the vertices on the path from v up to the root vertex. If
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v′ is the adjacent vertex above v along this path, we put rv = nv/nv′ and sv = nv(qv − qv′). At
each vertex v the subtrees cut off below v consist of groups of rv isomorphic trees, with possibly
one additional tree. We label the top of the edge connecting to this additional tree at v, if it
exists, with the number rv, and then delete all but one from each group of rv isomorphic trees
below v. We do this for each non-leaf vertex of the carrousel tree. The resulting tree, with the
qv labels at vertices and the extra label on a downward edge at some vertices is easily recognized
as a mild modification of the Eggers tree.

We construct the splice diagram starting from this tree. We first replace every leaf by an
arrowhead. Then at each vertex v which did not have a downward edge with an rv label we add
such an edge (ending in a new leaf which is not an arrowhead). Each still unlabeled top end of
an edge is then given the label 1. Finally, starting from the top of the tree we move down the
tree adding a label to the bottom end of each edge ending in a vertex v which is not a leaf as
follows. If v is directly below the root the label is m′v := mv. For a vertex v directly below a
vertex v′ other than the root the label is m′v := sv + rvrv′m

′
v′ if rv′ does not label the edge v′v

and m′v := (sv + rvm
′
v′)/rv′ if it does (see [4, Prop. 1A.1]). �

As already noted, this discovery of the embedded topology involved the complex structure
and outer metric. We must show we can discover it without use of the complex structure, even
after applying a bilipschitz change to the outer metric.

Recall that the tangent space of C is a union of lines L(j). We denote by C(j) the part of C
tangent to the line L(j). It suffices to discover the topology of each C(j) independently, since the
C(j)’s are distinguished by the fact that the distance between any two of them outside a ball of
radius ε around 0 is O(ε), even after bilipschitz change to the metric. We therefore assume from
now on that the tangent to C is a single complex line.

The points p1(t), . . . , pµ(t) we used to find the numbers q(j, k) were obtained by intersecting
C with the line x = t. The arc p1(t), t ∈ [0, ε0] satisfies d(0, p1(t)) = O(t). Moreover, the other
points p2(t), . . . , pµ(t) are in the transverse disk of radius rt centered at p1(t) in the plane x = t.
Here r can be as small as we like, so long as ε0 is then chosen sufficiently small.

Instead of a transverse disk of radius rt, we can use a ball B(p1(t), rt) of radius rt centered at
p1(t). This B(p1(t), rt) intersects C in µ disks D1(t), . . . , Dµ(t), and we have d(Dj(t), Dk(t)) =

O(tq(j,k)), so we still recover the numbers q(j, k). In fact, the ball in the outer metric on C
of radius rt around p1(t) is BC(p1(t), rt) := C ∩ B(p1(t), rt), which consists of these µ disks
D1(t), . . . , Dµ(t).

We now replace the arc p1(t) by any continuous arc p′1(t) on C with the property that
d(0, p′1(t)) = O(t), and if r is sufficiently small it is still true that BC(p′1(t), rt) consists of µ
disks D′1(t), . . . , D′µ(t) with d

(
D′j(t), D

′
k(t)

)
= O(tq(j,k)). So at this point, we have gotten rid

of the dependence on analytic structure in discovering the topology, but not yet dependence on
the outer geometry.

A K-bilipschitz change to the metric may make the components of BC(p′1(t), rt) disintegrate
into many pieces, so we can no longer simply use distance between pieces. To resolve this,
we consider both B′C(p′1(t), rt) and B′C(p′1(t), r

K4 t) where B′ means we are using the modified
metric. Then only µ components of B′C(p1(t), rt) will intersect B′C(p1(t), r

K4 t). Naming these

components D′1(t), . . . , D′µ(t) again, we still have d(D′j(t), D
′
k(t)) = O(tq(j,k)) so the q(j, k) are

determined as before. �

4. Embedded topological type determines outer geometry

In this section, we prove (3) ⇒ (2) of Theorem 1.1. The implication (2) ⇒ (1) is trivial, so
we then have the equivalence of the first three items of Theorem 1.1.
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We will use the following lemma:

Lemma 4.1. Let (C, 0) ⊂ (CN , 0) be a germ of complex plane curve and let p : CN → C be
a linear projection whose kernel does not contain any tangent line to C. Then there exists a
neighborhood U of 0 in C and a constant M > 1 such that for each u, u′ ∈ U r {0}, there is an
arc α̃ in C joining u to a point u′′ with p(u′′) = p(u′) and

d(u, u′) ≤ L(α̃) + d(u′′, u′) ≤Md(u, u′)

where L(α̃) denotes the length of α̃.

