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PERIODIC SOLUTIONS OF

DISCONTINUOUS SECOND ORDER DIFFERENTIAL SYSTEMS

JAUME LLIBRE AND MARCO ANTONIO TEIXEIRA

Abstract. We provide sufficient conditions for the existence of periodic solutions of some

classes of autonomous and non-autonomous second order differential equations with discon-
tinuous right-hand sides. In the plane the discontinuities considered are given by the straight

lines either x = 0, or xy = 0. Two applications of these results are made, one to control

systems with variable structure, and the other to small external periodic excitation of a dis-
continuous nonlinear oscillator.

1. Introduction and statement of the main result

In these last tens the study of discontinuous differential systems became relevant in the bound-
ary between Mathematics, Physics and Engineering. In the book [2] and in the survey [10] there
are different models coming from the impacting motion in mechanical systems, or from switch-
ings in electronic systems, or from hybrid dynamics in control systems, and so on. All of these
models are formulated with differential equations with discontinuous right–hand sides. Also,
many studies have been done in the qualitative aspects of the phase space of discontinuous
differential systems, see for instance the hundreds of references quoted in [2] and [10].

In this paper we are mainly interested in the study of the periodic solutions of autonomous
and non–autonomous second order differential equations with discontinuous right–hand sides.
Recently discontinuous second order differential equations have been studied for several authors,
mainly non–autonomous ones. Thus, discontinuous differential equations of the form

u′′ + u+ α sign(y) = F (θ),

where F is a periodic function has been studied in [7]. In [5] periodic solutions of discontinuous
differential equations of the form u′′ + G(u) = F (θ) are analyzed, where F is periodic and
continuous, and G is continuous except at u = 0. In [6] the authors studied the periodic
solutions of the discontinuous differential equations u′′ + ηsign(u) = α sin(βt).

Our main results will provide sufficient conditions for the existence of periodic solutions of
the following two classes of autonomous second order differential equations with discontinuous
right–hand sides:

u′′ + u+ εα sign(u)G(u, u′) = εH(u, u′),(1)

u′′ + u+ εα sign(uu′)G(u, u′) = εH(u, u′).(2)
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Here u = u(t), α ∈ R is a parameter, ε is a small parameter, G and H are C1 functions, and the
prime denotes derivative with respect to the variable t. Note that the differential equation (1)
is discontinuous at u = 0, and that the differential equation (2) is discontinuous at uu′ = 0.

We also shall provide sufficient conditions for the existence of periodic solutions of the following
two classes of non–autonomous second order differential equations with discontinuous right–hand
sides:

r′′ + ε2α sign(cos θ)G(θ, r, r′) = ε2H(θ, r, r′),(3)

r′′ + ε2α sign(sin(2θ))G(θ, r, r′) = ε2H(θ, r, r′).(4)

Here (r, θ) are the polar coordinates of the plane, i.e. x = r cos θ and y = r sin θ, α ∈ R is
a parameter, ε is a small parameter, G and H are C1 functions in the variables r and r′, the
functions G and H are continuous and periodic in the variable θ of period 2π, and the prime
denotes derivative with respect to the variable θ. Note that the differential equation (3) is
discontinuous at the straight line x = 0 of the plane in cartesian coordinates, and that the
differential equation (4) is discontinuous at the straight lines xy = 0.

Denoting x = u and y = u′ the autonomous differential equations of second order (1) and (2),
respectively can be written as the following differential systems of first order in the plane

(5)

dx

dt
= x′ = y,

dy

dt
= y′ = −x− εα sign(x)G(x, y) + εH(x, y);

with the discontinuity set x = 0, and

(6)

dx

dt
= x′ = y,

dy

dt
= y′ = −x− εα sign(xy)G(x, y) + εH(x, y);

with the discontinuity set xy = 0.

