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Abstract. The aim of the present paper is to study the structure of the punctual Hilbert
schemes for the curve singularities of types E6 and E8. Our analysis uses computational

methods to decompose a punctual Hilbert scheme into affine cells. We also use known results

about the compactified Jacobians of singular curves.

1. Introduction

Let O be the complete local ring of a irreducible curve singularity over an algebraically closed
field k of characteristic 0. We denote by O and δ the normalization of O and the δ-invariant
of O respectively. Pfister and Steenbrink [6] defined a special subset M of the Grassmannian
Gr
(
δ,O/I(2δ)

)
where I(2δ) is the set of all elements in O whose orders are greater than or equal

to 2δ. It is a projective variety defined by Plücker relations and additional equations. We call
it the Pfister-Steenbrink variety (PS variety) for a given singularity. Using the intersection with
Schubert cells, they investigated the structure ofM for certain curve singularities. The punctual
Hilbert scheme Mr of degree r was also constructed as a connected component of M. It is a
projective variety which parametrizes the ideals of codimension r in O.

In the present paper, we study the structure of all punctual Hilbert schemes for the curve
singularities of types E6 and E8 (i.e., the singularities with the local rings k[[t3, t4]] and k[[t3, t5]]
respectively). The PS varieties for these singularities were originally studied in [6]. See also [9]
which was the preliminary version of this paper. Our main theorems are stated as follows:

Theorem 1. Punctual Hilbert schemes Mr for the curve singularity of type E6 are given by the
following table:

r 1 2 3 4 5 ≥ 6
Mr P0 P1 P2 P2 ∪X1 P2 ∪ P2 X2

Sing(Mr) ∅ P1

Table 1

The variety X1 (resp. X2) in Table 1 is a rational projective surface (resp. a rational projective
threefold).

The defining equations of X1 and X2 are listed in Section 4.

Theorem 2. Punctual Hilbert schemes Mr for the curve singularity of type E8 are given by the
following table:
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r 1 2 3 4 5 6 7 ≥ 8
Mr P0 P1 P2 P2 ∪X3 P2 ∪ P2 ∪X4 X5 ∪X6 X7 ∪X8 X9

Sing(Mr) ∅ P1 P1 ∪ P1 P2 ∪ P2

Table 2

All the varieties Xi (i = 3, · · · , 8) in Table 2 are rational and projective. Their dimensions
are given by

dimXi =


2 for i = 3,

3 for i = 4, . . . , 8,

4 for i = 9.

The PS varieties for curve singularities were studied from another point of view. Rego [8]
introduced the compactified Jacobian of singular curves. He also constructed the Jacobi factor
for a curve singularity. For a given curve singularity, the Jacobi factor and the PS variety
coincide.

The paper is organized as follows. In Section 2, we briefly recall the Pfister-Steenbrink theory
for punctual Hilbert schemes for curve singularities. We also fix notations and prove some lemmas
needed later. In Section 3, we introduce a computational algorithm to decompose punctual
Hilbert schemes into affine cells. It is based on the Gröbner bases theory which was established
by Hefetz and Hernandes in [5]. We finally prove Theorem 1 and 2 in Section 4 and 5 respectively.
Known results about compactified Jacobians of singular curves are also used in the proof of
Theorem 2.

Acknowledgement The authors would like to express his sincere gratitude to Professor Fumio
Sakai for his valuable advices and warm encouragement during the preparation of the present
article. They thank Professor Osamu Matsuda for his useful advices. They also thank the
referees who suggested the present formulation of Section 3 and pointed out some mistakes in
the earlier version of this paper.

2. Preliminaries

In the present paper, we restrict ourselves to consider monomial curve singularities defined
below. However, the notions in this chapter hold in more general situations (see [6] for details).

Definition 3. A monomial curve singularity is an irreducible curve singularity whose local ring
is isomorphic to k[[ta1 , . . . , tam ]] for a1, . . . , am ∈ N.

Remark 4. Without loss of generality, we may assume that gcd(a1, . . . , am) = 1 in Definition 3.

Let O = k[[ta1 , . . . , tam ]] be the local ring of a monomial curve singularity. Its normalization
O is isomorphic to k[[t]]. We call Γ := {ordt(f) | f ∈ O} the semigroup of O. The positive integer
δ := dimk(O/O) is called the δ-invariant of O. For n ∈ N, set I(n) := { f ∈ O| ordt(f) ≥ n}
and I(n) := I(n) ∩ O. Setting ordt(0) =∞, we regard I(n) (resp. I(n)) as an ideal of O (resp.
O). For an ideal I in O, we call Γ(I) := {ordt(f)| f ∈ I} the order set of I. For r ∈ N, set

Ir := {I| I is an ideal of O with dimkO/I = r}.

