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REPRESENTATIONS OF SOME LATTICES INTO THE GROUP OF
ANALYTIC DIFFEOMORPHISMS OF THE SPHERE S2

JULIE DÉSERTI

Abstract. In [11] it is proved that any morphism from a subgroup of finite index of SL(n,Z)
to the group of analytic diffeomorphisms of S2 has a finite image as soon as n ≥ 5. The case
n = 4 is also claimed to follow along the same arguments; in fact this is not straightforward
and that case indeed needs a modification of the argument. In this paper we recall the strategy
for n ≥ 5 and then focus on the case n = 4.

1. Introduction

After the works of Margulis ([15, 20]) on the linear representations of lattices of simple, real
Lie groups with R-rank larger than 1, some authors, like Zimmer, suggest to study the actions
of lattices on compact manifolds ([22, 23, 24, 25]). One of the main conjectures of this program
is the following: let us consider a connected, simple, real Lie group G, and let Γ be a lattice of
G of R-rank larger than 1. If there exists a morphism of infinite image from Γ to the group of
diffeomorphisms of a compact manifold M , then the R-rank of G is bounded by the dimension
of M . There are a lot of contributions in that direction ([3, 4, 5, 8, 9, 10, 11, 12, 17, 18]). In this
article we will focus on the embeddings of subgroups of finite index of SL(n,Z) into the group
Diffω(S2) of real analytic diffeomorphisms of S2 (see [11]).

The article is organized as follows. First of all we will recall the strategy of [11]: the study of
the nilpotent subgroups of Diffω(S2) implies that such subgroups are metabelian. But subgroups
of finite index of SL(n,Z), for n ≥ 5, contain nilpotent subgroups of length n− 1 of finite index
which are not metabelian; as a consequence Ghys gets the following statement.

Theorem A ([11]). Let Γ be a subgroup of finite index of SL(n,Z). As soon as n ≥ 5 there is
no embedding of Γ into Diffω(S2).

To study nilpotent subgroups of Diffω(S2) one has to study nilpotent subgroups of Diffω
+(S1)

(see §2), and then nilpotent subgroups of the group of formal diffeomorphisms of C2 (see §3).
The last section is devoted to establish the following result.

Theorem B. Let Γ be a subgroup of finite index of SL(n,Z). As soon as n ≥ 4 there is no
embedding of Γ into Diffω(S2).

The proof relies on the characterization, up to isomorphism, of nilpotent subalgebras of length
3 of the algebra of formal vector fields of C2 that vanish at the origin.
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2. Nilpotent subgroups of the group of analytic diffeomorphisms of S1

Let G be a group; let us set G(0) = G and G(i) = [G,G(i−1)] ∀ i ≥ 1. The group G is
nilpotent if there exists an integer n such that G(n) = {id}; the length of nilpotence of G is the
smallest integer k such that G(k) = {id}.

Set G(0) = G and G(i) = [G(i−1),G(i−1)] ∀ i ≥ 1. The group G is solvable if G(n) = {id} for
some integer n; the length of solvability of G is the smallest integer k such that G(k) = {id}.

We say that the group G (resp. algebra g) is metabelian if [G,G] (resp. [g, g]) is abelian.

Proposition 2.1 ([11]). Any nilpotent subgroup of Diffω
+(S1) is abelian.

Proof. Let G be a nilpotent subgroup of Diffω
+(S1). Assume that G is not abelian; it thus

contains a Heisenberg group

〈f, g, h | [f, g] = h, [f, h] = [g, h] = id〉.