Proof. There exists a neighbourhood U of 0 in C such that the restriction p|C is a bilipschitz
local homeomorphism for the inner metric on U r {0} (see proof of Proposition 2.1). Choose
any δ > 1. If 0 is not in the segment [p(u), p(u′)], we set α = [p(u), p(u′)]. If 0 ∈ [p(u), p(u′)],
we modify this segment to a curve α avoiding 0 which has length at most δ times the length of
[p(u), p(u′)]. Consider the lifting α̃ of α by p|C with origin u and let u′′ be its extremity. We
obviously have:

d(u, u′) ≤ L(α̃) + d(u′, u′′) .

On the other hand, L(α̃) ≤ K0L(α) ≤ δK0d(p(u), p(u′)), where K0 is a bound for the local
inner bilipschitz constant of p on U r {0}. As d(p(u), p(u′)) ≤ d(u, u′), we then obtain:

L(α̃) ≤ δK0d(u, u′).

If we join the segment [u, u′] to α̃ at u we get a curve from u′ to u′′, so

d(u′, u′′) ≤ (1 + δK0)d(u, u′).

We then obtain:

L(α̃) + d(u′, u′′) ≤ (1 + 2δK0)d(u, u′),

and M = 1 + 2δK0 is the desired constant. �

Proof of (3) ⇒ (2) of Theorem 1.1. Let (C1, 0) ⊂ (C2, 0) be an irreducible plane curve which
is not tangent to the y-axis. Then there exists a minimal integer n > 0 such that (C1, 0) has
Puiseux parametrization

γ1(w) =
(
wn,

∑
i≥n

aiw
i
)
.

Denote A := {i : ai 6= 0}. Recall that the embedded topology of C1 is determined by n and the
essential integer exponents in the sum

∑
i≥n aiw

i, where an i ∈ A r {n} is an essential integer

exponent if and only if gcd{j ∈ {n} ∪ A : j ≤ i} < gcd{j ∈ {n} ∪ A : j < i} (equivalently i
n

is a characteristic exponent). Denote by Ae the subset of A consisting of the essential integer
exponents.

Now let (C2, 0) ⊂ (C2, 0), given by

γ2(w) =
(
wn,

∑
i≥n

biw
i
)
,

be a second plane curve with the same embedded topology as C1, so that the set of essential
integer exponents Be ⊂ B := {i : bi 6= 0} is equal to Ae.

We will prove that the homeomorphism Φ: C1 → C2 defined by Φ(γ1(w)) = γ2(w) is bilips-
chitz on small neighborhoods of the origin.

We first prove that there exists K > 0 and a neighborhood U of 0 in C such that for each
pair (w,w′) with w ∈ U , w 6= w′ and wn = (w′)n, we have

d
(
γ1(w), γ1(w′)

)
≤ Kd

(
γ2(w), γ2(w′)

)
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For (w,w′) as above, consider the two real arcs s ∈ [0, 1] 7→ γ1(sw) and s 7→ γ1(sw′) and their
images by Φ. Then we have

d
(
γ1(ws), γ1(w′s)

)
= sn

∣∣∣∣∑
i>n

ais
i−n(wi − (w′)i

)∣∣∣∣
and

d
(

Φ
(
γ1(ws)

)
,Φ
(
γ1(w′s)

))
= sn

∣∣∣∣∑
i>n

bjs
i−n(wi − (w′)i

)∣∣∣∣
Let i0 be the minimal element of {i ∈ A;wi 6= (w′)i}. Then i0 is an essential integer exponent,

so ai0 and bi0 are non-zero. Moreover, as s tends to 0 we have

d
(
γ1(ws), γ1(w′s)

)
∼ si0 |wi0 − (w′)i0 ||ai0 |

and d
(
Φ
(
γ1(ws)

)
,Φ
(
γ1(w′s)

))
∼ si0 |wi0 − (w′)i0 ||bi0 | and hence the ratio

d
(
γ1(ws), γ1(w′s)

)/
d
(

Φ
(
γ1(ws)

)
,Φ
(
γ1(w′s)

))
(∗)

tends to the non zero constant ci0 =
|ai0 |
|bi0 |

.

Notice that the integer i0 depends on the pair of points (w,w′). But i0 is either n or an
essential integer exponent for γ1. Therefore there are a finite number of values for i0 and ci0 .
Moreover, the set of pairs (w,w′) such that wn = (w′)n consists of a disjoint union of n lines.
So there exists s0 > 0 such that for each such (w,w′) with |w| = 1 and each s ≤ s0, the quotient
(∗) belongs to [1/K,K] where K > 0. Then U = {w : |w| ≤ s0} is the desired neighbourhood of
0.