Lemma 5. An ideal I in O belongs to Ir if and only if we have ]{Γ \ Γ(I)} = r.

Proof. It is clear that I belongs to Ir if and only if we have

O/I =
{
a0 + a1t

d1 + · · ·+ ar−1t
dr−1 + I

∣∣ ai ∈ k, di ∈ Γ \ Γ(I), d1 < · · · < dr−1

}
Thus the relation ]{Γ \ Γ(I)} = r holds. �
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A subset ∆ ⊂ Z is called a Γ-semi-module, if ∆ + Γ ⊂ ∆. Note that if ∆ is a Γ-semi-
module, then ∆ − r is also a Γ-semi-module for any integer r. We write ∆ = 〈α1, · · · , αp〉Γ
for a Γ-semi-module ∆ which is minimally generated by α1, · · · , αp (i.e ∆ =

∑p
i=1(αi + Γ) and

∆ )
∑p
i=1,i6=j(αi + Γ) for ∀j ∈ {1, . . . , p}). We also denote by I(∆) the set of all ideals of O

whose order sets are ∆. Note that I(∆) 6= ∅ if and only if ∆ ⊂ Γ.

Proposition 6. There exists a finite number of distinct Γ-semi-modules ∆r,l such that

(1) Ir =

nr⋃
l=1

I(∆r,l).

Proof. The finiteness of the number of Γ-semi-modules holds trivially, as there exists only a finite
number of semigroups in N of fixed colength. It is also clear that (1) is a disjoint union. �

Remark 7. If ∆ is a Γ-semi-module such that I(∆) 6= ∅, then all ideals in I(∆) have same
codimension by Lemma 5. So the set I(∆) is contained in Ir if and only if ]{Γ \ ∆} = r. It
implies that the set of ∆r,l’s in (1) is an invariant for the codimension r.

Let Gr
(
δ,O/I(2δ)

)
be the Grassmannian which consists of δ-dimensional linear subspaces of

O/I(2δ). For V ∈ Gr
(
δ,O/I(2δ)

)
, we define a multiplication by O × V 3 (f, v) 7→ fv ∈ V . Set

M :=
{
V ∈ Gr

(
δ,O/I(2δ)

) ∣∣V is an O-submodule w.r.t. the multiplication
}
.

Consider the composition map

(2) ψ : M → Gr(δ, 2δ)→ Mδ,2δ(k)/ ∼ → PN

where Gr(δ, 2δ) is the Grassmannian which consists of δ-dimensional linear subspaces of k2δ,
Mδ,2δ(k) is the set of all δ × 2δ matrices over k and the equivalence relation ∼ is the similarity

of matrices. For a formal power series f =
∑∞
j=0 ajt

j in O, we denote its coset in O/I(2δ) by

f =
∑2δ−1
j=0 ajt

j . Here we use same notation t for the coset of t. Define ordt(f) by ordt(f) (resp.

∞), if ordt(f) ≤ 2δ− 1 (resp. ordt(f) > 2δ− 1). In this paper, we use the notation [v1, · · · , vδ]k
for a k-vector space generated by v1, . . . , vδ. Let V = [f1, · · · , fδ]k be an element of M where

f i =
∑2δ−1
j=0 aijt

j . We identify f i with the point ai = (ai0, · · · , ai2δ−1) in k2δ. This identification

gives the first map in (2). Let AV be the δ × 2δ matrix whose ith row is ai. We call it the
representation matrix of V . We may assume that the coset of AV in Mδ,2δ(k)/ ∼ is represented
by the reduced row echelon form. The second map in (2) sends a k-vector space [a1, · · · ,aδ]k
to the coset of AV . The third map in (2) is Plücker embedding with N =

(
2δ
δ

)
− 1.

For r ∈ N, Pfister and Steenbrink defined a map ϕr : Ir →M by ϕr(I) = t−rI/I(2δ).

Proposition 8 ([6], Theorem 3). The map ϕr is injective for any r. Furthermore, it is bijective
for r ≥ 2δ. The image (ψ ◦ ϕr)(Ir) is Zariski closed in ψ(M).

Put Mr := ϕr(Ir). Since ψ is injective, we identify ψ(M) and ψ(Mr) with M and Mr

respectively.

Definition 9. We call M and Mr the Pfister-Steenbrink variety (PS variety for short) and the
punctual Hilbert scheme of degree r for a given curve singularity respectively.

The following fact follows from Proposition 8:

Corollary 10. Any punctual Hilbert scheme Mr with r ≥ 2δ coincides with the PS variety M.

