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Abstract. Precompact translation surfaces, i.e. closed surfaces which carry a translation

atlas outside of finitely many finite angle cone points, have been intensively studied for about

25 years now. About 5 years ago the attention was also drawn to general translation surfaces.
In this case the underlying surface can have infinite genus, the number of finite angle cone

points of the translation structure can be infinite, and there can be singularities which are

not finite angle cone points. There are only a few invariants one classically associates with
precompact translation surfaces, among them certain number fields, i.e. fields which are

finite extensions of Q. These fields are closely related to each other; they are often even

equal. We prove by constructing explicit examples that most of the classical results for the
fields associated with precompact translation surfaces fail in the realm of general translation

surfaces and investigate the relations among these fields. A very special class of translation

surfaces are so called square-tiled surfaces or origamis. We give a characterisation for infinite
origamis.

1. Introduction

Let S be a translation surface, in the sense of Thurston [Thu97], and denote by S the metric
completion with respect to its natural translation invariant flat metric. S is called precompact
if S is homeomorphic to a compact surface. We call translation surfaces origamis, if they are
obtained from gluing copies of the Euclidean unit square along parallel edges by translations;
see Definition 2.6. They are precompact translation surfaces if and only if the number of copies
is finite. An important invariant associated with a translation surface S is the Veech group Γ(S)
formed by the differentials of affine diffeomorphisms of S that preserve orientation; as further
invariants one considers the trace field Ktr(S), the holonomy field Khol(S), the field of cross ratios
of saddle connections Kcr(S) and the field of saddle connections Ksc(S); compare Definition 2.9
and Definition 3.2. For precompact surfaces we have the following characterisation:

Theorem A. [GJ00, Theorem 5.5] Let S be a precompact translation surface, and let Γ(S) be
its Veech group. The following statements are equivalent.

(i) The groups Γ(S) and SL(2,Z) are commensurable.
(ii) Every cross ratio of saddle connections is rational. Equivalently the field Kcr(S) is equal

to Q.
(iii) There exists a translation covering from a puncturing of S to a once-punctured flat

torus.
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(iv) S is an origami up to an affine homeomorphism, i.e. there is a Euclidean parallelogram
that tiles S by translations.

The first result of this article explores what remains of the preceding characterisation if S is a
general tame translation surface. Tame translation surfaces are the translation surfaces all of
whose singularities are cone angle singularities (possibly of infinite angle). This includes surfaces
like R2, but also surfaces whose fundamental group is not finitely generated. We define tameness
and the different types of singularities in Section 2. Furthermore, we call S maximal, if it has
no finite singularities of total angle 2π; compare Definition 2.6.

Theorem 1. Let S be a maximal tame translation surface. Then,

(i) S is affine equivalent to an origami if and only if the set of developed cone points is
contained in L+ x, where L ⊂ R2 is a lattice and x ∈ R2 is fixed.

(ii) If S is an origami the following statements (b)-(d) hold. In (a) and (e) we require in
addition that there are at least two nonparallel saddle connections on S:
(a) The Veech group of S is commensurable to a subgroup of SL(2,Z).
(b) The field of cross ratios Kcr(S) is isomorphic to Q.
(c) The holonomy field Khol(S) is isomorphic to Q.
(d) The saddle connection field Ksc(S) is isomorphic to Q.
(e) The trace field Ktr(S) is isomorphic to Q.

However, none of (a)-(e) implies that S is an origami.

In the proof of Theorem 1 we will show that even if we require that in (a) the Veech group of S
is equal to SL(2,Z), this condition does not imply that S is an origami.

If S is precompact, then the four fields Ktr(S), Khol(S), Kcr(S) and Ksc(S) are number fields
and we have the following hierarchy:

(1.1) Q ⊆ Ktr(S) ⊆ Khol(S) ⊆ Kcr(S) = Ksc(S)

Thus by Theorem Theorem A the conditions (a), (b) and (d) in (ii) of Theorem 1 are, for pre-
compact surfaces, equivalent to being an origami. Conditions (c) and (e), however, are even for
precompact translation surfaces not equivalent to being an origami. Indeed, recall that the “gen-
eral” precompact translation surface has trivial Veech group, i.e. Veech group {I,−I}, where I
is the identity matrix (see [Möl09, Thm. 2.1]). This implies that (e) is not equivalent to being an
origami. Furthermore, in Example 4.5 we construct an explicit example of a precompact surface
S that is not an origami and such that Khol(S) = Q. This shows that (c) is not equivalent to
being an origami.

In the case of general tame translation surfaces, the fields Ktr(S), Khol(S), Kcr(S) and Ksc(S)
are not necessarily number fields anymore; compare Proposition 3.6. Furthermore from the
hierarchy in (1.1) it just remains true in general that Khol(S) and Kcr(S) are both subfields
of Ksc(S). Some of the other relations in (1.1) hold under extra assumptions on S; compare
Corollary 4.7. It follows that, in general, if Ksc(S) is isomorphic to Q, then both Khol(S) and
Kcr(S) are isomorphic to Q. In terms of Theorem 1, part (ii), this is equivalent to say that (d)
implies both (b) and (c). Note that furthermore trivially (a) implies (e). We treat the remaining
of these implications in the next theorem.

Theorem 2. There are examples of tame translation surfaces S for which

(i) The Veech group Γ(S) is equal to SL(2,Z) and K is not equal to Q, where K can be
chosen from Kcr(S), Khol(S) and Ksc(S).
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(ii) The fields Ksc(S) (hence also Kcr(S) and Khol(S)) and Ktr(S) are equal to Q, but Γ(S)
is not commensurable to a subgroup of SL(2,Z).

(iii) Kcr(S) or Khol(S) is equal to Q, but Ksc(S) is not.
(iv) The field Kcr(S) is equal to Q, but Khol(S) is not or vice versa: Khol(S) is equal to Q,

but Kcr(S) is not.
(v) The field Ktr(S) is equal to Q, but none of the conditions (a), (b), (c) or (d) in The-

orem 1 hold. Moreover, none of the conditions (b), (c) or (d) imply that Ktr(S) is
isomorphic to Q.

The proofs of the preceding two theorems heavily rely on modifications of the construction
in [PSV11, Construction 4.9] which was there used to determine all possible Veech groups of
tame translation surfaces. We summarise this construction in Section 2.3. One can furthermore
modify the construction to prove that any subgroup of SL(2,Z) is the Veech group of an origami.
From this we will deduce the following statement about the oriented outer automorphism group
Out+(F2) of the free group F2 in two generators:

Corollary 1.1. Every subgroup of Out+(F2) is the stabiliser of a conjugacy class of some
(possibly infinite index) subgroup of F2.

If S is a precompact translation surface, the existence of hyperbolic elements, i.e. matrices
whose trace is bigger than 2, in Γ(S) has consequences for the image of H1(S,Z) in R2 under
the developing map (also called holonomy map; see Section 2) and for the nature of some of the
fields associated with S. To be more precise, if S is precompact, the following is known:

(A) If there exists M ∈ Γ(S) hyperbolic, then the holonomy field of S is equal to Q[tr(M)].
In particular, the traces of any two hyperbolic elements in Γ(S) generate the same field
over Q; see [KS00, Theorem 28].