The application “rotation number“

Diffω
+(S1)→ R/Z, ψ 7→ lim

n→+∞

ψn(x)− x
n

is not a morphism but its restriction to a solvable subgroup is a morphism ([1]). Hence the
rotation number of h is zero, and the set Fix(h) of fixed points of h is non-empty, and finite.
Considering some iterates of f and g instead of f and g one can assume that f and g fix any
point of Fix(h). The set of fixed points of a non-trivial element of 〈f, g〉 is finite and invariant
by h so the action of 〈f, g〉 is free 1 on each component of S1 \ Fix(h). But the action of a free
group on R is abelian: contradiction. �

3. Nilpotent subgroups of the group of formal diffeomorphisms of C2

Let us denote D̂iff(C2, 0) the group of formal diffeomorphisms of C2, i.e., the formal com-
pletion of the group of germs of holomorphic diffeomorphisms at 0. Let Diffi be the quotient
of D̂iff(C2, 0) by the normal subgroups of formal diffeomorphisms tangent to the identity with
multiplicity i; it can be viewed as the set of jets of diffeomorphisms at order i with the law of
composition with truncation at order i. Note that Diffi is a complex linear algebraic group. One
can see D̂iff(C2, 0) as the projective limit of the Diffi’s: D̂iff(C2, 0) = lim

←
Diffi. Let us denote

by χ̂(C2, 0) the algebra of formal vector fields in C2 vanishing at 0. One can define the set χi of
the i-th jets of vector fields; one has lim

←
χi = χ̂(C2, 0).

Let Ô(C2) be the ring of formal series in two variables, and let K̂(C2) be its fraction field; Oi

is the set of elements of Ô(C2) truncated at order i.
The family

(
expi : χi → Diffi

)
i
is filtered, i.e., compatible with the truncation. We then

define the exponential application as follows: exp = lim
←

expi : χ̂(C2, 0)→ D̂iff(C2, 0).

As in the classical case, if X belongs to χ̂(C2, 0), then exp(X) can be seen as the “flow at
time t = 1” of X. Indeed an element Xi of χi can be seen as a derivation of Oi; so it can be
written Si+Ni where Si and Ni are two semi-simple (resp. nilpotent) derivations that commute.
Passing to the limit, one gets X = S + N where S is a semi-simple vector field, N a nilpotent
one, and [S,N ] = id (see [16]). A semi-simple vector field is a formal vector field conjugate to a
diagonal linear vector field that is complete. A vector field is nilpotent if and only if its linear

1. The stabilizer of every point is trivial, i.e., the action of a non-trivial element of 〈f, g〉 has no fixed point.
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part is; let us remark that the usual flow ϕt of a nilpotent vector field is polynomial in t

ϕt(x) =
∑
I

PI(t)xI , PI ∈ (C[t])2

so ϕ1(x) is well-defined. As a consequence exp(tX) = exp(tS) exp(tN) is well-defined for t = 1.
Note that the Jordan decomposition is purely formal: if X is holomorphic, then S and N are
not necessary holomorphic.

Proposition 3.1 ([11]). Any nilpotent subalgebra of χ̂(C2, 0) is metabelian.

Proof. Let l be a nilpotent subalgebra of χ̂(C2, 0), and let Z(l) be its center. Since

χ̂(C2, 0)⊗ K̂(C2)

is a vector space of dimension 2 over K̂(C2), one has the following alternatives:
• the dimension of the subspace generated by Z(l) in χ̂(C2, 0)⊗ K̂(C2) is 1;
• the dimension of the subspace generated by Z(l) in χ̂(C2, 0)⊗ K̂(C2) is 2.

Let us study these different cases.
Under the first assumption there exists an element X of Z(l) having the following property:

any vector field of Z(l) can be written uX with u in K̂(C2). Let us consider the subalgebra g of
l given by

g =
{
X̃ ∈ l | ∃u ∈ K̂(C2), X̃ = uX

}
.

Since X belongs to Z(l), the algebra g is abelian; it is also an ideal of l. Let us assume that l
is not abelian: let Y be an element of l whose projection on l/g is non-trivial, and central. Any
vector field of l can be written as uX + vY with u, v in K̂(C2). As X belongs to Z(l), and Y is
central modulo g one has

X(u) = X(v) = Y (v) = 0.

The vector fields ∂
∂x and ∂

∂y being some linear combinations of X and Y with coefficients in
K̂(C2, 0), the partial derivatives of v are zero so v is a constant. Therefore [l, l] ⊂ g; but g is
abelian thus l is metabelian.

In the second case Z(l) contains two elements X and Y which are linearly independent on
K̂(C2). Any vector field of l can be written as uX + vY with u and v in K̂(C2). Since X and
Y belong to Z(l) one has

X(u) = X(v) = Y (u) = Y (v) = 0.