Remark 11. By virtue of Corollary 10, it is enough to consider codimensions r within 1 ≤ r ≤ 2δ
for the analysis of Mr.
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Set Mr,l := ϕr(I(∆r,l)) for each component I(∆r,l) in (1) and write ∆r,l = 〈α1, · · · , αpl〉Γ.
Since ψ is injective, we also identify ψ(Mr,l) withMr,l. Namely, a componentMr,l is regarded
as the subset of the punctual Hilbert scheme Mr parametrizing ideals in I(∆r,l). Set

[a, b] := {x ∈ Z≥0| a ≤ x ≤ b}.
We have ∆r,l − r = 〈α1 − r, · · · , αpl − r〉Γ. Set A := {α1 − r, · · · , αpl − r} ∩ [0, 2δ − 1] and
Jα := [α+ 1, 2δ − 1] \ {∆r,l − r} for α ∈ A. The following facts are known:

Proposition 12 ([6], Theorem 7). Let I be an element of I(∆r,l). There exist uniquely deter-
mined bαj ∈ k such that the O-submodule ϕr(I) is generated by

hα := tα +
∑
j∈Jα

bαjt
j (α ∈ A).

Corollary 13 ([6], Corollary of Theorem 11). The component Mr,l is isomorphic to the affine
space kN where N =

∑
α∈A ]Jα.

The affine cell decomposition of Mr follows from Proposition 6 and Corollary 13.

Proposition 14. The punctual Hilbert scheme Mr of degree r has an affine cell decomposition

(3) Mr =

nr⋃
l=1

Mr,l.

The following fact also follows from Corollary 13:

Proposition 15. If Mr is irreducible, then it is a rational projective variety.

3. Computational algorithms

The aim of this section is to prove Theorem 24 which decomposes Mr into affine cells. We
freely use the notations introduced in the previous section.

Lemma 16. Let ∆ = 〈α1, · · · , αp〉Γ be a Γ-semi-module. If I(∆) is a component of Ir, then
I(∆ \ {αi}) is component of Ir+1 for each i ∈ {1, . . . , p}. Conversely, if I(∆) is a component
of Ir+1, then, for each αi and γ1 := min{Γ \ {0}}, I(∆ ∪ {αi − γ1}) is a component of Ir.

Proof. Assume that I(∆) is a component of Ir. For any αi, it is clear that ∆ \ {αi} is also a
Γ-semi-module. Since ]{Γ \∆} = r by Lemma 5, we have ]{Γ \ (∆ \ {αi})} = r + 1. Hence the
set I(∆ \ {αi}) is a component of Ir+1. Next assume that the set I(∆) is a component of Ir+1.
Now we have αi − γ1 /∈ ∆ for any i. Indeed, if αi − γ1 ∈ ∆, then there exist αj and γ in Γ such
that αi − γ1 = αj + γ. This fact contradicts the assumption in which α1, · · · , αp are minimal
generators for ∆. It is clear that ∆∪{αi−γ1} is a Γ-semi-module and ]{Γ\(∆∪{αi−γ1})} = r.
Hence, I(∆ ∪ {αi − γ1}) is a component of Ir. �

For the decomposition (1) of Ir, set Dr := {∆r,1, · · · ,∆r,nr}. The following proposition
determines Dr from Dr−1:

Proposition 17. The set Dr is constructed from Dr−1 by the following algorithm:
INPUT: Dr−1 = {∆r−1,1, · · · ,∆r−1,nr−1

} where ∆r−1,l = 〈αl1, · · · , αlpl〉Γ (l = 1, . . . , nr−1)
OUTPUT: Dr

DEFINE: Dr := ∅
FOR each l ∈ {1 . . . , nr−1} and each i ∈ {1 . . . , pl} DO
∆ := ∆r−1,l \ {αli}
IF ∆ /∈ Dr THEN Dr := Dr ∪ {∆} ELSE do nothing
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Proof. Our assertion follows from Lemma 16. �

We repeat some facts related to Gröbner Bases, which are needed in our computations. Our
main reference is [5]. For a field k, let O = k[[x1(t), · · · , xm(t)]] be a subring of k[[t]] such that
dimk k[[t]]/O <∞ and let M ⊂ k[[t]] be an O-module. We denote by Γ (resp. Γ(M)) the set of
all orders of elements in O (resp. M) with respect to t.

Definition 18. A subset G = {g1, · · · , gs} of O is called a SAGBI basis (Subalgebra Analog to
Gröbner Bases for Ideals), if, for all f ∈ O, there exists a monomial Q(y1, · · · , ys) ∈ k[y1, · · · , ys]
such that LT(f) = Q(LT(g1), . . . ,LT(gs)).

