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ON THE NUMBER OF POPULATIONS OF CRITICAL POINTS OF

MASTER FUNCTIONS

EVGENY MUKHIN 1 AND ALEXANDER VARCHENKO 2

Abstract. We consider the master functions associated with one irreducible integrable high-
est weight representation of a Kac-Moody algebra. We study the generation procedure of new

critical points from a given critical point of one of these master functions. We show that all

critical points of all of these master functions can be generated from the critical point of the
master function with no variables. This means that the set of all critical points of all of these

master functions form a single population of critical points.
We formulate a conjecture that the number of populations of critical points of master func-

tions associated with a tensor product of irreducible integrable highest weight representations

of a Kac-Moody algebra are labeled by homomorphisms to C of the Bethe algebra of the
Gaudin model associated with this tensor product.

1. Introduction

Master functions form an important class of functions. They were introduced more than
twenty years ago in [SV] to solve KZ equations in CFT and to find eigen-states in quantum spin
models [BF, RV], although examples of master functions can be found in works by Heine and
Stieltjes in 19th century. Master functions are associated with tensor products of representations
of Kac-Moody algebras.

A quantum integrable Gaudin model is assigned to a tensor product of representations of
a Kac-Moody algebra, see [G, FFR]. This model is an algebra of commuting linear operators
on the tensor product. The algebra is called the Bethe algebra. Eigen-states of the model are
common eigenvectors of the Bethe algebra. The eigenvectors are constructed from critical points
of the associated master functions. This construction is called the Bethe ansatz method, see
[BF, RV].

In [MV1], it was discovered that the critical points of master functions come in families called
the populations. Starting from a critical point one can generate a one-parameter family of new
critical points. The set of all critical points obtained by the iteration of this procedure is called
a population.

It turned out that for the Lie algebra glN the number of populations equals the number of
irreducible components in the decomposition of the tensor product into irreducibles [MTV]. This
fact showed an unexpected connection between the nonlinear analytic object (critical points of
master functions) and the linear algebraic object (the number of direct irreducible summands in
a tensor product of representations).

In [VW, VWW] it was observed that a certain population of the critical points of the master
functions associated with one irreducible representation with highest weight zero of an affine Kac-
Moody algebra is related to the mKdV integrable hierarchy associated with that Kac-Moody
algebra. Namely, one can construct rational solutions of the hierarchy from the critical points
of the population.
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These facts show that populations of critical points of master functions are an interesting
object.

In this paper we consider the master functions associated with one irreducible integrable
highest weight representation of a Kac-Moody algebra. We study the generation procedure of
new critical points from a given critical point of one of these master functions. We show that
all critical points of all of these master functions can be generated from the critical point of the
master function with no variables. In particular this means that the set of all critical points of
all of these master functions form a single population of critical points.

We formulate a conjecture that the number of populations of critical points of master functions
associated with a tensor product of irreducible integrable highest weight representations of a Kac-
Moody algebra are labeled by homomorphisms to C of the Bethe algebra of the Gaudin model
associated with this tensor product.

In Section 2 we introduce master functions and describe different ways to characterize critical
points of master functions. In Section 3, we introduce populations of critical points and formulate
the conjecture. The main results are Theorems 3.8 and 3.9.

The second author thanks the Max Planck Institute for Mathematics in Bonn for hospitality.

2. Master functions and critical points, [MV1]

2.1. Kac-Moody algebras. Let A = (ai,j)
r
i,j=1 be a generalized Cartan matrix, ai,i = 2,

ai,j = 0 if and only aj,i = 0, ai,j ∈ Z60 if i 6= j. We assume that A is symmetrizable, i.e.
there exists a diagonal matrix B = diag(b1, . . . , br) with positive integers bi such that BA is
symmetric.

Let g = g(A) be the corresponding complex Kac-Moody Lie algebra (see [K, Section 1.2]),
h ⊂ g the Cartan subalgebra. The associated symmetric bilinear form ( , ) is nondegenerate on
h∗ and dim h = r + 2d, where d is the dimension of the kernel of the Cartan matrix A, see [K,
Chapter 2].

Let αi ∈ h∗, α∨i ∈ h, i = 1, . . . , r, be the sets of simple roots, coroots, respectively. We
have (αi, αj) = biai,j , 〈λ, α∨i 〉 = 2(λ, αi)/(αi, αi), λ ∈ h∗. In particular, 〈αj , α∨i 〉 = ai,j . Let
P = {λ ∈ h∗ | 〈λ, α∨i 〉 ∈ Z} and P+ = {λ ∈ h∗ | 〈λ, α∨i 〉 ∈ Z>0} be the sets of integral and
dominant integral weights, respectively.