Denoting x = r and y = r′/ε the non–autonomous differential equations of second order (3)
and (4), respectively can be written as the following differential systems of first order in the
plane

(7)

dx

dθ
= x′ = εy,

dy

dθ
= y′ = −εα sign(x)G(θ, x, y) + εH(θ, x, y);

with the discontinuity set x = 0, and

(8)

dx

dθ
= x′ = εy,

dy

dθ
= y′ = −εα sign(xy)G(θ, x, y) + εH(θ, x, y);

with the discontinuity set xy = 0.

The following propositions provide sufficient conditions for the existence of periodic solutions
for the discontinuous differential systems (5), (6), (7) and (8), respectively.
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Proposition 1. For ε 6= 0 sufficiently small the discontinuous differential system (5) has a
periodic solution (x(t, ε), y(t, ε)) for each simple zero r∗ of the function

f1(r) =

∫ 2π

0

H(r cos θ, r sin θ) sin θ dθ

+α

(∫ 3π/2

π/2

G(r cos θ, r sin θ) sin θ dθ −
∫ π/2

−π/2
G(r cos θ, r sin θ) sin θ dθ

)
,

such that (x(0, ε), y(0, ε))→ (r∗, 0) when ε→ 0.

Proposition 2. For ε 6= 0 sufficiently small the discontinuous differential system (6) has a
periodic solution (x(t, ε), y(t, ε)) for each simple zero r∗ of the function

f2(r) =

∫ 2π

0

H(r cos θ, r sin θ) sin θ dθ

−α

(∫ π/2

0

G(r cos θ, r sin θ) sin θ dθ +

∫ 3π/2

π

G(r cos θ, r sin θ) sin θ dθ

)

+α

(∫ π

π/2

G(r cos θ, r sin θ) sin θ dθ +

∫ 2π

3π/2

G(r cos θ, r sin θ) sin θ dθ

)
,

such that (x(0, ε), y(0, ε))→ (r∗, 0) when ε→ 0.

Proposition 3. For ε 6= 0 sufficiently small the discontinuous differential system (7) has a
periodic solution (x(θ, ε), y(θ, ε)) for each simple zero x∗ of the function

f3(x) =

∫ 2π

0

H(θ, x, 0) dθ + α

(∫ 3π/2

π/2

G(θ, x, 0) dθ −
∫ π/2

−π/2
G(θ, x, 0) dθ

)
,

such that (x(0, ε), y(0, ε))→ (x∗, 0) when ε→ 0.

Proposition 4. For ε 6= 0 sufficiently small the discontinuous differential system (8) has a
periodic solution (x(t, ε), y(t, ε)) for each simple zero x∗ of the function

f4(x) =

∫ 2π

0

H(θ, x, 0) dθ − α

(∫ π/2

0

G(θ, x, 0) dθ +

∫ 3π/2

π

G(θ, x, 0) dθ

)

+α

(∫ π

π/2

G(θ, x, 0) dθ +

∫ 2π

3π/2

G(θ, x, 0) dθ

)
,

such that (x(0, ε), y(0, ε))→ (x∗, 0) when ε→ 0.

The proof of these four propositions is given in section 2. The proofs are based in a recent
result on the averaging theory applied to discontinuous differential systems obtained by the
authors and also by Douglas Novaes, see the appendix.

In the study of control systems with variable structure appear the autonomous discontinuous
second order differential equations similar to

(9) u′′ + u+ εα sign(u)uu′ = ε
α

π
u′,

see for instance the book [1].

Corollary 5. For ε 6= 0 sufficiently small the control system with variable structure (9) has one

periodic solution u(t, ε), such that
√
u(0, ε)2 + u′(0, ε)2 → 3/4 when ε→ 0.
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In the next corollary we apply Proposition 3 for studying the periodic solutions of the following
small external periodic excitation of a discontinuous nonlinear oscillator

(10) r′′ + ε2α sign(cos θ)

(
(2− 3r) cos

θ

2

)
= −ε2

√
2α

π
r2.