Remark 19. If O = k[[ta1 , . . . , tam ]] where ai ∈ N, then G = {ta1 , . . . , tam} is a SAGBI basis
of O.

Definition 20. Let G be a SAGBI basis for O and let H be a subset of M . The pair (G,H)
is called a standard basis of M , if, for any f ∈ M , there exists h ∈ H and a monomial
Q(y1, · · · , ys) ∈ k[y1, · · · , ys] such that LT(f) = Q(LT(g1), . . . ,LT(gs)) · LT(h).

The following proposition follows from Definition 20.

Proposition 21. Let G = {g1, · · · , gm} ⊂ O be a SAGBI basis for O and let H = {h1, . . . , hn}
be a subset of M . The pair (G,H) is a standard basis of M if and only if we have

Γ = 〈ordt(g1), · · · , ordt(gm)〉 and Γ(M) = 〈ordt(h1), · · · , ordt(hn)〉Γ.
For G ⊂ O and H ⊂ M , we define the normal form of f ∈ k[[t]] with respect to (G,H)

by NF(f,G,H) :=
∑
j /∈Γ(M) cjt

j such that f − NF(f,G,H) ∈ M . We consider the local order

ordt(1) � ordt(t) � ordt(t
2) � · · · . For f ∈ M , we denote by LC(f) (resp. LT(f)) the leading

coefficient of f (resp. the leading term of f) with respect to the order. We also define an
S-process for f1, f2 ∈M to be

S(f1, f2) := LC(f2) · tγ1 · f1 − LC(f1) · tγ2 · f2

where γ1, γ2 ∈ Γ satisfy γ1+ordt(f1) = γ2+ordt(f2). In particular, we denote by Smin(f1, f2) the
S-process whose order with respect to t is minimal among all S-processes of f1 and f2. We call
it the minimal S-process of f1 and f2. Note that Smin(f1, f2) is determined by the pair (γ1, γ2)
that makes the value γ1 + ordt(f1) = γ2 + ordt(f2) minimal. Such pair is uniquely determined
for f1 and f2. So is Smin(f1, f2). The following fact is known:

Proposition 22 ([5], Theorem 2.3). Let G = {g1, · · · , gm} ⊂ O be a SAGBI basis for O and let
H = {h1, . . . , hn} be a subset of M . The pair (G,H) is a standard basis of M if and only if the
normal form NF(Smin(hi, hj), G,H) is zero for any hi, hj ∈ H.

Now we consider the subsetMr,l ofMr. Recall that all elements inMr,l have anO-submodule
structure with Γ(Mr,l) = {(∆r,l− r)∩ [0, 2δ− 1]}∪ {∞}. Note that the Γ-semi-module Γ(Mr,l)
satisfies the following: if γ + α = 2δ for γ ∈ Γ and α ∈ Γ(Mr,l), then γ + α =∞ in Γ(Mr,l) by
the definition of the multiplication of O-submodule. Let {v1, · · · , vδ} be a basis for an element
of Mr,l. Writing (∆r,l − r)∩ [0, 2δ − 1] = {β1, . . . , βδ} (βi < βi+1), we may assume that each vi
has the form

(4) vi = tβi +
∑

j>βi, j /∈Γ(Mr,l)

cijt
j .

Since any element in Mr,l is generated by v1, · · · , vδ as k-vector space, we regard Mr,l itself as
a k-vector space and just write Mr,l = [v1, · · · , vδ]k. Here the coefficients cij ’s in v1, · · · , vδ are
treated as variables. They may satisfy some conditions to keep the relation

Γ(Mr,l) = {β1, . . . , βδ} ∪ {∞}.
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Let T be the set of all such conditions. Setting K := k({cij}) and Õ := K[[ta1 , · · · , tam ]], we

define the extension M̃r,l of Mr,l to be the Õ-submodule generated by v1, · · · , vδ. We observe

that Γ(Mr,l) = Γ(M̃r,l) = {β1, . . . , βδ} ∪ {∞} under the condition set T .