As a consequence u and v are constant, i.e., l ⊂ {uX + vY |u, v ∈ C}; in particular l is
abelian. �

Proposition 3.2 ([11]). Any nilpotent subgroup of D̂iff(C2, 0) is metabelian.

Proof. Let G be a nilpotent subgroup of D̂iff(C2, 0) of length k. Let us denote by Gi the
projection of G on Diffi. The Zariski closure Gi of Gi in Diffi is an algebraic nilpotent subgroup
of length k. It is sufficient to prove that Gi is metabelian.

Since Gi is a complex algebraic subgroup it is the direct product of the subgroup Gi,u of its
unipotent elements and the subgroup Gi,s of its semi-simple elements (see for example [2]).

An element of Diffi is unipotent if and only if its linear part, which belongs to GL(2,C), is;
so Gi,s projects injectively onto a nilpotent subgroup of GL(2,C). Therefore Gi,s is abelian.

The group Gi,u coincides with exp li where li is a nilpotent Lie algebra of χi of length k.
Passing to the limit one thus obtains the existence of a nilpotent subalgebra l of χ̂(C2, 0) of length
k such that exp(l) projects onto Gi,u for any i. According to Proposition 3.1 the subalgebra l,
and thus Gi,u are metabelian. �
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4. Nilpotent subgroups of the group of analytic diffeomorphisms of S2

Proposition 4.1 ([11]). Any nilpotent subgroup of Diffω(S2) has a finite orbit.

Proof. Let G be a nilpotent subgroup of Diffω(S2); up to finite index one can assume that the
elements of G preserve the orientation. Let φ be a non-trivial element of G that commutes with
G. Let Fix(φ) be the set of fixed points of φ; it is a non-empty analytic subspace of S2 invariant
by G. If p is an isolated fixed point of φ, then the orbit of p under the action of G is finite. So it
is sufficient to study the case where Fix(φ) only contains curves; there are thus two possibilities:

• Fix(φ) is a singular analytic curve whose set of singular points is a finite orbit for G;
• Fix(φ) is a smooth analytic curve, not necessary connected. One of the connected com-
ponent of S2 \ Fix(φ) is a disk denoted by D. Any subgroup Γ of finite index of G which
contains φ fixes D. Let us consider an element γ of Γ, and a fixed pointm of γ that belongs
to D. By construction φ has no fixed point in D so according to the Brouwer Theorem
(φk(m))k has a limit point on the boundary ∂D of D. Therefore γ has at least one fixed
point on ∂D. The group Γ thus acts on ∂D, and any of its elements has a fixed point on
D. Then Γ has a fixed point on ∂D (Proposition 2.1).

�

Theorem 4.2 ([11]). Any nilpotent subgroup of Diffω(S2) is metabelian.

Proof. Let G be a nilpotent subgroup of Diffω(S2), and let Γ be a subgroup of finite index of G
having a fixed point m (such a subgroup exists according to Proposition 4.1). One can embed Γ

into D̂iff(R2, 0), and so into D̂iff(C2, 0), by considering the jets of infinite order of elements of Γ
in m. According to Proposition 3.2 the group Γ is metabelian.

One can suppose that G is a finitely generated group.
Let us first assume that G has no element of finite order. Then G is a cocompact lattice of

the nilpotent, simply-connected Lie group G ⊗ R (see [19]). The group G is metabelian if and
only if G⊗ R is; but Γ is metabelian so G⊗ R also.

Finally let us consider the case where G contains at least one element of finite order. The set
of such elements is a normal subgroup of G that thus intersects non-trivially the center Z(G)
of G. Let us consider a non-trivial element φ of Z(G) which has finite order. Let us recall that
a finite group of diffeomorphisms of the sphere is conjugate to a group of isometries. Denote
by G+ the subgroup of elements of G which preserve the orientation. It is thus sufficient to
prove that G+ is metabelian; indeed if φ does not preserve the orientation, then φ has order 2,
and G = Z/2Z × G+. So let us assume that φ preserves the orientation; φ is conjugate to a
direct isometry of S2, and has exactly two fixed points on the sphere. The group G has thus an
invariant set of two elements. By considering germs in the neighborhood of these two points,
one gets that G can be embedded into 2 ·Diff(R2, 0) 2 and thus into 2 ·Diff(C2, 0):

1 −→ Diff(C2, 0) −→ 2 ·Diff(C2, 0) −→ Z/2Z −→ 0.