Such kind of differential equations are considered in the book [11]. Note that equation (10) is a
non–autonomous discontinuous second order differential equation.

Corollary 6. For ε 6= 0 sufficiently small the small external periodic excitation of the dis-
continuous nonlinear oscillator (10) has two periodic solutions rk(θ, ε) for k = 1, 2, such that
r1(0, ε)→ cos θ and r2(0, ε)→ 2 cos θ when ε→ 0.

The proof of the two corollaries are given in section 3.

2. Proof of the propositions

In this section we prove the four propositions using the averaging theory for discontinuous
differential systems described in the appendix.

Proof of Proposition 1. We write the discontinuous differential system (5) in polar coordinates
(r, θ) where x = r cos θ and y = r sin θ, and we obtain

dr

dt
= ε
(
H(r cos θ, r sin θ)− α sgn(cos θ)G(r cos θ, r sin θ)

)
sin θ,

dθ

dt
= −1 +

ε

r

((
H(r cos θ, r sin θ)− α sgn(cos θ)G(r cos θ, r sin θ)

)
cos θ

)
.

Now taking as new independent variable the angle θ this previous discontinuous differential
system becomes

(11)

dr

dθ
= ε
(
α sgn(cos θ)G(r cos θ, r sin θ)−H(r cos θ, r sin θ)

)
sin θ +O(ε2)

= εF (θ, r) +O(ε2).

This system is under the assumptions of Theorem 7, where the variables of this theorem are
in our case t = θ, T = 2π, x = r, M = h−1(0) = {x = 0}. So we apply this theorem to our
previous discontinuous differential equation and we compute

f(r) =

∫ 2π

0

F (θ, r)dθ = f1(r),

where f1(r) is the function defined in the statement of Proposition 1. Since by assumptions G
and H are C1 functions in their two variables, it follows that f1(r) is C1. Consequently, if r∗ is
a simple zero of f1(r), i.e. f1(r∗) = 0 and

df1
dr

∣∣∣∣
r=r∗

6= 0,

then the Brouwer degree dB(f1, V, r
∗) 6= 0 being V a convenient open neighborhood of r∗, see

for more details on the Brouwer degree [3] and [9]. Hence, by Theorem 7 it follows that for
ε 6= 0 sufficiently small the discontinuous differential system (11) has a periodic solution r(θ, ε)
such that r(0, ε) → r∗ when ε → 0. Going back through the polar change of variables we
get that for ε 6= 0 sufficiently small the discontinuous differential system (5) has a periodic
solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε)) → (r∗, 0) when ε → 0. So, the proposition is
proved. �
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Proof of Proposition 2. The discontinuous differential system (6) in polar coordinates (r, θ) be-
comes

dr

dt
= ε
(
H(r cos θ, r sin θ)− α sgn(sin(2θ))G(r cos θ, r sin θ)

)
sin θ,

dθ

dt
= −1 +

ε

r

((
H(r cos θ, r sin θ)− α sgn(sin(2θ))G(r cos θ, r sin θ)

)
cos θ

)
.

Taking as new independent variable the angle θ this discontinuous differential system becomes

(12)

dr

dθ
= ε
(
α sgn(sin(2θ))G(r cos θ, r sin θ)−H(r cos θ, r sin θ)

)
sin θ +O(ε2)

= εF (θ, r) +O(ε2).