Fix ρ ∈ h∗ such that 〈ρ, α∨i 〉 = 1, i = 1, . . . , r. We have (ρ, αi) = (αi, αi)/2. The Weyl group
W ∈ End(h*) is generated by reflections si, i = 1, . . . , r, where si(λ) = λ − 〈λ, α∨i 〉αi, λ ∈ h∗.
We use the notation

w · λ = w(λ+ ρ)− ρ, w ∈ W, λ ∈ h∗,(2.1)

for the shifted action of the Weyl group.

2.2. Master functions, [SV]. Let Λ = (Λ1, . . . ,Λn), Λa ∈ P+ be a collection of dominant
integral weights. Let k = (k1, . . . , kr) ∈ Zr>0 be a collection of nonnegative integers. Denote

k = k1 + · · · + kr. Denote Λ∞(Λ,k) =
∑n
a=1 Λa −

∑r
j=1 kjαj ∈ P . The weight Λ∞(Λ,k) will

be called the weight at infinity.
Consider Cn with coordinates z = (z1, . . . , zn). Consider Ck with coordinates u collected into

r groups, the j-th group consisting of kj variables, u = (u(1), . . . , u(r)), u(j) = (u
(j)
1 , . . . , u

(j)
kj

).

The master function is the multivalued function on Ck × Cn defined by the formula

Φ(u, z,Λ,k) =
∑
a<b

(Λa,Λb) ln(za − zb)−
∑
a,i,j

(αj ,Λa) ln(u
(j)
i − za) +(2.2)

+
∑
j<j′

∑
i,i′

(αj , αj′) ln(u
(j)
i − u

(j′)
i′ ) +

∑
j

∑
i<i′

(αj , αj) ln(u
(j)
i − u

(j)
i′ ),
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with singularities at the places where the arguments of the logarithms are equal to zero. The

product of symmetric groups Σk = Σk1 ×· · ·×Σkr acts on the set of variables u
(j)
i by permuting

the coordinates with the same upper index. The function Φ is symmetric with respect to the
Σk-action.

For q ∈ Cn, a point p ∈ Ck is a critical point if Φ(·, z(q),Λ,k) is defined at p and

duΦ(·, z(q),Λ,k) = 0

at p. In other words, p is a critical point if∑
i′, i′ 6=i

(αj , αj)

u
(j)
i (p)− u(j)

i′ (p)
+
∑
j′,i′

(αj , αj′)

u
(j)
i (p)− u(j′)

i′ (p)
−
∑
a

(αj ,Λa)

u
(j)
i (p)− za(q)

= 0,(2.3)

j = 1, . . . , r, i = 1, . . . , kj . The critical set of the function Φ(·, z(q),Λ,k) is Σk-invariant. All
orbits in the critical set have the same cardinality k1! . . . kr! . We do not make distinction
between critical points in the same orbit.

2.3. Polynomials representing critical points. Let q ∈ Cn. Let p ∈ Ck be a critical point of
the master function Φ(·, z(q),Λ,k). Introduce an r-tuple of polynomials y = (y1(x), . . . , yr(x)),

yj(x) =
∏kj
i=1(x − u(j)

i (p)). Each polynomial is considered up to multiplication by a nonzero
number. The tuple defines a point in the direct product P (C[x])r of r copies of the projective
space associated with the vector space of polynomials in x. We say that the tuple y represents
the critical point p. The vector k = (k1, . . . , kr) will be called the degree vector of the tuple y.

It is convenient to think that the tuple (1, . . . , 1) of constant polynomials represents in
P (C[x])r the critical point of the master function with no variables. This corresponds to the
degree vector k = (0, . . . , 0).

Introduce polynomials

Tj(x) =

n∏
a=1

(x− za(q))〈Λa,α
∨
j 〉, j = 1, . . . , r.(2.4)

Denote τj = deg Tj(x). We say that a given tuple y ∈ P (C[x])r is generic with respect to a
point q ∈ Cn and weights Λ if: (i) each polynomial yj(x) has no multiple roots; (ii) all roots of
yj(x) are different from roots of the polynomial Tj ; (iii) any two polynomials yi(x), yj(x) have
no common roots if i 6= j and ai,j 6= 0. It is clear that if a tuple represents a critical point, then
it is generic, see equations (2.3).

