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ON MILNOR CLASSES VIA INVARIANTS OF SINGULAR SUBSCHEMES

JAMES FULLWOOD

Abstract. We derive a formula for the Milnor class of certain scheme-theoretic global com-

plete intersections (with arbitrary singularities) in a smooth variety in terms of the Segre class

of its singular scheme. In codimension one the formula recovers a formula of Aluffi for the
Milnor class of a hypersurface.

1. Introduction

Milnor classes are a generalization (at the level of classes in a Chow group) of a numerical
invariant John Milnor associated with an isolated singularity of a complex hypersurface in his
seminal monograph“Singular points of complex hypersurfaces” [14]. More precisely, given a
(possibly singular) subscheme X of a smooth ambient variety M (proper over an algebraically
closed field of characteristic zero) its Milnor class is an element of its Chow group supported on
the singular locus of X which we denote by M(X), and is defined as1

M(X) := cSM(X)− cFJ(X),

where cSM(X) denotes the Chern-Schwartz-MacPherson (or simply CSM) class of X and cFJ(X)
denotes the Fulton-Johnson class of X (for the uninitiated we recommend [5]). Both Chern-
Schwartz-MacPherson and Fulton-Johnson classes are generalizations of Chern classes to the
realm of singular varieties, and as such specialize to the total homology Chern class in the case
that X is smooth. For X a complete intersection in some smooth ambient variety M , the Fulton-
Johnson class coincides with a ‘canonical class’ for singular varieties defined by William Fulton
[10] for any subscheme of a smooth variety, which we refer to as the Fulton class. As we will
restrict our attention to Milnor classes of complete intersections in a smooth variety M , in the
definition of Milnor class we may replace the Fulton-Johnson class of X by the Fulton class of
X, which we denote by cF(X). The justification of the moniker “Milnor class” is that if X is a
hypersurface with isolated singularities then (up to sign)

M(X) = “the sum of the Milnor numbers over each singular point of X”,

and thus captures the essence of ‘Milnor number’ on a global level. Milnor classes are then a vast
generalization of Milnor’s invariant, as they exist for arbitrary singularities and reside in a Chow
group. As the Fulton class of X coincides with the total Chern class of a smooth variety in the
same rational equivalence class as X, we may view the Milnor class (of a complete intersection)
as measuring the difference between cSM(X) and the Chern class of a smooth deformation of X
(parametrized by P1). Numerically speaking, since (over C)

∫
X
cSM(X) = χtop(X) , integration

of the Milnor class of X measures the deviation of the (topological) Euler characteristic of X from

1At the moment we blindly ignore any sign conventions one may associate with this class.
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that of a smooth deformation. However, topological characterizations of the higher dimensional
Milnor classes remain elusive at best.

In recent years much work has gone into the investigation of such classes and as such much
progress in our understanding of these (at least from a computational perspective) has been made
(e.g., [12][6][15][13][8]). As many insights have come predominantly from a topological/complex-
analytic perspective (e.g. in terms of the geometry of a Whitney stratification of X), we adopt
the perspective of Aluffi and seek a purely algebraic characterization in terms of (intersection-
theoretic) invariants of a natural scheme structure on the singular locus of X. For X a hyper-
surface Aluffi has proved2 [2]

(1.1) M(X) =
c(TM)

c(O(X))
∩ (s(Y,M)∨ ⊗M O(X)) ,

where ‘∨’ and ‘⊗M ’ here are intersection-theoretic operations which we recall in section §2,
s(Y,M) denotes the Segre class3 of the singular subscheme Y of X in M and by ‘singular
subscheme’ we mean the subscheme of X whose ideal sheaf is the restriction to X of the ideal
sheaf over M which is locally generated by a defining equation for X and each of its corresponding
partial derivatives. Thus from an algebraic perspective, the Milnor class of a hypersurface is in
essence captured by the Segre class of its singular scheme.

In the closing line of [3], Aluffi states “...It is not even known whether m(X,M)–and hence
the Milnor class of X–is determined by the singular subscheme of X, even when X is a complete
intersection of codimension 2.” Here, m(X,M) is the unique class such that

M(X) = c(TM) ∩m(X,M).