Applying Theorem 7 to this discontinuous differential equation, where the variables of this
theorem are in our case t = θ, T = 2π, x = r, M = h−1(0) = {xy = 0}, we compute

f(r) =

∫ 2π

0

F (θ, r)dθ = f2(r),

where f2(r) is the function defined in the statement of Proposition 2. Since f2(r) is C1, if r∗

is a simple zero of f2(r), then the Brouwer degree dB(f2, V, r
∗) 6= 0 being V a convenient open

neighborhood of r∗. Therefore, by Theorem 7 it follows that for ε 6= 0 sufficiently small the
discontinuous differential system (12) has a periodic solution r(θ, ε) such that r(0, ε)→ r∗ when
ε → 0. Going back through the polar change of variables we obtain that for ε 6= 0 sufficiently
small the discontinuous differential system (6) has a periodic solution (x(t, ε), y(t, ε)) such that
(x(0, ε), y(0, ε))→ (r∗, 0) when ε→ 0. This completes the proof of the proposition. �

Proof of Proposition 3. The discontinuous differential system (7) is already in the form (13) for
applying the averaging theory described in Theorem 7, where now the variables of Theorem 7 are
t = θ, T = 2π, x = (x, y),M = h−1(0) = {x = 0}, F (t,x) = F (θ, x, y) = (F1(θ, x, y), F2(θ, x, y))
where

F1(θ, x, y) = y,

F2(θ, x, y) = α sign(x)G(θ, x, y) +H(θ, x, y).

Therefore we apply Theorem 7 to the discontinuous differential system (7) and we obtain

f(x, y) =

∫ 2π

0

F (θ, x, y)dθ,

where f(x, y) = (g1(x, y), g2(x, y)) with

g1(x, y) = y,

g2(x, y) =

∫ 2π

0

H(θ, x, y) dθ + α

(∫ 3π/2

π/2

G(θ, x, y) dθ −
∫ π/2

−π/2
G(θ, x, y) dθ

)
.

A solution (x∗, y∗) of the system g1(x, y) = g2(x, y) = 0 satisfies y∗ = 0 and x∗ is a solution
of f3(x) = 0 where this function is the one defined in the statement of Proposition 3. Since G
and H are C1 functions in their two variables, it follows that g1(x, y), g2(x, y) and f3(x) are C1.
Consequently, if (x∗, 0) is a zero of the system g1(x, y) = g2(x, y) = 0, and the Jacobian

det


∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y


∣∣∣∣∣∣∣∣
(x,y)=(x∗,0)

=
df3
dx

∣∣∣∣
x=x∗

6= 0,
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then the Brouwer degree dB(f, V, (x∗, 0)) 6= 0 being V a convenient open neighborhood of (x∗, 0),
see again for more details on the Brouwer degree [3] and [9]. Hence, by Theorem 7 it follows
that for ε 6= 0 sufficiently small the discontinuous differential system (7) has a periodic solution
(x(θ, ε), y(θ, ε)) such that (x(0, ε), y(0, ε))→ (x∗, 0) when ε→ 0. So, the proposition follows. �

Proof of Proposition 4. The discontinuous differential system (8) is in the form (13) for applying
the averaging theory described in Theorem 7, where the variables of Theorem 7 now are t = θ,
T = 2π, x = (x, y), M = h−1(0) = {xy = 0}, F (t,x) = F (θ, x, y) = (F1(θ, x, y), F2(θ, x, y))
where

F1(θ, x, y) = y,

F2(θ, x, y) = α sign(xy)G(θ, x, y) +H(θ, x, y).

By applying Theorem 7 to the discontinuous differential system (8) and we obtain

f(x, y) =

∫ 2π

0

F (θ, x, y)dθ,

where f(x, y) = (g1(x, y), g2(x, y)) with

g1(x, y) = y,

g2(x, y) =

∫ 2π

0

H(θ, x, y) dθ − α

(∫ π/2

0

G(θ, x, y) dθ +

∫ 3π/2

π

G(θ, x, y) dθ

)

+α

(∫ π

π/2

G(θ, x, y) dθ +

∫ 2π

3π/2

G(θ, x, y) dθ

)
.