We now prove that Φ is bilipschitz on γ1(U). Consider the projection p : C2 → C given by
p(x, y) = x. Let w and w′ be any two complex numbers in U . Let α be the segment in C joining
wn to (w′)n and let α̃1 (resp. α̃2) be the lifting of α by the restriction p|C1

(resp. p|C2
) with

origin γ1(w) (resp. γ2(w)). Consider the unique w′′ ∈ C such that γ1(w′′) is the extremity of α̃1.
Notice that γ2(w′′) is the extremity of α̃2. We have

d
(
γ1(w), γ1(w′)

)
≤ L(α̃1) + d

(
γ1(w′′), γ1(w′)

)
.

According to Section 2, p|C1
(resp. p|C2

) is an inner bilipschitz homeomorphism with bilip-
schitz constant say K1 (resp. K2). We then have L(α̃1) ≤ K1K2L(α̃2). Therefore setting
C = max(K1K2,K), we obtain:

d
(
γ1(w), γ1(w′)

)
≤ C

(
L(α̃2) + d

(
γ2(w′′), γ2(w′)

))
(∗∗)

Applying Lemma 4.1 to the restriction p|C2 with u = γ2(w) and u′ = γ2(w′), we then obtain:

d
(
γ1(w), γ1(w′)

)
≤ CMd

(
γ2(w), γ2(w′)

)
This proves Φ is Lipschitz. It is then bilipschitz by symmetry of the roles.
In the general case where C1 and C2 are not necessarily irreducible, the same arguments work

taking into account a Puiseux parametrization for each branch and the fact that the sets of
characteristic exponents and coincidence exponents between branches coincide. �

5. Outer geometry of space curves

Before proving the final equivalence of Theorem 1.1 we give a quick proof, based on the
preceding proof, of the following result of Teissier [8, pp. 352–354].

Theorem 5.1. For a complex curve germ (C, 0) ⊂ (CN , 0) the restriction to C of a generic
linear projection ` : CN → C2 is bilipschitz for the outer geometry.
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Our notion of generic linear projection to C2, defined in the proof below, is equivalent to
Teissier’s, which says that the kernel of the projection should contain no limit of secant lines to
the curve.

Proof of Theorem 5.1. We have to prove that the restriction `|C : C → `(C) is bilipschitz for the
outer metric. We choose coordinates (x, y) in C2 so `(C) is transverse to the y-axis at 0 and

coordinates (z1, . . . , zn) in Cn with z1 = x ◦ `. So ` has the form (z1, . . . , zN ) 7→ (z1,
∑N

1 bjzj)
and any component of C has a Puiseux expansion of the form (n is the multiplicity of the
component):

γ(w) =
(
wn,

∑
i≥n

a2iw
i, . . . ,

∑
i≥n

aNiw
i
)
.

We first assume (C, 0) is irreducible. We again denote A := {i : ∃j, aji 6= 0} and call an exponent
i ∈ Ar {n} an essential integer exponent if and only if

gcd{j ∈ {n} ∪A : j ≤ i} < gcd{j ∈ {n} ∪A : j < i}.

Define a1n = 1 and a1i = 0 for i > n. We say ` is generic if
∑N
j=1 bjaji 6= 0 for each essential

integer exponent i. We now assume ` is generic.
As in the proof of the second part of Theorem 1.1 there then exists K > 0 and a neighborhood

U of 0 in C such that for each pair (w,w′) with w ∈ U and wn = (w′)n we have

1

K
d
(
`γ(w), `γ(w′)

)
≤ d
(
γ(w), γ(w′)

)
≤ Kd

(
`γ(w), `γ(w′)

)
.

Lemma 4.1 then completes the proof, as before.
The proof when C is reducible is essentially the same, but the genericity condition must take

both characteristic and coincidence exponents into consideration. Namely, ` should be generic
as above for each individual branch of C; and for any two branches, given by (with n now the
lcm of their multiplicities)

γ(w) =
(
wn,

∑
i≥n

a2iw
i, . . . ,

∑
i≥n

aNiw
i
)
, γ′(w) =

(
wn,

∑
i≥n

a′2iw
i, . . . ,

∑
i≥n

a′Niw
i
)
,

we require
∑N
j=1 bj(aji−λia′ji) 6= 0 for each n-th root of unity λ, where i is the smallest exponent

for which some aji − a′ji is non-zero. �

Corollary 5.2. Let (C1, 0) ⊂ (CN1 , 0) and (C2, 0) ⊂ (CN2 , 0) be two germs of complex curves.
The following are equivalent:

(1) (C1, 0) and (C2, 0) have same Lipschitz geometry i.e., there is a homeomorphism of
germs φ : (C1, 0)→ (C2, 0) which is bilipschitz for the outer metric;

(2) there is a homeomorphism of germs φ : (C1, 0)→ (C2, 0), holomorphic except at 0, which
is bilipschitz for the outer metric;

(3) the generic plane projections of (C1, 0) and (C2, 0) have the same embedded topology. �

6. Ambient geometry of plane curves

To complete the proof of Theorem 1.1 we must show the implication (3)⇒ (4) of that theorem,
since (4)⇒ (3) is trivial. We will use a carrousel decomposition of (C2, 0) with respect to a plane
curve, so we first describe this (it is essentially the one described in [2]).

The tangent space to C at 0 is a union
⋃m
j=1 L

(j) of lines. For each j we denote the union of

components of C which are tangent to L(j) by C(j). We can assume our coordinates (x, y) in

C2 are chosen so that no L(j) is tangent to an axis. Then L(j) is given by an equation y = a
(j)
1 x

with a
(j)
1 6= 0.
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We choose ε0 > 0 sufficiently small that the set {(x, y) : |x| = ε} is transverse to C for all
ε ≤ ε0. We define conical sets V (j) of the form

V (j) :=
{

(x, y) : |y − a(j)1 x| ≤ η|x|, |x| ≤ ε0
}
⊂ C2 ,

where the equation of the line L(j) is y = a
(j)
1 x and η > 0 is small enough that the cones are

disjoint except at 0. If ε0 is small enough C(j) ∩ {|x| ≤ ε0} will lie completely in V (j).
There is then an R > 0 such that for any ε ≤ ε0 the sets V (j) meet the boundary of the

“square ball”

Bε :=
{

(x, y) ∈ C2 : |x| ≤ ε, |y| ≤ Rε
}

only in the part |x| = ε of the boundary. We will use these balls as a system of Milnor balls.
We now describe our carrousel decomposition for each V (j), so we will fix j for the moment.
We first truncate the Puiseux series for each component of C(j) at a point where truncation

does not affect the topology of C(j). Then for each pair κ = (f, pk) consisting of a Puiseux

polynomial f =
∑k−1
i=1 a

(j)
i xp

(j)
i and an exponent p

(j)
k for which there is a Puiseux series

y =

k∑
i=1

a
(j)
i xp

(j)
i + . . .

describing some component of C(j), we consider all components of C(j) which fit this data. If

a
(j)
k1 , . . . , a

(j)
kmκ

are the coefficients of xp
(j)
k which occur in these Puiseux polynomials we define

Bκ :=
{

(x, y) : ακ|xp
(j)
k | ≤

∣∣∣y − k−1∑
i=1

a
(j)
i xp

(j)
i

∣∣∣ ≤ βκ|xp(j)k |
∣∣∣y − (

k−1∑
i=1

a
(j)
i xp

(j)
i + a

(j)
kj x

p
(j)
k )
∣∣∣ ≥ γκ|xp(j)k | for j = 1, . . . ,mκ

}
.

Here ακ, βκ, γκ are chosen so that ακ < |a(j)kν | − γκ < |a
(j)
kν |+ γκ < βκ for each ν = 1, . . . ,mκ. If

ε is small enough, the sets Bκ will be disjoint for different κ.
The intersection Bκ ∩ {x = t} is a finite collection of disks with smaller disks removed. We

call Bκ a B-piece. The closure of the complement in V (j) of the union of the Bκ’s is a union
of pieces, each of which has link either a solid torus or a “toral annulus” (annulus × S1). We
call the latter annular pieces or A-pieces and the ones with solid torus link D-pieces (a B-piece
corresponding to an inessential exponent has the same topology as an A-piece, but we do not
call it annular).

This is our carrousel decomposition of V = V (j). We call Bε r
⋃
V (j) a B(1) piece (even

though it may have A- or D-topology). It is metrically conical, and together with the carrousel
decompositions of the V (j)’s we get a carrousel decomposition of the whole of Bε.

Proof of (3) ⇒ (4) of Theorem 1.1. Let (C1, 0) ⊂ (C2, 0) and (C2, 0) ⊂ (C2, 0) have the same
embedded topological type. Consider two carrousel decompositions of (C2, 0): one with respect
to C1 and the other with respect to C2, constructed as above. The proof consists of constructing
a bilipschitz map of germs h : (C2, 0)→ (C2, 0) which sends the carrousel decomposition for C1

to the one for C2 (being careful to include matching pieces for inessential exponents which occur
in just one of C1 and C2). We first construct it to respect the carrousels, but not necessarily
map C1 to C2. Once this is done, we adjust it so that C1 is mapped to C2.