Proposition 23. The condition set T forMr,l = [v1, · · · , vδ]k is given by the following algorithm:
INPUT: G = {ta1 , . . . , tam}, H = {v1, · · · , vδ}, K = k({cij})
OUTPUT: T
DEFINE: T := ∅
FOR each i1, i2 in {1, . . . , δ} with i1 6= i2 DO

S := Smin(vi1 , vi2)
WHILE ordt(S) 5 2δ − 1 DO

IF ordt(S) /∈ {ordt(vi)}i=1,...,δ ∪ {∞}
THEN S := S − LT(S) and T := T ∪ {LC(S) = 0}

ELSE S := Smin

(
S,

∑
(tai ,vj)∈L

taivj

)
where L = {(tai , vj) ∈ G×H|ai + ordt(vj) = ordt(S)}

Proof. For two distinct vi1 and vi2 in H, we first compute S1 := Smin(vi1 , vi2). Note that

LC(S1) is a polynomial with respect to the coefficients in vi1 and vi2 . If ordt(S1) /∈ Γ(M̃r,l),
then we must have LC(S1) = 0. We add this equation to T and put S2 := S1−LT(S1). On

the other hand, if ordt(S1) ∈ Γ(M̃r,l), then we consider S2 := Smin

(
S1,
∑

(tai ,vj)∈L1
taivj

)
for

L1 := {(tai , vj) ∈ G × H| ai + ordt(vj) = ordt(S1)}. Next we check whether ordt(S2) belongs

to Γ(M̃r,l) or not. Continuing such procedures successively, we get ordt(S1) < ordt(S2) < · · · .
So there exists a positive integer q which satisfies ordt(Sq) ≤ 2δ − 1 and ordt(Sq+1) = ∞.
Namely, our procedures terminate in finite steps. Applying these procedures to all distinct

pairs in H, we obtain a standard basis (G,H) for M̃r,l by Proposition 22. It also implies

Γ(M̃r,l) = {ordt(vi)}i=1,...,δ ∪{∞} by Proposition 21. Hence this algorithm yields the condition
set T . �

Let m be the maximal ideal of O. We finally obtain the following theorem:

Theorem 24 (The computational algorithm for the affine cell decomposition of Mr). For a
given codimenson r, we obtain all affine cells in the decomposition (3) of Mr by the following
finite steps.
Step 1: Set D1 := {Γ(m)} and find the set of minimal generators of Γ(m).
Step i (i = 2, . . . , r): Compute Di from Di−1 by Proposition 17 and, for each ∆i,l in Di, find
its set of minimal generators.
Step r+1: For each Mr,l, find the basis which consists of (4).
Step r+2: For each Mr,l, determine the condition set T by Proposition 23.

Proof. Our assertion follows from Proposition 17 and 23. �

4. Proof of Theorem 1

We prove Theorem 1 in this section. Let O be the local ring k[[t3, t4]] of the singularity of type
E6. We have Γ = {0, 3, 4, 6, 7, 8, 9, · · · }. It follows that δ = 3 and 2δ = 6. For each codimension r
(1 ≤ r ≤ 6), we first determine all components in the decomposition (3). Applying Steps 1, . . . , r
in Theorem 24, we obtain the following datum:
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r Elements of Dr

1 ∆1,1 = 〈3, 4〉Γ
2 ∆2,1 = 〈4, 6〉Γ, ∆2,2 = 〈3, 8〉Γ
3 ∆3,1 = 〈6, 7, 8〉Γ, ∆3,2 = 〈4, 9〉Γ, ∆3,3 = 〈3〉Γ
4 ∆4,1 = 〈7, 8, 9〉Γ, ∆4,2 = 〈6, 8〉Γ, ∆4,3 = 〈6, 7〉Γ, ∆4,4 = 〈4〉Γ
5 ∆5,1 = 〈8, 9, 10〉Γ, ∆5,2 = 〈7, 9〉Γ, ∆5,3 = 〈7, 8〉Γ, ∆5,4 = 〈6, 11〉Γ
6 ∆6,1 = 〈9, 10, 11〉Γ, ∆6,2 = 〈8, 10〉Γ, ∆6,3 = 〈8, 9〉Γ, ∆6,4 = 〈7, 12〉Γ

∆6,5 = 〈6〉Γ
Table 3

Now we consider M6,5 as an example. As the result of Step 7, we find the k-basis which
consists of

v1 = 1 + c11t+ c12t
2 + c15t

5, v2 = t3 + c25t
5, v3 = t4 + c35t

5.

Furthermore, we have T = {c25 = c12 − c211, c35 = c11} in the consequence of Step 8. It follows
that

M6,5 = [1 + c11t+ c12t
2 + c15t

5, t3 + (c12 − c211)t5, t4 + c11t
5]k.