Denote W (f, g) = fg′ − f ′g the Wronskian determinant of functions f, g in x. A tuple
y is called fertile with respect to weights Λ and a point q ∈ Cn, if there exist polynomials
ỹ1(x), . . . , ỹr(x) satisfying the equations

W (yj , ỹj) = Tj
∏
i, i 6=j

y
−aj,i
i , j = 1, . . . , r,(2.5)

see [MV1]. Equation (2.5) is a first order linear inhomogeneous differential equation with respect
to ỹj . Its solutions are

ỹj = yj

∫
Tj

r∏
i=1

y
−aj,i
i dx+ cyj ,(2.6)

where c is any number. The tuples

y(j)(x, c) = (y1(x), . . . , yj−1(x), ỹj(x, c), yj+1(x), . . . , yr(x)) ∈ P (C[x])r(2.7)

form a one-parameter family. This family is called the generation of tuples from y in the j-th
direction. A tuple of this family is called an immediate descendant of y in the j-th direction.
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Theorem 2.1 ([MV1]).

(i) A generic tuple y = (y1, . . . , yr) represents a critical point of the master function
Φ(·, z(q),Λ,k), where kj = deg yj, if and only if y is fertile with respect to weights
Λ and a point q ∈ Cn

(ii) If y represents a critical point, then for any c ∈ C the tuples y(j)(x, c), j = 1, . . . , r, are
fertile.

(iii) If y is generic and fertile, then for almost all values of the parameter c ∈ C the tuples
y(j)(x, c), j = 1, . . . , r, are generic. The exceptions form a finite set in C.

(iv) Assume that a sequence yi, i = 1, 2, . . . , of fertile tuples has a limit y∞ in P (C[x])r as
i tends to infinity.
(a) Then the limiting tuple y∞ is fertile.

(b) For j = 1, . . . , r, let y
(j)
∞ be an immediate descendant of y∞. Then for j = 1, . . . , r,

there exist immediate descendants y
(j)
i of yi such that y

(j)
∞ is the limit of y

(j)
i as i

tends to infinity.

Consider a generic fertile tuple y = (y1(x), . . . , yr(x)) as in Theorem 2.1. Let kj = deg yj
for j = 1, . . . , r. Consider a generic fertile tuple y(j)(x, c) = (y1(x), . . . , yj−1(x), ỹj(x, c),
yj+1(x), . . . , yr(x)) for some c ∈ C and some j, 1 6 j 6 r, as in part (iii) of Theorem 2.1.

It is easy to see that the polynomial ỹj(x, c) is of degree kj or k̃j = τj + 1 − kj −
∑
i 6=j aj,iki.

Denote

k(j) = (k1, . . . , kj−1, k̃j , kj+1 . . . , kr).

By Theorem 2.1, if deg ỹj(x, c) = kj , then the generic fertile tuple y(j)(x, c) represents a critical

point of the master function Φ(·, z(q),Λ,k). By Theorem 2.1, if deg ỹj(x, c) = k̃j , then the

generic fertile tuple y(j)(x, c) represents a critical point of the master function Φ(·, z(q), Λ,k(j)).

The transformation from k to k(j) can be described in terms of the shifted Weyl group action.

Lemma 2.2 ([MV1]). We have Λ∞(Λ,k(j)) = sj · Λ∞(Λ,k).

2.4. Another way to characterize critical points.

Theorem 2.3 ([MSTV]). Let y = (y1, . . . , yr) be generic with respect to a point q ∈ Cn and
weights Λ. Then y represents a critical point of the master function Φ(·, z(q); Λ,k) if and only
if there exist numbers µ1, . . . , µn, µ1 + · · ·+ µn = 0, such that

r∑
j=1

(αj , αj)
y′′j
yj

+
∑
i6=j

(αi, αj)
y′iy
′
j

yiyj
−

r∑
j=1

(αj , αj)
T ′jy
′
j

Tjyj
+(2.8)

+

n∑
a=1

1

x− za(q)
(µa −

∑
b 6=a

(Λa,Λb)

za(q)− zb(q)
) = 0.

Lemma 2.4 ([MSTV]). Let y = (y1, . . . , yr) be generic and fertile with respect to a point q ∈ Cn
and weights Λ. Let j ∈ {1, . . . , r}. Let y(j)(x, c) = (y1(x), . . . , ỹj(x, c), . . . , yr(x)) be a generic

fertile descendant in the j-th direction. Then the tuple y(j)(x, c) satisfies equation (2.8) with the
same numbers µ1, . . . , µn as the tuple y.