(B) If there exists M ∈ Γ(S) hyperbolic and tr(M) ∈ Q, then S is an origami; see [McM03b,
Theorem 9.8].

(C) If S is a “bouillabaisse surface” (i.e. if Γ(S) contains two transverse parabolic elements),
then Ktr(S) is totally real; compare [HL06a, Theorem 1.1]. This implies that if there
exists an hyperbolic M in Γ(S) such that Q[tr(M)] is not totally real then Γ(S) does
not contain any parabolic elements; see Theorem 1.2 in ibid.

(D) Let Λ and Λ0 be the subgroups of R2 generated by the image under the holonomy map
of H1(S,Z) and H1(S,Σ;Z), respectively. Here Σ is the set of cone angle singularities
of S. If the affine group of S contains a pseudo-Anosov element, then Λ has finite index
in Λ0; see [KS00, Theorem 30].

The third main result of this paper shows that when passing to general tame translation surfaces
there are no such consequences. For such surfaces, an element of Γ(S) < GL+(2,R) will be called
hyperbolic, parabolic or elliptic if its image in PSL(2,R) is hyperbolic, parabolic or elliptic
respectively.

Theorem 3. There are examples of tame translation surfaces S for which (A), (B), (C) or (D)
from above do not hold.

We remark that all tame translation surfaces S that we construct in the proof of the preceding
theorem have the same topological type: one end and infinite genus. Such topological surfaces
are called Loch Ness monster; see Section 2.

This paper is organised as follows. In Section 2 we review the basics about general translation
surfaces, tame translation surfaces and origamis, their singularities and possible Veech groups.
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In Section 3 we present the definitions of the fields listed in Theorem 1 for general tame trans-
lation surfaces. We prove that the main algebraic properties of these fields which are true for
precompact translation surfaces no longer hold for general translation surfaces. For example,
we construct examples of tame translation surfaces for which the trace field is not a number
field. We furthermore show those inclusions from (1.1) which still are valid for tame translation
surfaces. Section 4 deals with the proofs of the three theorems stated in this section. We refer
the reader to [HS10], [HLT11] or [HHW13] for recent developments concerning tame translation
surfaces.

Acknowledgements. Both authors would like to express their gratitude to the Hausdorff
Research Institute for Mathematics for their hospitality and wonderful working environment
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on the occasion of his 60th birthday, where part of the results of this article were presented. The
second author would furthermore like to thank Frank Herrlich, who has proofread a previous
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2. Preliminaries

2.1. General translation surfaces and their singularities. In this section we review some
basic notions needed for the rest of the article. For a detailed exposition, we refer to [GJ00] and
[Thu97].

A translation surface S will be a 2-dimensional real G-manifold with G = R2 = Trans(R2);
that is, a surface on which coordinate changes are translations of the real plane R2. We can pull
back to S the standard translation invariant flat metric of the plane and obtain this way a flat
metric on the surface. We denote by S the metric completion of S with respect to this natural
flat metric. A translation map is a G-map between translation surfaces. Every translation map
f : S1 −→ S2 has a unique continuous extension f : S1 −→ S2.

Definition 2.1. If S is homeomorphic to an orientable compact surface, we say that S is a
precompact translation surface. Else we say that S is non precompact. Observe that a not
precompact translation surface is not necessarily of infinite type. The union of all precompact
and not precompact translation surfaces form the set of general translation surfaces.

Definition 2.2. Let S be a translation surface. We call the points of S\S singularities of the
translation surface S. A point x ∈ S \ S is called a finite angle singularity or finite angle cone
point of total angle 2πm, where m ≥ 1 is a natural number, if there exists a neighbourhood of x
which is isometric to a neighbourhood of the origin in R2 with a metric that, in polar coordinates
(r, θ), has the form ds2 = dr2 + (mrdθ). The set of finite angle singularities of S is denoted by
Σfin.

Precompact translation surfaces are obtained by glueing finitely many polygons (deprived of
their vertices) along parallel edges by translations. One even obtains all precompact translation
surfaces in this way; see [Mas06]. Thus if S is a precompact translation surface, all of its
singularities are finite angle singularities. If furthermore S has genus at least 2, then, by a simple
Euler characteristic calculation, S always has singularities. For non precompact translation
surfaces, new kinds of singularities will occur. We illustrate this in the following example.
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Figure 1. An infinite-type translation surface.

Example 2.3. In Figure 1 we depict a translation surface obtained from infinitely many copies
of the Euclidean unit square. More precisely, we remove the vertices from all the squares in
the figure. Some pairs of edges are already identified; among the remaining edges we identify
opposite ones which are labelled by the same letter by translations. The result is a translation
surface S which is not precompact. It is called infinite staircase because of its shape. This
and similar shaped surfaces have been intensively studied in the literature; see e.g. [HS10],
[HHW13], [HW12] and [CG12]. S is a prototype for what we will call in this text an infinite
origami or infinite square-tiled surface; compare Definition 2.6. The translation surface S comes
with a natural cover p to the once punctured torus obtained from glueing parallel edges of the
Euclidean unit square again with its vertices removed.
Observe furthermore that the metric completion of the infinite staircase S has four singularities
x1, x2, x3 and x4. Restricted to a punctured neighbourhood of them p is infinite cyclic and the
universal cover of a once punctured disk. In this sense the singularities x1, . . . , x4 generalise
finite angle singularities of angle 2πm. They are prototypes for what we call infinite angle
singularities; compare Definition 2.4.

Definition 2.4. Let S be a translation surface. A point x ∈ S is called an infinite angle
singularity or infinite angle cone point if there exists a neighbourhood of x isometric to the
neighbourhood of the branching point of the infinite cyclic flat branched covering of R2. The
set of infinite angle singularities of S is denoted by Σinf . Points in the set Σ = Σfin ∪ Σinf will
be called cone angle singularities of S or just cone points.
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Definition 2.5. A translation surface S is called tame if all points in S \ S are cone angle
singularities (of finite or infinite total angle). A tame translation surface S is said to be of
infinite-type if the fundamental group of S is not finitely generated.

Every precompact translation surface is tame. There are tame translation surfaces with infinite
angle singularities which are not of infinite type. For example consider the infinite cyclic covering
of the once punctured plane. Explicit examples of infinite-type translation surfaces arise natu-
rally when studying the billiard on a polygon whose interior angles are not rational multiples
of π (see [Val09]). Nevertheless, not all translation surfaces are tame. If one allows infinitely
many polygons, wild types of singularities may occur. Simple examples of not tame translation
surfaces can be found in [Cha04] and [BV13].

In the following we define the very special class of translation surfaces called origamis or square-
tiled surfaces. With Example 2.3 we have already seen a specific instance of them.