Remark that 2 · Diff(C2, 0) is the projective limit of the algebraic groups 2 · Diffi. One can
conclude as in the proof of Proposition 3.2 except that the subgroup of the semi-simple elements
of 2 ·Diffi embeds now in 2 ·GL(2,C); it is metabelian because it contains an abelian subgroup
of index 2. �

Let Γ be a subgroup of finite index of SL(n,Z) for n ≥ 5. Since Γ contains nilpotent subgroups
of finite index of length n − 1 (for example the group of upper triangular unipotent matrices)
which are not metabelian one gets the following statement.

2. Let G be a group and let q be a positive integer; q ·G denotes the semi-direct product of Gq by Z/qZ under
the action of the cyclic permutation of the factors.
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Corollary 4.3 ([11]). Let Γ be a subgroup of finite index of SL(n,Z); as soon as n ≥ 5 there is
no embedding of Γ into Diffω(S2).

5. Nilpotent subgroups of length 3 of the group of
analytic diffeomorphisms of S2

Let us precise Proposition 3.1 for nilpotent subalgebras of length 3 of χ̂(C2, 0). Let l be
such an algebra. The dimension of the subspace generated by Z(l) in χ̂(C2, 0) ⊗ K̂(C2) has
dimension at most 1, for else l would be abelian (Proposition 3.1) and this is impossible under
our assumptions. So let us assume that the dimension of the subspace generated by Z(l) in
χ̂(C2, 0) ⊗ K̂(C2) is 1. There exists an element X in Z(l) with the following property: any
element of Z(l) can be written uX with u in K̂(C2). Let g denote the abelian ideal of l defined
by

g =
{
X̃ ∈ l

∣∣∃u ∈ K̂(C2), X̃ = uX
}
.

By hypothesis l is not abelian. Let Y be in l; assume that its projection onto l/g is a non-trivial
element of Z(l/g). Any vector field of l can be written

uX + vY, u, v ∈ K̂(C2).

Since X, resp. Y belongs to Z(l) (resp. Z(l/g)) and since the length of l is 3, one has

(5.1) X(u) = Y 3(u) = X(v) = Y (v) = 0.

If X and Y are non-singular, one can choose formal coordinates x and y such that X = ∂
∂x

and Y = ∂
∂y . The previous conditions can be thus translated as follows: v is a constant and u is

a polynomial in y of degree 2. We will see that we have a similar property without assumption
on X and Y .

Lemma 5.1. Let X and Y be two vector fields of χ̂(C2, 0) that commute and are not colinear.
One can assume that (X,Y ) =

(
∂
∂x̃ ,

∂
∂ỹ

)
where x̃ and ỹ are two independent variables in a

Liouvillian extension of K̂(C2, 0).

Proof. Since X and Y are non-colinear, there exist two 1-forms α, β with coefficients in K̂(C2)
such that α(X) = 1, α(Y ) = 0, β(X) = 0, and β(X) = 1. The vector fields X and Y commute if
and only if α and β are closed (this statement of linear algebra is true for convergent meromorphic
vector fields and is also true in the completion). The 1-form α is closed so according to [7] one
has

α =

r∑
i=1

λi
dφ̂i

φ̂i
+ d
( ψ̂1

ψ̂2

)
= d
( r∑

i=1

λi log φ̂i +
ψ̂1

ψ̂2

)
where ψ̂1, ψ̂2, and the φ̂i denote some formal series and the λi some complex numbers. One
has a similar expression for β. So there exists a Liouvillian extension κ of K̂(C2) having two
elements x̃ and ỹ with α = dx̃ and β = dỹ. One thus has X(x̃) = 1, X(ỹ) = 0, Y (x̃) = 0, and
Y (ỹ) = 1. �

From (5.1) one gets: v is a constant, and u is a polynomial in ỹ of degree 2; so one proves the
following statement.