3. Populations of critical points

3.1. Populations. Let y = (y1(x), . . . , yr(x)) ∈ P (C[x])r be the tuple representing a critical
point p ∈ Ck of the master function Φ(·, z(q),Λ,k). By Theorem 2.1, we can construct r
one-parameter families y(j)(x, c) ∈ P (C[x])r of fertile tuples almost all of which are generic
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with respect to the point q ∈ Cn and weights Λ and hence represent critical points of master
functions. After that we can start with any tuple y(j)(x, c) of these r families and generate new
r one-parameter families of fertile tuples by using Theorem 2.1. This two-step procedure gives
us r2 two-parameter families of fertile tuples in P (C[x])r almost all of which are generic with
respect to the point q ∈ Cn and weights Λ and hence represent critical points of master functions.
We may repeat this procedure any number of times and after, say, m repetitions we will obtain
rm families of fertile tuples almost all of which are generic with respect to the point q ∈ Cn
and weights Λ and hence represent critical points of master functions. The union in P (C[x])r of
all tuples obtained after all possible repetitions is called the population of tuples generated from
the tuple y with given additional data q,Λ (or called the population of critical points generated
from the critical point p of the master function Φ(·, z(q); Λ,k)). All tuples in the population are
fertile with respect to the data q,Λ. Almost all tuples are generic with respect to the data q,Λ.

Lemma 3.1 ([MV1]). For given data q,Λ, if two populations intersect, then they coincide.

Lemma 3.2 ([MV1]). Let P ⊂ P (C[x])r be the population generated from the tuple y repre-
senting a critical point p ∈ Ck of the master function Φ(·, z(q),Λ,k). Let ỹ = (ỹ1, . . . , ỹr) be

a point of P and k̃ = (k̃1, . . . , k̃r), where k̃j = deg ỹj. Then the vector Λ∞(Λ, k̃) lies in the
orbit of the vector Λ∞(Λ,k) under the shifted action of the Weyl group. Conversely, if a vector∑n
a=1 Λa −

∑r
j=1 k̃jαj lies in the orbit of Λ∞(Λ,k), then there exists a tuple ỹ ∈ P with degree

vector (k̃1, . . . , k̃r).

Lemma 3.3. Let P be a population associated with data q,Λ. Let y ∈ P be a generic fertile
tuple. Then the numbers µ1, . . . , µn in equation (2.8) satisfied by y do not depend on the choice
of y in P.

Proof. The lemma follows from Lemma 2.4. �

Remark. For the Lie algebra sl2, different populations with the same polynomial T1(x) have
different sets of numbers µ1, . . . , µn. For the Lie algebra sl3, a population is not uniquely
determined by polynomials T1, T2 and numbers µ1, . . . , µn. For example, let

(Λ1,Λ2) = (α1 + α2, α1 + α2),

(k1, k2) = (1, 1), (z1, z2) = (1,−1). Then T1 = T2 = x2 − 1. The critical point equations
1/(t − 1) + 1/(t + 1) + 1/(t − s) = 0, 1/(s − 1) + 1/(s + 1) + 1/(s − t) = 0 have two solutions

t = 1/
√

5, s = −1/
√

5 and t = −1/
√

5, s = 1/
√

5. These solutions generate different populations,

see [MV1, Section 5]. For the first of them we have (y1, y2) = (x− 1/
√

5, x+ 1/
√

5) and for the

second (y1, y2) = (x+ 1/
√

5, x− 1/
√

5). For both of them we have

2
y′′1
y1

+ 2
y′′2
y2
− 2

y′1y
′
2

y1y2
− 2

T ′1y1

T1y1
− 2

T ′2y
′
2

T2y2
+

5

x− 1
− 5

x+ 1
= 0

and for both of them the numbers µ1, µ2 are the same.

Given data q,Λ, let Tj(x) be polynomials defined by (2.4). Introduce a quadratic polynomial
in variables k1, . . . , kr,

B(k1, . . . , kr) =

r∑
j=1

(αj , αj)kj(kj − 1− τj) +
∑
i 6=j

(αi, αj)kikj .(3.1)
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We have

B(k1, . . . , kr) =(3.2)

= (ρ+

n∑
a=1

Λa −
r∑
j=1

kjαj , ρ+

n∑
a=1

Λa −
r∑
j=1

kjαj)− (ρ+

n∑
a=1

Λa, ρ+

n∑
a=1

Λa).

Lemma 3.4. Let P be a population generated from a tuple, which is generic and fertile with
respect to the data q,Λ. Then there exists an integer c(P) such that for any

y = (y1(x), . . . , yr(x)) ∈ P
with deg yj = kj, we have

B(k1, . . . , kr) = c(P).(3.3)

Proof. By Lemma 3.3, there exists numbers µ1, . . . , µn, µ1 + · · ·+ µn = 0, such that all generic
fertile tuples y ∈ P satisfy equation (2.8) with numbers µ1, . . . , µn. Equating to zero the
coefficient of x−2 in the Laurent expansion at infinity of the left hand side of (2.8) we prove (3.3)
for c(P) equal to the coefficient of x−2 in the Laurent expansion at infinity of

−
n∑
a=1

1

x− za(q)

(
µa −

∑
b 6=a

(Λa,Λb)

za(q)− zb(q)

)
.