Let L
(j)
1 and L

(j)
2 , j = 1, . . . ,m, be the tangent lines to C1 and C2 and C

(j)
1 resp. C

(j)
2 the

union of components of C1 resp. C2 which are tangent to L
(j)
1 resp. L

(j)
2 . We may assume we
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have numbered them so C
(j)
1 and C

(j)
2 have matching embedded topology. Let V

(j)
1 and V

(j)
2 ,

j = 1, . . . ,m, be the conical sets around the tangent lines as defined earlier.
The B(1) pieces of the carrousel decompositions for C1 and C2 are metrically conical with the

same topology, so there is a conical bilipschitz diffeomorphism between them. We can arrange

that it is a translation on each x = t section of each ∂V
(j)
1 . We will extend it over the cones V

(j)
1

and V
(j)
2 using the carrousels.

Consider the Puiseux series y =
∑k
i=1 a

(j)
i xp

(j)
i + . . . describing some component of C

(j)
1 and

the Puiseux series y =
∑k
i=1 b

(j)
i xp

(j)
i + . . . describing the corresponding component of C

(j)
2 . If

a term with inessential exponent appears in one of the series, we include it also in the other,
even if its coefficient there is zero. This way, when we construct the carrousel as above we have
corresponding B-pieces for the two carrousels. Moreover, we can choose the constants ακ, βκ, γκ
used to construct these corresponding B-pieces to be the same for both. The {x = t} sections of
a pair of corresponding A-pieces will then be congruent, so we can map the one A-piece to the
other by preserving x coordinate and using translation on each x = t section. The same holds
for D-pieces. It then remains to extend to the B-pieces.

A B-piece Bκ1 in the decomposition for C1 is determined by some κ1 = (f1, pk) with

f1 =

k−1∑
i=1

aix
pi ,

and is foliated by curves of the form y = f1 + ξxpk for varying ξ (we call pk the rate of Bκ). The
corresponding piece Bκ2

for C2 is similarly determined by some κ2 = (f2, pk) with

f2 =

k−1∑
i=1

bix
pi

and is foliated by curves y = f2 + ξxpk . The x = ε0 section of Bκ1 has a free cyclic group action
generated by the first return map of the foliation, and the same is true for Bκ2 . We choose a
smooth map (Bκ1

∩{x = ε0})→ (Bκ2
∩{x = ε0}) which is equivariant for this action and on the

boundary matches the maps, coming from A- and D-pieces, already chosen. This map extends
to the whole of Bκ1

by requiring it to preserve the foliation and x-coordinate.
By construction, the resulting map of germs φ : (C2, 0)→ (C2, 0) is an isometry on the A- and

D-pieces and bilipschitz on the B(1) piece. We must check that it is bilipschitz on the B-pieces
of type Bκ. Pick such a B and suppose the rate of B is r. The Lipschitz constant of φ is bounded
in a neighborhood of the link B(ε) := B ∩ {|x| = ε} of B by compactness. For 0 < ε′ < ε, if we
move points inwards x-distance ε− ε′ along the leaves of the foliation of B, each section at x = t

with |t| = ε moves to the section at x = ε′

ε t while scaling by a factor of (ε′/ε)r. The same holds
for the images of these sections in the carrousel for C2. So to high order the Lipschitz constant
of φ at a point of the x = t section equals the Lipschitz constant at the corresponding point of

the x = ε′

ε t section. It follows that the local Lipschitz constant is bounded on the whole of B,
so φ is bilipschitz.

However, φ maps C1 not to C2, but to a small deformation of it, since we constructed the
carrousels by first truncating our Puiseux series beyond any terms which contributed to the
topology. But it is not hard to see that, by a small change of the constructed map inside the
D-pieces which intersect C1, one can change φ so it maps C1 to C2 while changing the bilipschitz
coefficient by an amount which approaches zero as one approaches the origin. Namely, let D1

be such a piece and D2 = φ(D1) the corresponding piece for the curve C2. In each x = t slice
D1(t) := D1∩{x = t} we take the map D1(t)→ D1(t) which moves the point p1(t) := D1(t)∩C1

to p2(t) := φ−1(D2(t) ∩ C2) and maps each ray from p1(t) to a point p ∈ ∂D1(t) linearly to the
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ray from p2(t) to p. This gives a map ψ : D1 → D1 whose bilipschitz constant rapidly approaches
1 as t→ 0 and φ ◦ ψ does what is required on this piece. �
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