Definition 2.6. A translation surface is called origami or square-tiled surface, if it fulfils one of
the two following equivalent conditions:

(i) S is a translation surface obtained from glueing (possibly infinitely many) copies of the
Euclidean square along edges by translations according to the following rules:
• each left edge is glued to precisely one right edge,
• each upper edge to precisely one lower edge and
• the resulting surface is connected;

and removing all singularities.
(ii) S allows an unramified covering p : S∗ → T0 of the once-punctured unit torus

T0 = (R2\L0)/L0,

such that p is a translation map. Here S∗ is a subset of S such that the complement
S\S∗ is a discrete set of points on S. L0 is the lattice in R2 spanned by the two
standard basis e1 = (1, 0) and e2 = (0, 1). Furthermore, S is maximal in the sense that
S\S contains no finite angle singularities of angle 2π.

An origami will be called finite if the number of squares needed to construct it is finite or,
equivalently, if the unramified covering p : S → T0 is finite. Else, the origami will be called
infinite. See [Sch06, Section 1] for a detailed introduction to finite origamis. Infinite origamis
were studied e.g. in [HS10] and [Gut10].

2.2. Developed cone points and the Veech group. In the following we introduce the set
of developed cone points for tame translation surfaces, which will play an important role in the

proof of Theorem 1. Let πS : S̃ −→ S be a universal cover of a translation surface S and Aut(πS)

the group of its deck transformations. From now on, S̃ is endowed with the translation structure
obtained as pull-back from the one on S via πS . Recall from [Thu97, Section 4.3] that for every
deck transformation γ, there is a unique translation hol(γ) satisfying

(2.2) dev ◦ γ = hol(γ) ◦ dev,

where dev : S̃ −→ R2 denotes the developing map. The map hol: Aut(πS)→ Trans(R2) ∼= R2 is
a group homomorphism. By considering the continuous extension of each map in Equation (2.2)
to the metric completion of its domain, we obtain

(2.3) dev ◦ γ = hol(γ) ◦ dev.
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Overall we have the following commutative diagram:

(2.4) S̃
γ

//

dev
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]]

γ
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zz
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πS

��
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$$

S S

R2
hol(γ)

// R2 .

Definition 2.7. The set of developed singularities of S is the subset of the plane R2 given by

dev(S̃ \ S̃). We denote it by Σ̃(S). If S is a tame translation surface, we also call Σ̃(S) the set
of developed cone points.

Definition 2.8. A singular geodesic of a translation surface S is an open geodesic segment in
the flat metric of S whose image under the natural embedding S ↪→ S issues from a singularity
of S, contains no singularity in its interior and is not properly contained in some other geodesic
segment. A saddle connection is a finite length singular geodesic.

To each saddle connection we can associate a holonomy vector : we ’develop’ the saddle connec-
tion in the plane by using local coordinates of the flat structure. The difference vector defined
by the planar line segment is the holonomy vector. Two saddle connections are parallel, if their
corresponding holonomy vectors are linearly dependent.

Next, we introduce the Veech group, which since Veech’s article [Vee89] from 1989 has been
studied for precompact translation surfaces as the natural object associated with the surface.
Let Aff+(S) be the group of affine orientation preserving homeomorphisms of a translation
surface S. Consider the map

(2.5) Aff+(S)
D−→ GL+(2,R)

that associates to every φ ∈ Aff+(S) its (constant) Jacobian derivative Dφ.

Definition 2.9. Let S be a translation surface. We call Γ(S) = D(Aff+(S)) the Veech group of
S.

Remark 2.10. The group GL+(2,R) naturally acts on the set of translation surfaces: We define
A · S to be the translation surface obtained from S by composing each chart in the translation
atlas with the linear map

(
x
y

)
7→ A ·

(
x
y

)
. Since the map idA : S → A · S which topologically is

the identity map has derivative A, we have that Γ(A · S) = A · Γ(S) ·A−1.

2.3. Constructing tame surfaces with prescribed Veech groups. The proofs of our main
results heavily rely on slight modifications of the construction in the proof of [PSV11, Proposition
4.1]. In this section we review this construction. We will mainly use the notation of [PSV11].
The construction we are about to review proves the following:

Proposition 2.11 ([PSV11, Proposition 4.1]). For any countable subgroup G of GL+(2,R)
disjoint from U = {g ∈ GL+(2,R) : ||g|| < 1} there exists a tame translation surface S = S(G),
which is homeomorphic to the Loch Ness monster, with Veech group G.
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The Loch Ness monster is the unique topological surface S (up to homeomorphism) of infinite
genus and one end. By one end we mean that for every compact set K ⊂ S there exists a
compact set K ⊂ K ′ ⊂ S such that S \ K ′ is connected. We refer the reader to [Ric63] for a
more detailed discussion on surfaces of infinite genus and ends.

First we have to recall a basic geometric operation which will play an important role in the
construction: glueing translation surfaces along marks.

Definition 2.12. Let S be a tame translation surface. A mark on S is an oriented finite length
geodesic (with endpoints) on S. The vector of a mark is its holonomy vector, which lies in R2.
If m,m′ are two disjoint marks on S with equal vectors, we can perform the following operation.
We cut S along m and m′, which turns S into a surface with boundary consisting of four straight
segments. Then we reglue these segments to obtain a tame translation surface S′ different from
the one we started from. We say that S′ is obtained from S by reglueing along m and m′. Let
S0 = S \ (m ∪m′). Then S′ admits a natural embedding i of S0. If A ⊂ S0, then we say that
i(A) is inherited by S′ from A.

Remark 2.13. If S′ is obtained from S by reglueing, then the number of singularities of S′ of a
fixed angle equals the one of S, except for 4π–angle singularities, whose number in S′ is greater
by 2 to that in S (we put ∞ + 2 = ∞). The Euler characteristic of S is greater by 2 than the
Euler characteristic of S′.
We can extend the notion of reglueing to ordered families M = (mn)∞n=1 and M′ = (m′n)∞n=1 of
disjoint marks, which do not accumulate in S, and such that the vector of mn equals the vector
of m′n, for each n.

Outline of the construction. Let {ai}i∈I (with I ⊆ N) be a (possibly infinite) set of generators
for G. We make use of the fact that any group G acts on its Cayley graph Γ and turn the graph
Γ in a G-equivariant way into a translation surface. In the following we describe the general idea
of the construction; below we give the explicit construction for the case that G is generated by
two elements. The construction then works just in the same way for general groups; compare
[PSV11, Construction 4.9].

• With each vertex g of Γ we associate a translation surface Vg. More precisely we start
from some translation surface VId and define Vg to be its translate g · VId by the action
of GL+(2,R) on the set of translation surfaces described in Remark 2.10. Observe that
the linear group G naturally acts via affine homeomorphisms on the disjoint union of the
Vg’s; an element h ∈ G maps Vg to Vh·g. In the next step we will choose disjoint marks
on the translation surfaces Vg. Reglueing the disjoint union of the surfaces Vg along
these marks will give us a connected surface on which G acts by affine homeomorphisms.
At the moment, we can assume VId just to be the real plane R2 equipped with an origin
and a coordinate system.

• We choose marks on the starting surface VId in the following way:
– For each i in I we choose a family Ci = {mi

j}j∈J (with J ⊆ N) of horizontal marks

mi
j of length 1, i.e. the vector of each mark mi

j is the first standard basis vector
e1.