Proposition 5.2. Let l be a nilpotent subalgebra of χ̂(C2, 0) of length 3. Then l is isomorphic
to a subalgebra of

n =
{
P (ỹ)

∂

∂x̃
+ α

∂

∂ỹ

∣∣∣ α ∈ C, P ∈ C[ỹ], degP = 2
}
.
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Remark 5.3. We use a real version of this statement whose proof is an adaptation of the
previous one: a nilpotent subalgebra l of length 3 of χ̂(R2, 0) is isomorphic to a subalgebra of

n =
{
P (ỹ)

∂

∂x̃
+ α

∂

∂ỹ

∣∣∣α ∈ R, P ∈ R[ỹ], degP = 2
}
.

Theorem 5.4. Let Γ be a subgroup of finite index of SL(n,Z); as soon as n ≥ 4 there is no
embedding of Γ into Diffω(S2).

Proof. Let U(4,Z) (resp. U(4,R)) be the subgroup of unipotent upper triangular matrices of
SL(4,Z) (resp. SL(4,R)); it is a nilpotent subgroup of length 3. Assume that there exists an
embedding from a subgroup Γ of finite index of SL(4,Z) into Diffω(S2). Up to finite index Γ
contains U(4,Z). Let us set H = ρ(U(4,Z)). Up to finite index H has a fixed point (Proposition
4.1). One can thus see H as a subgroup of Diff(R2, 0) ⊂ D̂iff(R2, 0) up to finite index.

Let us denote by j1 the morphism from D̂iff(R2, 0) to Diffi. Up to conjugation, j1(ρ(U(4,Z)))
is a subgroup of {[ λ t

0 λ

] ∣∣∣λ ∈ R∗, t ∈ R
}
.

Up to index 2 one can thus assume that j1 ◦ ρ takes values in the connected, simply-connected
group T defined by

T =
{[ λ t

0 λ

] ∣∣∣λ, t ∈ R, λ > 0
}
.

Let us set
Diffi(T) =

{
f ∈ Diffi | j1(f) ∈ T

}
;

the group Diffi(T) is a connected, simply-connected, nilpotent and algebraic group. The mor-
phism

ρi : U(4,Z)→ Diffi

can be extended to a unique continuous morphism ρ̃i : U(4,R) → Diffi(T) (see [13, 14]) so
to an algebraic morphism 3. Let us note that ρ̃i(U(4,Z)) is an algebraic subgroup of Diffi(T)

that contains ρi(U(4,Z)); in particular Hi = ρi(U(4,Z)) ⊂ ρ̃i(U(4,R)). By construction the
family (Hi)i is filtered; since the extension is unique, the family (ρ̃i)i is also filtered. Therefore
K = lim

←
Hi is well-defined. Since ρ is injective, H is a nilpotent subgroup of length 3; as H ⊂ K

and as any Hi is nilpotent of length at most 3 the group K is nilpotent of length at most 3. For
i sufficiently large ρ̃i(U(4,R)) is nilpotent of length 3; this group is connected so its Lie algebra
is also nilpotent of length 3. Therefore the image of

Dρ̃ := lim
←
Dρ̃i : u(4,R)→ χ̂(R2, 0)

is isomorphic to n (Proposition 5.2). So there exists a surjective map ψ from u(4,R) onto n. The
kernel of ψ is an ideal of u(4,R) of dimension 2; hence kerψ = 〈δ14, aδ13 + bδ24〉 where the δij
denote the Kronecker matrices. One concludes by noting that dimZ(u(4,R)/ kerψ) = 2 whereas
dimZ(n) = 1. �

Corollary 5.5. The image of a morphism from a subgroup of SL(n,Z) of finite index to Diffω(S2)
is finite as soon as n ≥ 4.

3. Let N1 and N2 be two connected, simply-connected, nilpotent and algebraic subgroups of R; any continuous
morphism from N1 to N2 is algebraic.
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