A solution (x∗, y∗) of the system g1(x, y) = g2(x, y) = 0 satisfies y∗ = 0 and x∗ is a solution
of f4(x) = 0 where this function is the one defined in the statement of Proposition 4. Since
g1(x, y), g2(x, y) and f4(x) are C1, and if (x∗, 0) is a zero of the system g1(x, y) = g2(x, y) = 0,
then the Jacobian

det


∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y


∣∣∣∣∣∣∣∣
(x,y)=(x∗,0)

=
df4
dx

∣∣∣∣
x=x∗

6= 0,

then the Brouwer degree dB(f, V, (x∗, 0)) 6= 0 being V a convenient open neighborhood of (x∗, 0).
Therefore, by Theorem 7 it follows that for ε 6= 0 sufficiently small the discontinuous differential
system (8) has a periodic solution (x(θ, ε), y(θ, ε)) such that (x(0, ε), y(0, ε)) → (x∗, 0) when
ε→ 0. In short, the proposition is proved. �

3. Proof of the applications

Here we prove the two corollaries.

Proof of Corollary 5. The autonomous discontinuous differential equation of second order (9) is
a particular case of equation (1) with

G(θ, u, u′) = uu′ and H(θ, u, u′) =
α

π
u′.

Then computing for equation (9) the function f1(r) given in the statement of Proposition 1 we
get

f1(r) = −α
3
r(4r − 3).
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Hence, f1(r) = 0 has a unique positive simple root r = 3/4. Going back through the changes of
variables described in the proof of Proposition 1, we obtain the result stated in the corollary. �

Proof of Corollary 6. The non–autonomous discontinuous differential equation of second order
(10) is a particular case of equation (3) with

G(θ, r, r′) = (2− 3r) cos
θ

2
and H(θ, r, r′) = −

√
2α

π
r2.

Then computing for equation (10) the function f3(x) given in the statement of Proposition 3 we
get

f3(x) = −2
√

2α(x− 2)(x− 1).

Therefore, f3(x) = 0 has two simple roots x = 1 and x = 2. Going back through the changes of
variables described in the proof of Proposition 3, it follows the result stated in the corollary. �

Appendix: Averaging theory of first order for discontinuous differential
systems

We need the following recent result of [8] on averaging theory for computing periodic orbits of
discontinuous differential systems. Its proof uses the theory on the Brouwer degree dB(f, V, 0)
for finite dimensional spaces (see the appendix A of [8] for a definition of the Brouwer degree),
and it is based on the averaging theory for continuous non–smooth differential system stated in
[4].

Theorem 7. We consider the following discontinuous differential system

(13) x′(t) = εF (t,x) + ε2R(t,x, ε),

with
F (t,x) = F1(t,x) + sign(h(t,x))F2(t,x),

R(t,x, ε) = R1(t,x, ε) + sign(h(t,x))R2(t,x, ε),

where F1, F2 : R×D → Rn, R1, R2 : R×D× (−ε0, ε0)→ Rn and h : R×D → R are continuous
functions, T–periodic in the variable t and D is an open subset of Rn. We also suppose that h
is a C1 function having 0 as a regular value. Denote by M = h−1(0), by Σ = {0} ×D *M, by
Σ0 = Σ\M 6= ∅, and its elements by z ≡ (0, z) /∈M.

Define the averaged function f : D → Rn as

(14) f(x) =

∫ T

0

F (t,x)dt.

We assume the following three conditions.

(i) F1, F2, R1, R2 and h are locally L–Lipschitz with respect to x;
(ii) for a ∈ Σ0 with f(a) = 0, there exist a neighbourhood V of a such that f(z) 6= 0 for all

z ∈ V \{a} and dB(f, V, 0) 6= 0.
(iii) If ∂h/∂t(t0, z0) = 0 for some (t0, z0) ∈M, then(

〈∇xh, F1〉2 − 〈∇xh, F2〉2
)
(t0, z0) > 0.

Then, for |ε| > 0 sufficiently small, there exists a T–periodic solution x(·, ε) of system (13) such
that x(0, ε)→ a as ε→ 0.
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