– For each i we choose a family C−i = {m−ij }j∈J of marks with vector a−1
i (e1), i.e.

the vector of m−ij is equal to a−1
i · e1.

– All marks are disjoint.
• On each Vg we take the corresponding marks g(mi

j) and g(m−ij ) with i ∈ I and j ∈ N.

The mark g(mi
j) has the vector g · e1 and g(m−ij ) has the vector ga−1

i · e1.
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• We pair the mark g(mi
j) on the surface Vg with the mark gai(m

−i
j ) on Vgai . Observe

that for both the vector is g · e1.
We now reglue the disjoint union of the Vg’s along these pairs of marks.

This gives us a translation surface S1 on which the elements of G act via affine homeomorphisms,
i.e. Γ(S1) contains G. However we are not yet done, but still have the following problems:

(i) The Veech group Γ(S1) can be bigger than G.
(ii) The singularities can accumulate. In this case S1 is not tame.

(iii) We want the translation surface to have one end.

We resolve the problems in the following way: To enforce that all elements in the Veech group
are in G, we will modify the starting surface VId. We will replace it by a surface obtained from

glueing a decorated surface L̃′Id (described below) to a plane AId = R2. The surface L̃′Id will be
decorated with special singularities. This will guarantee that every orientation preserving affine

homeomorphism permutes the set of the singularities on the L̃′g’s and with some more care we
will establish that it actually acts as one of the elements of G. To avoid accumulation of singu-
larities, we will associate with each edge in the Cayley graph between two vertices g and g′ (let

us say that g−1g′ = ai is the i-th generator) a buffer surface Êig which connects Vg to Vg′ , but
separates them by a definite distance. Finally, we keep track of the end by providing that each Vg
and Êig is one-ended and that after glueing all Vg and Êig, their ends actually merge into one end.
This actually is the reason why we have to choose infinite families of marks. If we do not require
the surface to be a Loch Ness monster, then it suffices to take one mark from each infinite family.

An illustrative example. In the following paragraphs we carry out the construction for the case
where G is generated by two matrices a1 and a2. The general case works in the same way;
compare [PSV11, Construction 4.9].
Constructing the translation surface Vg: We first construct the surface VId. We will obtain

it by glueing two surfaces AId and L̃′Id along an infinite family of marks. Let AId be an oriented
flat plane, equipped with an origin and the standard basis e1 = (1, 0) and e2 = (0, 1). We define
the families of marks as follows:

• For i = 0, 1, 2 let Ci be the family of marks on AId with endpoints ie2 +(2n−1)e1, ie2 +
2ne1, for n ≥ 1. All these marks are pairwise disjoint.

• Given x1, y1 ∈ R, consider the family C−1 of marks on AId with endpoints

(nx1, y1), (nx1, y1) + a−1
1 (e1),

for n ≥ 1. We can choose x1 > 0 sufficiently large and y1 < 0 sufficiently small so that
all these marks are pairwise disjoint and disjoint from the ones in Ci for i = 0, 1, 2.

• Observe that a translate of the lower half-plane in AId is avoided by all already con-
structed marks. In this way we can choose x2,−y2 ∈ R sufficiently large so that the
marks with endpoints (nx2, y2), (nx2, y2)+a−1

2 (e1), for n ≥ 1, are pairwise disjoint and
disjoint with the previously constructed marks. We denote this family by C−2.

Let LId be an oriented flat plane, equipped with an origin OId. Let L̃Id be the threefold cyclic
branched covering of LId, which is branched over the origin. Denote the projection map from

L̃Id onto LId by π. Denote by R the closure in L̃Id of one connected component of the preimage
under π of the open right half-plane in LId. On R consider coordinates induced from LId via π.

We define the following family of marks on L̃Id:

• Let C′ be the family of marks in R with endpoints (2n− 1)e1, 2ne1, for n ≥ 1.

• Let t and b be the two marks in L̃Id with endpoints in R with coordinates e2, 2e2 and
−2e2,−e2, respectively.
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Let L̃′Id be the tame flat surface obtained from L̃Id by reglueing along t and b. We call L̃′Id the

decorated surface. Finally, we obtain VId by glueing AId with L̃′Id along the families of marks C0

and C′. For each g ∈ G we define Vg as the translation surface g · VId.

Observe that if we denote by Õg the unique preimage on L̃g of the origin Og of Lg via the

three-fold covering, then Õg is a singularity of total angle 6π and there are precisely three saddle

connections starting in Õg.

Constructing the buffer surface Êi
g: Let EId, E

′
Id be two oriented flat planes, equipped with

origins that allow us to identify them with R2. We define the following families of vector e1

marks on EId ∪ E′Id.

• Let S be the family of marks on EId with endpoints 4ne1, (4n+ 1)e1, for n ≥ 1.
• Let Sglue be the family of marks on EId with endpoints (4n+2)e1, (4n+3)e1, for n ≥ 1.
• Let S ′ be the family of marks on E′Id with endpoints 2ne2, 2ne2 + e1, for n ≥ 1.
• Finally, let S ′glue be the family of marks on E′Id with endpoints (2n+1)e2, (2n+1)e2+e1,

for n ≥ 1.

Let ÊId be the tame flat surface obtained from EId and E′Id by reglueing along Sglue and S ′glue.

We call ÊId the buffer surface. The surface ÊId comes with the distinguished families of marks
inherited from S and S ′, for which we retain the same notation. Let Ê1

Id and Ê2
Id be two copies

of ÊId and for each g ∈ G let Êig to be the translation surface g · Êig (i ∈ {1, 2}). It is endowed

with the two family of marks Sig and S ′ig .
Construction of the surface S: We finally obtain the desired surface S from the disjoint
union of all Vg’s and Êig in the following way:

• Reglue each mark C1
g on Vg with S1

g on Ê1
g , and each mark S ′1g on Ê1

g with C−1
ga1 on Vga1 .

• Reglue each mark C2
g on Vg with S2

g on Ê2
g , and each mark S ′2g on Ê2

g with C−2
ga2 on Vga2 .

In [PSV11, Section 4] it is carefully carried out that the construction is well defined and gives
the desired result from Proposition 2.11.

3. Fields associated with translation surfaces

There are four subfields of R in the literature which are naturally associated with a translation
surface S. They are called the holonomy field Khol(S), the segment field or field of saddle
connections Ksc(S), the field of cross ratios of saddle connections Kcr(S), and the trace field
Ktr(S); compare [KS00] and [GJ00]. In the following, we extend their definitions to (possibly
non precompact) tame translation surfaces.

Remark 3.1. It follows from [PSV11, Lemma 3.2] that there are only three types of tame
translation surfaces such that S has no singularity: R2, R2/Z and flat tori. Furthermore, tame
translation surfaces with only one singularity are cyclic coverings of R2 ramified over the origin.
Finally, if S has at least two singularities, then there exists at least one saddle connection.

Definition 3.2. Let S be a tame translation surface and S the metric completion of S.

(i) (Following [KS00, Section 7].) Let Λ be the image of H1(S,Z) in R2 under the holonomy
map h and let n be the dimension of the smallest R-subspace of R2 containing Λ; in
particular n is 0, 1 or 2. The holonomy field Khol(S) is the smallest subfield k of R
such that

Λ⊗Z k ∼= kn.