�

The integer c(P) will be called the charge of the population P.
Let P be a population associated with data q,Λ. A tuple y ∈ P with degree vector

k = (k1, . . . , kr)

will be called minimal if τj + 1 − kj −
∑
i 6=j aj,iki > kj for j = 1, . . . , r. These inequalities can

be rewritten as

τj + 1−
r∑
i=1

aj,iki > 0, j = 1, . . . , r.(3.4)

Lemma 3.5. Every population has a minimal tuple.

Lemma 3.6. A tuple y ∈ P is minimal if and only if the vector Λ∞(Λ,k) is integral dominant.

Lemma 3.7. Let P be a population associated with data q,Λ. Let y ∈ P be a minimal tuple
with degree vector k = (k1, . . . , kr). Then either k = 0 and c(P) = 0 or k 6= 0, c(P) < 0 and

c(P) +

r∑
j=1

bj(τj + 1)kj < 0.(3.5)

Proof. If k = 0, then c(P) = 0. If k 6= 0, then
∑r
j=1 bjkj(τj + 1−

∑r
i=1 aj,iki) > 0. Hence

0 <

r∑
j=1

bjkj(τj + 1−
r∑
i=1

aj,iki) =

=

r∑
j=1

bjkj(τj + 1−
r∑
i=1

aj,iki) +B(k1, . . . , kr)− c(P) = −c(P)−
r∑
j=1

bjkj(τj + 1).

�

The tuple y∅ = (1, . . . , 1) is generic and fertile with respect to any data q,Λ. Denote by
Py∅,q,Λ ⊂ P (C[x])r the population of tuples generated from y∅. Clearly we have c(Py∅,q,Λ) = 0.
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Theorem 3.8. The population Py∅,q,Λ is the only population P associated with the data q,Λ
and such that c(P) = 0.

Proof. Let P be any such population. Let y ∈ P be a minimal tuple and k its degree vector.
By Lemma 3.7, we get k = 0. Hence P contains y∅ and therefore P = Py∅,q,Λ. �

If n = 1, then q ∈ C and Λ = (Λ1).

Theorem 3.9. If n = 1, then Py∅,q,Λ is the only populations associated with data q,Λ.

Proof. Let n = 1. Let P be a population associated with data q,Λ and y ∈ P a generic fertile
tuple. Then the numbers µ1, . . . , µn in formula (2.8) are equal to zero. Hence c(P) = 0. By
Theorem 3.8 we get P = Py∅,q,Λ. �

Remark. In [ScV, MV1, MV2, F], it is shown that a population P ⊂ P (C[x])r is a variety
isomorphic to the flag variety of the Kac-Moody algebra g(At) Langlands dual to the Kac-
Moody algebra g(A).

Remark. If g(A) is an affine Lie algebra of type Ar or A
(2)
2 , the population Py∅,q,Λ=0 for

n = 1 was used in [VW, VWW] to construct rational solutions of the corresponding integrable
hierarchy.

3.2. Conjecture.

Conjecture 3.10. Given a Kac-Moody algebra g(A) and data q,Λ, the populations P are in
one-to-one correspondence with characters χ : B → C of the Bethe algebra B of the Gaudin
model associated with the tensor product ⊗na=1LΛa

of the irreducible g(A)-modules LΛa
with

highest weights Λa.

The definition of the Bethe algebra of the Gaudin model see in [FFR, T, MTV].
The statement of the conjecture for g(A) = slr+1 is a corollary of the main theorem in [MTV]

and the description of slr+1-populations P ⊂ P (C[x])r in [MV1, Section 5].

Conjecture also holds for n = 1. Indeed, in this case, the Bethe algebra B associated with
an irreducible highest weight representation LΛ1

consists of scalar operators on LΛ1
and is

isomorphic to C. The Bethe algebra has the single character id : C → C and the conjecture
says that there is only one population associated with g(A) and the data q ∈ C, Λ = (Λ1).
Our Theorem 3.9 says that indeed there is exactly one population and this is the population
Py∅,q,Λ ⊂ P (C[x])r generated from the fertile generic tuple y∅ = (1, . . . , 1) representing the
critical point of the master function with no variable and associated with k = (0, . . . , 0).
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