In this way, Steps r + 1 and r + 2 (r = 1, . . . , 6) yield Table 4 below. For the simplicity, we use
notations a, b, c for the coefficients.

r Components of Mr

1 M1,1 = [t2, t3, t5]k
2 M2,1 = [t2, t4, t5]k, M2,2 = [t+ at2, t4, t5]k
3 M3,1 = [t3, t4, t5]k, M3,2 = [t+ at3, t4, t5]k
M3,3 = [1 + at+ bt5, t3 + at4, t4 + at5]k

4 M4,1 = [t3, t4, t5]k, M4,2 = [t2 + at3, t4, t5]k
M4,3 = [t2 + at4, t3 + bt4, t5]k, M4,4 = [1 + at2 + bt5, t3 + at5, t4]k

5 M5,1 = [t3, t4, t5]k, M5,2 = [t2 + at3, t4, t5]k
M5,3 = [t2 + at4, t3 + bt4, t5]k, M5,4 = [t+ at2 + bt3, t4, t5]k

6 M6,1 = [t3, t4, t5]k, M6,2 = [t2 + at3, t4, t5]k
M6,3 = [t2 + at4, t3 + bt4, t5]k, M6,4 = [t+ at2 + bt3, t4, t5]k
M6,5 = [1 + at+ bt2 + ct5, t3 + (b− a2)t5, t4 + at5]k

Table 4

Below we analyze the structure of the punctual Hilbert schemes. We only consider the case
ofM6 which is the most complicated case. The other cases can be teated in the similar manner.
Note that the matrices representing the elements inM6,l have the same form. So we just express
them by Al.

A1 =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , A2 =

0 0 1 a 0 0
0 0 0 0 1 0
0 0 0 0 0 1


A3 =

0 0 1 0 a 0
0 0 0 1 b 0
0 0 0 0 0 1

 , A4 =

0 1 a b 0 0
0 0 0 0 1 0
0 0 0 0 0 1


A5 =

1 a b 0 0 c
0 0 0 1 0 b− a2

0 0 0 0 1 a

 .
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The Plücker coordinates πijk for each M6,l are given by the determinants which consist of the
i, j and kth columns of Al (1 ≤ i < j < k ≤ 6). They are calculated as

M6,1 :π456 = 1, πijk = 0 for (i, j, k) 6= (4, 5, 6),

M6,2 :π356 = 1, π456 = a, πijk = 0 for (i, j, k) 6= (3, 5, 6), (4, 5, 6),

M6,3 :π346 = 1, π356 = b, π456 = −a, πijk = 0 for (i, j, k) 6= (3, 4, 6), (3, 5, 6), (4, 5, 6),

M6,4 :π256 = 1, π356 = a, π456 = b, πijk = 0 for (i, j, k) 6= (2, 5, 6), (3, 5, 6), (4, 5, 6),

M6,5 :π145 = 1, π146 = a, π156 = a2 − b, π245 = a, π246 = a2, π256 = a3 − ab, π345 = a,

π346 = a2, π345 = a, π346 = a2, π356 = a2b− b2, π456 = c, πijk = 0 for the others.

By using these Plücker coordinates, we can check that

M6,3 =M6,1 ∪M6,2 ∪M6,3
∼=M6,4 =M6,1 ∪M6,2 ∪M6,4

∼= P2,(5)

M6,3 ∩M6,4 =M6,1 ∪M6,2
∼= P1.(6)

Next we calculate the defining equations ofM6,5 to showM6 =M6,5. Let I be an ideal which
is generated by the following polynomials in k[a, b, c, πijk| 1 ≤ i < j < k ≤ 6, (i, j, k) 6= (1, 4, 5)]:

π146 − a, π156 − a2 + b, π245 − a, π246 − a2, π256 − a3 + ab, π345 − a,
π346 − a2, π345 − a, π346 − a2, π356 − a2b+ b2, π456 − c

By the fact which is called Polynomial Implicitization (cf. [3]), the varietyM6,5 is defined by
the third elimination ideal I3 := I ∩ k[πijk| 1 ≤ i < j < k ≤ 6, (i, j, k) 6= (1, 4, 5)]. We compute
a Gröbner basis of I with respect to the lexicographic order a � b � c � π123 � · · · � π456.
The elements which are not involving a, b, c form the Gröbner base of I3 (see The Elimination
Theorem in [3]). This computation was done by the computer algebra system “Singular” (see
[4] for the usage of Singular). Furthermore, homogenizing the basis of I3 at π145, we obtain the
defining equations of a projective threefold X2 as follows:

π3
345 + π145π345π356 − π145π

2
346 = 0, π256π

2
345 − π145π346π356 = 0,

π145π256π
3
346 − π3

345π356 − π3
345π

2
346 − 2π145π

2
345π

2
356

− π145π345π
2
346π356 + π145π

4
346 − π2

145π
3
356 = 0,

π145π256π345π356 − π145π256π
2
346 + π3

345π346

+ 2π145π345π346π356 − π145π
3
346 = 0,

π145π256π345π346 − π4
345 − 2π145π

2
345π356 + π145π345π

2
346 − π2

145π
2
356 = 0,

π145π246π356 − π145π256π346 + π3
345 + π145π345π356 − π145π

2
346 = 0,

π246π346 − π256π345 − π345π346 = 0, π246π345 − π2
345 − π145π356 = 0,

π3
246 − π2

246π345 − π145π
2
256 − π145π256π346 = 0, π245π356 − π256π345 = 0,

π245π346 − π246π345 = 0, π245π345 − π145π346 = 0,

π245π256 + π245π346 − π2
246 = 0,

π245π246 − π245π345 − π145π256 = 0, π2
245 − π145π246 = 0,

π145π156 − π2
245 + π145π345 = 0, π146 − π245 = 0

By computer algebra system “Maple”, we can check that M6 \M6,5 = ∪4
i=1M6,i is defined

by these equations with π145 = 0. Hence we have M6 =M6,5 = X2 (i.e X2 is irreducible). The
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equalities dimM6 = dimM6,5 = 3 and the rationality of M6 also follow from Corollary 13 and
Proposition 15 respectively. We also conclude that Sing(M6) ∼= P1 by (5) and (6).

We add some comments forM4 andM5. We can check thatM4 consists of two components
M4,3 = M4,1 ∪M4,2 ∪M4,3

∼= P2 and a rational surface X1 = M4,4 = M4,1 ∪M4,2 ∪M4,4

given by π156 + π345 = 0, π145π356 + π2
345 = 0 and πijk = 0 for

(ijk) 6= (145), (156), (345), (356), (456).

It also follows that Sing(M4) =M4,3 ∩M4,4 =M4,1 ∪M4,2
∼= P1.

Similarly, we have M5 =M5,3 ∪M5,4 where

M5,3 =M5,1 ∪M5,2 ∪M5,3
∼= P2 and M5,4 =M5,1 ∪M5,2 ∪M5,4

∼= P2.

It is easy to check Sing(M5) =M5,3 ∩M5,4 =M5,1 ∪M5,2
∼= P1. We also see that M4, M5

and M6 possess same P1 in common, as their singular locus. �
The irreducibility of M6 also can be proven by known results of the compactified Jacobians.

In next section, we use them to show the irreducibility of the PS variety for the singularity of
type E8.

5. Proof of Theorem 2

Consider the curve singularity of type E8 in this section. In order to prove Theorem 2, we
first recall some results about compactified Jacobian JC for a singular complete algebraic curve
C.

Definition 25 ([8]). The compactified Jacobian JC of C consists of all torsion free sheaves F
of rank 1 and degree 0 on C (i.e., χ(F) = 1− ga(C)).

The following facts about compactified Jacobians are known:

Theorem 26 ([1], [8]). The compactified Jacobian JC is irreducible if and only if Sing(C)
consits of plane curve singularities.

Theorem 27 ([2]). For a rational unibranched curve C, its compactified Jacobian is homeomor-
phic to the direct product of compact spaces, the Jacobi factors JCp where p ∈ Sing(C).

The Jacobi factor for a curve singularity was introduced by Rego in [8] (see also [7]). It
coincides with the PS variety for a given singularity.
Proof of Theorem 2. Consider the local ring O = k[[t3, t5]]. We have Γ = {0, 3, 5, 6, 8, 9, · · · }.
It also follows that δ = 4 and 2δ = 8. Theorem 24 yields the following two tables:

r Elements of Di

1 ∆1,1 = 〈3, 5〉Γ
2 ∆2,1 = 〈5, 6〉Γ, ∆2,2 = 〈3, 10〉Γ
3 ∆3,1 = 〈6, 8, 10〉Γ, ∆3,2 = 〈5, 9〉Γ, ∆3,3 = 〈3〉Γ
4 ∆4,1 = 〈8, 9, 10〉Γ, ∆4,2 = 〈6, 10〉Γ, ∆4,3 = 〈6, 8〉Γ, ∆4,4 = 〈5, 12〉Γ
5 ∆5,1 = 〈9, 10, 11〉Γ, ∆5,2 = 〈8, 10, 12〉Γ, ∆5,3 = 〈8, 9〉Γ, ∆5,4 = 〈6, 13〉Γ