(ii) Let Σ denote the set of all singularities of S. Using in (i) H1(S,Σfin;Z), the homology
relative to the set of finite angle singularities, instead of the absolute homology H1(S,Z),
we obtain the segment field or field of saddle connections Ksc(S).
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(iii) (Following [GJ00, Section 5].) The field of cross ratios of saddle connections Kcr(S) is
the field generated by the set of all cross ratios (v1, v2; v3, v4), where the vi’s are four
pairwise nonparallel holonomy vectors of saddle connections of S; compare Remark 3.3
iii).

(iv) Finally, the trace field Ktr(S) is the field generated by the traces of elements in the
Veech group: Ktr(S) = Q[tr(A)|A ∈ Γ(S)].

In the rest of this section we mean by a holonomy vector always the holonomy vector of a saddle
connection.

Remark 3.3. (i) Definition 3.2 (i) is equivalent to the following: If n = 2, take any two
nonparallel vectors {e1, e2} ⊂ Λ, then Khol(S) is the smallest subfield k of R such that
every element v of Λ can be written in the form a · e1 + b · e2, with a, b ∈ k. If n = 1,
any element v of Λ can be written as a ·e1, with a ∈ Khol(S) and e1 any nonzero (fixed)
vector in Λ. If n = 0, Khol(S) = Q.
The same is true for Ksc(S), if Λ is the image of H1(S,Σfin;Z) in R2.

(ii) Recall that S is a topological surface if and only if all of its singularities have finite cone
angles. However, if Σinf (resp. Σfin) is the set of infinite (resp. finite) angle singularities,

then Ŝ = S\Σinf = S∪Σfin is a surface, possibly of infinite genus. We furthermore have

that the fundamental group π1(S) equals π1(Ŝ) and thus

H1(S,Z) ∼= H1(Ŝ,Z).

Indeed, for every infinite angle singularity p0 ∈ S, there exists by definition a neigh-
bourhood U of p0 in S which is isometric to a neighbourhood of the branching point z0

of the infinite flat cyclic covering X0 of R2 branched over 0. Without loss of generality
we may choose the neighbourhood of z0 as an open ball of radius ε in X0. We then
have that U is homeomorphic to {(x, y) ∈ R2|x > 0} ∪ {(0, 0)} ⊂ R2. In particular,
U and U\{p0} are both contractible, and by the Seifert-van Kampen theorem we have
π1(S\{p0}) ∼= π1(S).

(iii) Recall that the cross ratio r of four vectors v1, . . . , v4 with vi = (xi, yi) is equal to the
cross ratio of the real numbers r1 = y1/x1, . . . , r4 = y4/x4, i.e.

(3.6) (v1, v2; v3, v4) =
(r1 − r3) · (r2 − r4)

(r2 − r3) · (r1 − r4)
.

If ri = ∞ for some i = 1, . . . , 4, one eliminates the factors on which it appears in
Equation (3.6). For example, if r1 = ∞, then (v1, v2; v3, v4) = r2−r4

r2−r3 . If there are no

four non parallel holonomy vectors, Kcr(S) is equal to Q.
(iv) The four fields from Definition 3.2 are invariant under the action of GL(2,R) described

in Remark 2.10, i.e. for A ∈ GL(2,R) we have

Khol(S) = Khol(A · S), Ksc(S) = Ksc(A · S),
Kcr(S) = Kcr(A · S), Ktr(S) = Ktr(A · S).

For Khol(S) and Ksc(S) this follows from (i). Recall that the cross ratio is invariant
under linear transformation. Thus the claim is true for the field Kcr(S). Finally, we
have that Γ(A · S) is conjugated to Γ(S); compare Remark 2.10. Since the trace of a
matrix is invariant under conjugation, the claim also holds for Ktr(S).

It follows directly from the definitions that Khol(S) ⊆ Ksc(S). Furthermore, we see from Re-
mark 3.3 that Kcr(S) ⊆ Ksc(S): Suppose S has two linearly independent holonomy vectors
w1 and w2. By (iv) in the preceding remark we may assume that w1 = e1, w2 = e2 is the
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standard basis. Let v1, v2, v3, v4 be four arbitrary pairwise nonparallel holonomy vectors with
vi = (xi, yi). By (i) we have that all the coordinates xi and yi are in Ksc(S). Thus in particular
the cross ratio (v1, v2; v3, v4) is in Ksc(S). If there is no pair (w1, w2) of linearly independent
holonomy vectors, then Kcr(S) = Q and the inclusion Kcr(S) ⊆ Ksc(S) trivially holds.
Since the Veech group preserves the set of holonomy vectors, we furthermore have that if there
are at least two linearly independent holonomy vectors, then Ktr(S) ⊆ Khol(S). However, if all
holonomy vectors are parallel, it is not in general true that Ktr(S) ⊆ Khol(S). An example of a
surface S showing this is given in [PSV11, Lemma 3.7]: The surface S is obtained from glueing
two copies of R2 along horizontal slits ln of the plane with end points (4n+ 1, 0) and (4n+ 3, 0).
In particular all saddle connections are horizontal and the fields Khol(S), Kcr(S) and Ksc(S)
are all Q. But the Veech group is very big. It consists of all matrices in GL+(2,R) which fix
the first standard basis vector e1; compare [PSV11, Lemma 3.7].

Remark 3.4. The translation surface S from [PSV11, Lemma 3.7] has the following properties:

Γ(S) =

{(
1 t
0 s

)
|t ∈ R, s ∈ R+

}
and Khol(S) = Kcr(S) = Ksc(S) = Q. In particular, we have Ktr(S) = R.

Finally, in Proposition 3.5 we see that for a large class of translation surfaces we have that
Kcr(S) = Ksc(S). The main argument of the proof was given in [GJ00] for precompact surfaces.

Proposition 3.5. Let S be a (possibly non precompact) tame translation surface, S its metric
completion and Σ ⊂ S its set of singularities. Suppose that S has a geodesic triangulation by
countably many triangles ∆k (k ∈ I for some index set I) such that the set of vertices equals Σ.
We then have Kcr(S) = Ksc(S).

Proof. The inclusion ”⊂” was shown in general in the paragraph below Remark 3.3. The inclusion
”⊃” follows from [GJ00, Proposition 5.2]. The statement there is for precompact surfaces, but
the proof works in the same way if there exists a triangulation as required in this proposition.
More precisely, in [GJ00] it is shown that the Kcr(S)-vector space V (S) spanned by the image
of H1(S,Σ;Z) under the holonomy map is 2-dimensional over Kcr(S). Hence Ksc(S) ⊆ Kcr(S).

�

It follows from Theorem 2 that in general no further inclusions between the four fields from
Definition 3.2 hold than those stated above; see Corollary 4.7 for a subsumption of the relations
between the fields.

If S is a precompact translation surface of genus g, then [Ktr(S) : Q] ≤ g. Moreover, the traces
of elements in Γ(S) are algebraic integers (see [McM03a]). When dealing with tame translation
surfaces, such algebraic properties do not hold in general.

Proposition 3.6. For each n ∈ N ∪ {∞} there exists a tame translation surface Sn of infinite
genus such that the transcendence degree of the field extension Ktr(Sn)/Q is n. Sn can be chosen
to be a Loch Ness monster.

Proof. Let {λ1, . . . , λn} be Q-algebraically independent real numbers with |λi| > 2. Define

Gn :=

〈(
µ 0
0 µ−1

)
| µ+ µ−1 = λi with i ∈ {1, . . . , n}

〉
.
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Gn is countable and a subgroup of the diagonal group. In particular, Gn is disjoint from the set
U of contraction matrices; recall Proposition 2.11 for the definition of U . Thus, we can apply
Proposition 2.11 and obtain a surface Sn with Veech group Gn. We have

Q ⊂ Q(λ1, . . . , λn) ⊆ Ktr(Sn) ⊆ L = Q(µ|µ+ µ−1 = λi with i ∈ {1, . . . , n}).
Since the generators µ of L are algebraic over Q(λ1, . . . , λn), it follows that L/Q(λ1, . . . , λn) and
thus also Ktr(Sn)/Q(λ1, . . . , λn) is algebraic and we obtain the claim. �

If µ1 is one of the two solutions of µ+ µ−1 = π and

G :=

〈(
µ1 0
0 µ−1

1

) 〉
,

then we obtain in the same way the following corollary.

Corollary 3.7. There are examples of tame translation surfaces S of infinite genus with a cyclic
hyperbolic Veech group such that Ktr(S) is not a number field. Again the translation surface can
be chosen to be as a Loch Ness monster.

Transcendental numbers naturally appear also in fields associated with Veech groups arising
from a generic triangular billiard. Indeed, let T ⊂ R2 denote the space of triangles parametrised
by two angles (θ1, θ2). Remark that T is a simplex. For every T = T(θ1,θ2) ∈ T , a classical
construction due to Katok and Zemljakov produces a tame flat surface ST from T [ZK75]. If T
has an interior angle which is not commensurable with π, ST is a Loch Ness monster; compare
[Val09].

Proposition 3.8. The set T ′ ⊂ T formed by those triangles such that Ksc(ST ), Kcr(ST ) and
Ktr(ST ) are not number fields, is of total (Lebesgue) measure in T .

Proof. Since ST has a triangulation with countably many triangles satisfying the hypotheses
of Proposition 3.5, the fields Ksc(ST ) and Kcr(ST ) coincide. Without loss of generality we can
assume that the triangle T = T(θ1,θ2) has the vertices 0, 1 and ρeiθ1 (with ρ > 0) in the complex
plane C. When doing the Katok-Zemljakov construction we start by reflecting T at its edges.
Thus in particular ST contains the geodesic quadrangle shown in Figure 2.

0 1

ρeiθ1
e2iθ1

θ1

θ1

Figure 2. Geodesic quadrangle in the surface ST with T the triangle T(θ1,θ2)

Thus the vectors v1 = (1, 0), v2 = (ρ cos θ1, ρ sin θ1) and v3 = (cos 2θ1, sin 2θ1) are holonomy
vectors. Choose {v1, v2} as basis of R2. We then have v3 = a · v1 + b · v2 with

a = −1 and b =
2 cos θ1

ρ
.

Therefore 2 cos θ1
ρ is an element of Ksc(S) = Kcr(S). Furthermore, from [Val12] we know that

the matrix representing the rotation by θ1 is in Γ(ST ). Hence 2 cos θ1 is in Ktr(ST ). Thus if we
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choose the values cos θ1
ρ , respectively cos θ1, to be non algebraic numbers, then Ksc(S) = Kcr(S),

respectively Ktr(ST ), are not number fields. �

4. Proof of main results

In this section we prove the results stated in the introduction.

Proof Theorem 1. We begin proving part (i). Let T0 = T \ {∞} be the once punctured torus
with T = R2/L, where L is a lattice in R2, and with ∞ ∈ T the image of the origin removed.
Let p : S −→ T0 be an unramified translation covering. The existence of such a covering is
equivalent to S being affine equivalent to an origami. We use the notation from Section 2. In

particular πS : S̃ −→ S is a universal cover, S̃ and S are the metric completions of S̃ and S,

respectively, and Σ̃(S) is the set of developed cone points. We then have that the following
diagram commutes, since p and πS are translation maps:

(4.7) S̃

πS

��

� � // S̃

πS

��

dev

""

S
� � //

p

��

S

p

��

R2

πT

||
T0
� � // T .

Given that T \ T0 =∞ = p ◦ πS(S̃ \ S̃), the projection of Σ̃(S) to T is just a point. This proves
sufficiency.

Equation (2.3) implies that if Σ̃(S) is contained in L + x then every hol(γ) is a translation

of the plane of the form z → z + λγ , where λγ ∈ L. Puncture S̃ and S at dev−1(L + x)

and πS(dev−1(L + x)) respectively to obtain S̃0 and S0 and denote R2
0 = R2 \ (L + x). Let

πS| : S̃0 −→ S0 and πT | : R2
0 −→ T0 be the restrictions of the universal covers πS and πT . Given

that S̃0 has the translation structure induced by pull-back of πS|, the map dev| : S̃0 −→ R2
0 is a

flat surjective map; compare [Thu97, §3.4]. Equation (2.2) implies that

(4.8) S̃0

dev|
//

πS|

��

R2
0

πT |

��

S0 T0

descends to a flat covering map p : S0 −→ T0. Hence S = S0 defines a covering over a flat torus
ramified at most over one point. This proves necessity.

Now we prove part (ii). First we prove that every origami satisfies conditions (a), (b), (c),
(d) and (e).
Let p : S → T be an origami ramified at most over ∞ ∈ T . All saddle connections of S are
preimages of closed simple curves on T with a base point at ∞. This implies that all holonomy
vectors have integer coordinates. Thus Ksc(S) = Khol(S) = Kcr(S) = Q. Hence every origami
fulfils conditions (b), (c) and (d) in part (ii). If S furthermore has at least two linearly indepen-
dent holonomy vectors, then the Veech group must preserve the lattice spanned by them. Thus
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it is commensurable to a (possible infinite index) subgroup of SL(2,Z) and S fulfils in addition
(a) and (e).

We finally prove that none of the conditions in theorem (a) to (e) imply that S is an origami.
Example 4.1 shows that neither (a) nor (e) imply that S is an origami. Example 4.2 shows that
neither (b), nor (c), nor (d) imply that S is an origami.

Example 4.1. In this example we construct a tame translation surface S whose Veech group
Γ(S) is SL(2,Z), hence Ktr(S) = Q, but which is not an origami. We achieve this making a
slight modification of the construction presented in Section 2.3. Let G = SL(2,Z). Apply the
construction in Section 2.3 to G but choose the family of marks C−1 in such a way that the
there exists N ∈ Z and irrational α > 0 so that (α,N) is a holonomy vector. This is possible
since in the cited construction the choice of the point (x1, y1) is free. Observe that v1 = (−1, 1),
v2 = (0, 1), v3 = (1, 0) and v4 = (α,N) are holonomy vectors of S. Let li be lines in P1(R)
containing vi, i = 1, . . . , 4 respectively. A direct calculation shows that the cross ratio of these
four lines is α

α+N , which lies in Kcr(S). Hence Kcr(S) is not isomorphic to Q and therefore S
cannot be an origami.