∆5,5 = 〈5〉Γ
6 ∆6,1 = 〈10, 11, 12〉Γ, ∆6,2 = 〈9, 11, 13〉Γ, ∆6,3 = 〈9, 10〉Γ, ∆6,4 = 〈8, 12〉Γ

∆6,5 = 〈8, 10〉Γ, ∆6,6 = 〈6〉Γ
7 ∆7,1 = 〈11, 12, 13〉Γ, ∆7,2 = 〈10, 12, 14〉Γ, ∆7,3 = 〈10, 11〉Γ

∆7,4 = 〈9, 13〉Γ, ∆7,5 = 〈9, 11〉Γ, ∆7,6 = 〈8, 15〉Γ
8 ∆8,1 = 〈12, 13, 14〉Γ, ∆8,2 = 〈11, 13, 15〉Γ, ∆8,3 = 〈11, 12〉Γ

∆8,4 = 〈10, 14〉Γ, ∆8,5 = 〈10, 12〉Γ, ∆8,6 = 〈9, 16〉Γ, ∆8,7 = 〈8〉Γ
Table 5
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r Components of Mr

1 M1,1 = [t2, t4, t5, t7]k
2 M2,1 = [t3, t4, t6, t7]k, M2,2 = [t+ at3, t4, t6, t7]k
3 M3,1 = [t3, t5, t6, t7]k, M3,2 = [t2 + at3, t5, t6, t7]k
M3,3 = [1 + at2 + bt7, t3 − a2t7, t5 + at7, t6]k

4 M4,1 = [t4, t5, t6, t7]k, M4,2 = [t2 + at4, t5, t6, t7]k
M4,3 = [t2 + at6, t4 + bt6, t5, t7]k, M4,4 = [t+ at2 + bt5, t4 + at5, t6, t7]k

5 M5,1 = [t4, t5, t6, t7]k, M5,2 = [t3 + at4, t5, t6, t7]k
M5,3 = [t3 + at5, t4 + bt5, t6, t7]k, M5,4 = [t+ at3 + bt5, t4, t6, t7]k
M5,5 = [1 + at+ bt4 + ct7, t3 + at4 + bt7, t5 − a2t7, t6 + at7]k

6 M6,1 = [t4, t5, t6, t7]k, M6,2 = [t3 + at4, t5, t6, t7]k
M6,3 = [t3 + at5, t4 + bt5, t6, t7]k, M6,4 = [t2 + at3 + bt4, t5, t6, t7]k
M6,5 = [t2 + at3 + bt6, t4 + ct6, t5 + at6, t7]k
M6,6 = [1 + at2 + bt4 + ct7, t3 + (b− a2)t7, t5 + at7, t6]k

7 M7,1 = [t4, t5, t6, t7]k, M7,2 = [t3 + at4, t5, t6, t7]k
M7,3 = [t3 + at5, t4 + bt5, t6, t7]k, M7,4 = [t2 + at3 + bt4, t5, t6, t7]k
M7,5 = [t2 + at3 + bt6, t4 + ct6, t5 + at6, t7]k
M7,6 = [t+ at2 + bt3 + ct5, t4 + at5, t6, t7]k

8 M8,1 = [t4, t5, t6, t7]k, M8,2 = [t3 + at4, t5, t6, t7]k
M8,3 = [t3 + at5, t4 + bt5, t6, t7]k, M8,4 = [t2 + at3 + bt4, t5, t6, t7]k
M8,5 = [t2 + at3 + bt6, t4 + ct6, t5 + at6, t7]k
M8,6 = [t+ at2 + bt3 + ct5, t4 + at5, t6, t7]k
M8,7 = [1 + at+ bt2 + ct4 + dt7, t3 + at4 + (c+ a2b− b2)t7,

t5 + (b− a2)t7, t6 + at7]k
Table 6

In Table 6, we have a, b, c, d ∈ k. The analyses for Mi (i = 1, . . . , 8) proceed similarly as in
the proof of Theorem 1, except the irreducibility of M8. The defining equations of M8,7 are
too many to analyze. So we use Theorem 26 and 27 to show the irreducibility of M8. Let C
be a rational curve with the curve singularity of type E8 as its unique singularity. Since the
compactified Jacobian JC is irreducible by Theorem 26, the irreducibility of M8 also follows
from Theorem 27. Finally, we conclude that M8 is rational by Proposition 15.

For the other cases, we only mention that the punctual Hilbert schemes M6, M7 and M8

possess same P2 ∪ P2 with P2 ∩ P2 = P1, as their singular locus. We omit the defining equations
for Xi (i = 3, . . . , 9). �

Remark 28. In [2], Beauville proved that the Euler number of the Jacobi factor for the curve
singularities of type E6 (resp. E8) is 5 (resp. 7). They coincide with the number of affine cells of
each M2δ (see Table 3 and 5). In general, this fact holds for every irreducible curve singularity
with Puiseux exponent (p, q) (see [7]).
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