Example 4.2. In this example we construct a surface S whose Veech group is not a discrete
subgroup of SL(2,R) (hence S cannot be an origami, since in addition S has two non parallel
saddle connections) but such that

(4.9) Kcr(S) = Khol(S) = Ksc(S) = Ktr(S) = Q.
Consider G = SL(2,Q) or G = SO(2,Q). These are non-discrete countable subgroups of SL(2,R)
with no contracting elements. Hence we can apply the construction from Proposition 2.11 to
G but choosing the points (xi, yi) that define the families of marks Ci in Q × Q for all i ≥ 1
indexing a countable set of generators of G. The result is a tame translation surface S whose
Veech group is isomorphic to G and whose holonomy vectors S have all coordinates in Q × Q.
This implies (4.9).

�

Proof Theorem 2. Let us first show that (i) holds. The tame translation surface S in Example 4.1
is such that Γ(S) = SL(2,Z) and Kcr(S) is not isomorphic to Q. Since in general Kcr(S) is a
subfield of Ksc(S) this surface also satisfies that Γ(S) = SL(2,Z) and Ksc(S) is not isomorphic
to Q. To finish the proof of (i) we consider the following example.

Example 4.3. In this example we construct a tame translation surface such that Γ(S) =
SL(2,Z) and Khol(S) is not isomorphic to Q. Apply the construction described in Section 2.3 to
G = SL(2,Z) but consider the following modification. Let {e1, e2} be the standard basis of R2.
There exists a natural number n > 0 such that the mark M in AId whose end points are −ne1

and −(n − 1)e1 does not intersect all other marks used in the construction. On a [0, π] × [0, e]
rectangle R, where e is Euler’s number, identify opposite sides to obtain a flat torus T . Consider
on T a horizontal mark M ′ of length 1 and glue AId with T along M and M ′. Then proceed
with the construction in a SL(2,Z)-equivariant way. This produces a tame translation surface
S whose Veech group is SL(2,Z). The image of H1(S,Z) under the holonomy map contains the
vectors e1, e · e1 and π · e2. Hence Khol(S) is not isomorphic to Q.

Part (ii) follows from Example 4.2. We now prove (iii). First we construct S such that
Kcr(S) = Q but Ksc(S) is not. Consider the following example.

Example 4.4. Let P1, P2 and P3 be three copies of R2; choose on each copy an origin, and let
{e1, e2} be the standard basis. Consider the following:
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(i) Let vn be the mark on the plane P1 along segments whose end points are n · e2 and
n · e2 + e1 with n = 0, 1.

(ii) Marks on P2 and P3 along the segments w0, w1 whose end points are (0, 0) and (1, 0),
and then along the segments z0 and z1 whose end points are (2, 0) and (2 +

√
p, 0), for

some prime p.

Glue the three planes along slits as follows: vi to wi, for i = 0, 1 and z0 to z1. The result is a
surface S for which {0, 1,−1,∞} parametrizes all possible slopes of lines through the origin in
R2 containing holonomy vectors of saddle connections. Hence Kcr(S) = Q. On the other hand,
the set of holonomy vectors contains (1, 0), (0, 1), (1, 1) and (

√
p, 0). Therefore Ksc(S) contains

Q(
√
p) as a subfield.

We finish the proof of (iii) by constructing a precompact tame translation surface such that
Khol(S) = Q, but Ksc(S) is not. Consider the following example.

Example 4.5. Consider two copies L1 and L2 of the L-shaped origami tiled by three unit
squares; see e.g. [HL06b, Example on p. 293]. Consider a point pi ∈ Li at distance 0 < ε << 1
from the 6π-angle singularity si, i = 1, 2. Let mi be a marking of length ε on Li defined by a
geodesic of length ε joining pi to si, i = 1, 2. We can choose pi so that both markings are parallel
and the vector defined by them has irrational coordinates. Glue then L1 and L2 along m1 and
m2 to obtain S. By construction h(H1(S,Z)) = Z× Z, hence Khol(S) = Q, but h(H1(S,Σ;Z))
contains an orthonormal basis {e1, e2} and a vector h(m1) with irrational coordinates. This
implies that Ksc(S) is not isomorphic to Q.

We address (iv) now. Observe that the surface S constructed in Example 4.5 satisfies that
Khol(S) = Q but Kcr(S) is not equal to Q. Indeed, we have saddle connections of slope 0, 1
and ∞. Since the slope of h(m1) is irrational, we are done. We now construct S such that
Kcr(S) = Q, but Khol(S) is not. We will furthermore have that S has four pairwise nonparallel
holonomy vectors thus Kcr(S) is not trivially Q.

Example 4.6. Take two copies of the real plane P1 and P2. Choose an origin and let e1, e2

be the standard basis. Let µi > 1, i = 1, 2, 3 be three distinct irrational numbers and define
λ0 = 0 and λn =

∑n
i=1 µi for n = 1, 2, 3. On P1 consider the markings mn whose end points

are ne2 and ne2 + e1 for n = 0, . . . , 3. On P2 consider the markings m′n whose end points are
(n+λn)e1 and (n+λn + 1)e1 for n = 0, . . . , 3. Glue P1 and P2 along the markings mn and m′n.
The result is a tame flat surface S with eight 4π-angle singularities. These singularities lie on
P2 on a horizontal line, and hence we can naturally order them from, say, left to right. Let us
denote these ordered singularities by aj , j = 1, . . . , 8. Let ge1(ai, aj) (respectively ge2(ai, aj)) be

the directed geodesic in S parallel to e1 (respectively e2) joining ai with aj . Define in H1(S,Z)

• the cycle c1 as ge1(a3, a4)ge1(a4, a5)ge2(a5, a3),
• the cycle c2 as ge1(a4, a3)ge1(a3, a2)ge2(a2, a4),
• the cycle c3 as ge2(a6, a8)ge1(a8, a7)ge1(a7, a6).

Where the product is defined to be the composition of geodesics on S, i.e. following one after
the other. Note that h(c1) = (1 + µ2,−1), h(c2) = (−(1 + µ1), 1) and h(c3) = (−(1 + µ3), 1).
We can choose parameters µi, i = 1, 2, 3 so that the Z-module generated by these 3 vectors has
rank 3. Therefore Khol(S) cannot be isomorphic to Q.

We address now (v). We construct first a flat surface S for which Ktr(S) = Q but none of the
conditions (a), (b), (c) or (d) in Theorem 1 hold. We achieve this by making a slight modification
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on the construction of the surface in Example 4.3 in the following way. First, change SL(2,Z)
for SL(2,Q). Second, let the added mark M be of unit length and such that the vector defined
by developing it along the flat structure neither lies in the lattice πZ×eZ nor has rational slope.
The result of this modification is a tame translation surface S homeomorphic to the Loch Ness
monster for which Γ(S) = SL(2,Q) and such that both Kcr(S) and Khol(S) (hence Ksc(S) as
well) have transcendence degree at least 1 over Q.
Finally, an example of a surface S which satisfies (c), (d) and (b), but with Ktr(S) 6= Q, is given
in [PSV11, Lemma 3.7]; see Remark 3.4. We underline that all holonomy vectors in this surface
S are parallel and hence Kcr(S) is by definition isomorphic to Q. For the sake of completeness
we construct a tame translation surface S where not all holonomy vectors are parallel, such
Kcr(S) = Q, but where Ktr(S) is not equal to Q. Let E0 be a copy of the affine plane R2 with a
chosen origin and (x, y)-coordinates. Slit E0 along the rays Rv := (0, y ≥ 1) and Rh := (x ≥ 1, 0)

to obtain Ê0. Choose an irrational 0 < λ < 1 and n ∈ N so that 1 < nλ. Define

M :=

(
λ 0
0 nλ

)
Rkv := MkRv Rkh := MkRh k ∈ Z.

Here Mk acts linearly on E0. For k 6= 0, slit a copy of E0 along the rays Rkv and Rkh to

obtain Êk. We glue the family of slitted planes {Êk}k∈Z to obtain the desired tame flat surface

as follows. Each Êk has a “vertical boundary” formed by two vertical rays issuing from the
point of coordinates (0, (nλ)k). Denote by Rkv,l and Rkv,r the boundary ray to the left and right

respectively. Identify by a translation the rays Rkv,r with Rk+1
v,l , for each k ∈ Z. Denote by Rkh,b

and Rkh,t the horizontal boundary rays in Êk to the bottom and top respectively. Identify by a

translation Rkh,b with Rk+1
h,t for each k ∈ Z.

By construction, {(−λk, (nλ)k)}k∈Z is the set of all holonomy vectors of S. Clearly, all slopes
involved are rational; hence Kcr(S) = Q. On the other hand, M ∈ Γ(S) and tr(M) = (n+ 1)λ.
Note that the surface S constructed in this last paragraph admits no triangulation satisfying the
hypotheses of Proposition 3.5. �

Corollary 4.7. The four fields Ktr(S), Khol(S), Kcr(S) and Ksc(S) satisfy the following rela-
tions:

(i) Khol(S) ⊆ Ksc(S) and Kcr(S) ⊆ Ksc(S).
(ii) For each other pair (i, j), with i, j ∈ {tr,hol, cr, sc}, (i, j) 6= (hol, sc) and (i, j) 6= (cr, sc),

we can find surfaces S such that Ki(S) 6⊆ Kj(S). In these examples we can always
choose Kj(S) to be Q.

(iii) If S has two non parallel holonomy vectors, then Ktr(S) ⊆ Khol(S).
(iv) If S has a geodesic triangulation by countably many triangles whose vertices form the

set Σ of singularities of S, then Kcr(S) = Ksc(S).

Proof. (i) is shown in Section 3 before Remark 3.4; (ii) is shown in Theorem 2 and in Remark 3.4;
(iii) is shown before Remark 3.4 and (iv) is the result of Proposition 3.5. �

Proof Corollary 1.1:
Let Γ be a subgroup of SL2(Z). By Proposition 2.11 we know that there is a translation surface
S with Veech group Γ. Furthermore in the construction all slits can be chosen such that their
end points are integer points in the corresponding plane; thus S is an origami by Theorem 1,
part (i). Hence it allows for a subset S∗ of S, whose complement is a discrete set of points, an
unramified covering p : S∗ → T0 to the once puncture unit torus T0. Recall that p defines the
conjugacy class [U ] of a subgroup U of F2 as follows. Let U be the fundamental group of S∗. It is
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embedded into F2 = π1(T0) via the homomorphism p∗ between fundamental groups induced by
p. The embedding depends on the choices of the base points up to conjugation. In [Sch04] this is
used to give the description of the Veech group completely in terms of [U ]; compare Theorem B
below. Recall for this that the outer automorphism group Out(F2) is isomorphic to GL2(Z).
Furthermore it naturally acts on the set of the conjugacy classes of subgroups U of F2.

Theorem B. The Veech group Γ(S∗) equals the stabiliser of the conjugacy class [U ] in SL2(Z)
under the action described above.

This theorem, that can be found in [Ibid.], considers only finite origamis, but the proof works
in the same way for infinite origamis. Recall furthermore that Γ(S∗) = Γ(S) ∩ SL2(Z) and
Γ(S) ⊆ SL2(Z) if and only if the Z-module spanned by the holonomy vectors of the saddle
connections equals Z2. We can easily choose the marks in the construction in [PSV11] such that
this condition is fulfilled.

�

Proof Theorem 3: First notice that the translation surfaces constructed in the proof of The-
orem 2 parts (i) and (v) are both counterexamples for statements (A) and (B). Furthermore,
Proposition 3.6 shows that two hyperbolic elements in Γ(S) do not have to generate the same

trace field. To disprove (C) we let µ be a solution to the equation µ+ µ−1 = 3
√

11 and G is the
group generated by the matrices

(4.10)

(
1 1
0 1

)
,

(
1 0
1 1

)
and

(
µ 0
0 µ−1

)
,

then Proposition 2.11 produces a tame translation surface S with Veech group G for which
Ktr(S) = Q( 3

√
11) is not totally real and thus is a counterexample for (C).

Finally for disproving (D) we construct a tame translation surface S with a hyperbolic element
in its Veech group for which Λ has infinite index in Λ0. The construction has two steps.
Step 1 : Let M be the matrix given by

(4.11)

(
2 0
0 1

2

)
.

Let S′ be the tame translation surface obtained from Proposition 2.11 for the group G′ generated
by M . Let Λ′ be the image in R2 under the holonomy map of H1(S′,Z), {e1, e2} be the standard
basis of R2 and β := G′ · {e1, e2}. We suppose without loss of generality that e1 and e2 lie in Λ′.
Step 2 : Let α = {vj}j∈N ⊂ R2 \Λ′ be a sequence of Q-linearly independent vectors. We modify
the construction in Proposition 2.11 (applied to G′) in the following way. We add to the page
AId a family of marks parallel to vectors in α. We can suppose that the new marks lie in the
left-half plane Re(z) < 0 in AId and are disjoint by pairs and do not intersect any of the marks
in C1 used in the construction from Step 1. For each j ∈ N there exists a natural number kj such
that 2kj > |vj |. Let Tj be the torus obtained from a 2kj × 2kj square by identifying opposite
sides. Slit each Tj along a vector parallel to vj and glue it to AId along the mark parallel to vj .
Denote by A′Id the result of performing this operation for every j ∈ N, then proceed just the
same construction as in Proposition 2.11. Let S be the resulting translation surface. Observe
that glueing in the tori Tj produces new elements in H1(S,Z) whose image under the holonomy
map lie in Z × Z. Thus the subgroups of R2 generated by the image under the holonomy map

of H1(S
′
,Z) and H1(S,Z) are the same. Let Λ be the image in R2 under the holonomy map of

H1(S,Z). By construction, the index of Λ in Λ0 is at least the cardinality of α, which is infinite.
�
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