Our aim in this note is to provide a partial response to this inquiry for every codimension.
So let M be a smooth algebraic variety over an algebraically closed field of characteristic

zero, and let X be a global complete intersection corresponding to the zero-scheme of a section
of a vector bundle E → M (note that our assumption that X is a global complete intersection
implies that E splits). Our situation is constrained by the fact that we assume that if X is cut
out by k = rk(E ) hypersurfaces M1, . . . ,Mk, then M

1
∩ · · · ∩Mk−1 is (scheme-theoretically)

smooth4 (surely the ordering of the indices is irrelevant here). Let L → M denote the line
bundle associated with the divisor Mk, and denote by Y the singular (sub)scheme of X (whose
precise definition is given in §3). Under these assumptions, our result is the following5

Theorem 1.1. Let X be a global complete intersection corresponding to the zero-scheme of a
section of a vector bundle E →M , subject to the assumptions above. Then

(1.2) M(X) =
c(TM)

c(E )
∩ (c(E ∨ ⊗L ) ∩ (s(Y,M)∨ ⊗M L )) .

2This is actually a formula for i∗M(X), where i : X ↪→ M is the inclusion. Moreover, here and throughout
we omit pushforwards (and pullbacks) via inclusions.

3If Y is regularly embedded in M , then s(Y,M) = c(NYM)−1 ∩ [Y ]. Otherwise, blowup M along Y , then

take s(Y,M) = π∗s(E, M̃), where E is the exceptional divisor and π : M̃ → M denotes the blowup map (E is
always regularly embedded so this is enough to define s(Y,M) in any situation).

4The strength of this assumption seems to grow with the codimension of X.
5The formula involves two notions of ‘⊗’: the traditional tensor product of vector bundles which we denote

by ‘⊗’, and an intersection-theoretic operation ‘⊗M ’, which we define in section §2.
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In the hypersurface case, X is the zero-scheme of a rank one bundle E , with L = E = O(X),
and thus (1.2) recovers the formula (1.1) of Aluffi in codimension one. Surely the assumption
that M1 ∩ · · · ∩Mk−1 is smooth prohibits this formula from being representative at the level of
full generality, as it forces the formula to depend lopsidedly on L compared to the line bundles
corresponding to the other hypersurfaces which cut out X. In any case, we note that the utility
formula (1.2) is at least two-fold. Not only does such a formula give a precise characterization of
the Milnor class of a complete intersection in terms of its singular scheme, the formula may be
‘inverted’ to yield a formula for the Segre class of its singular scheme in terms of its Milnor class.
As Segre classes are in general very difficult to compute directly from their definition, alternative
means of computing Segre classes are very desirable, especially in the context of enumerative
geometry. As an illustration, we compute a non-trivial Segre class in terms of Milnor classes in
section §4.

In what follows we review the intersection-theoretic calculus of the operations ‘∨’ and ‘⊗M ’,
prove the theorem, then give some examples and applications.

Acknowledgements. We would like to thank Paolo Aluffi for useful discussions throughout the
course of this project, which not only identified several inaccuracies but were instrumental to its
completion.

2. The ‘tensorial’ and ‘dual’ operations

In [1], two intersection-theoretic operations on classes in a Chow group were introduced which
not only streamline many intensive computations, but also often provide compact ways to write
seemingly complicated formulas. In particular, let M be a variety and denote its Chow group
by A∗M . We write a class α ∈ A∗M as α = α0 + · · · + αn, where αi is the component of α of
codimension i (in M). We denote by α∨ the class6

α∨ :=
∑

(−1)iαi.

The justification for the ‘dual’ notation is straightforward: If E → M is a vector bundle with
total Chern class c(E ) =

∑
ci(E ) then c(E ∨) =

∑
(−1)ici(E ) = c(E )∨. Next, we introduce an

action of the Picard group of M on A∗M . Given a line bundle L →M ∈ Pic(M) we define its
action on α =

∑
αi ∈ A∗M as

α⊗M L :=
∑ αi

c(L )i
.

It is also straightforward to see that this honestly defines an action of Pic(M) on A∗M [1] (i.e.,
(α⊗M L )⊗M M = α⊗M (L ⊗M )) . These innocuous definitions lend their utility throughout
this note via the following two formulas:

(2.1) (c(E ) ∩ α)
∨

= c(E ∨) ∩ α∨,

(2.2) (c(E ) ∩ α)⊗M L =
c(E ⊗L )

c(L )r
∩ (α⊗M L ) ,

where r is the rank of E in the Grothendieck group of vector bundles on M . The proofs of these
formulas may be found in [1], which follow directly from the definitions. As an illustration of
how these operations may ‘compactify’ a cumbersome formula, consider the simple expression
for the class

6We note that the map α 7→ α∨ coincides with the map τ defined in [7].
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s(X \ Y ) :=
1

c(O(X))
∩ (s(Y,M)∨ ⊗M O(X)) ,

which appears in Aluffi’s hypersurface formula (1.1). Without the ‘tensor’ and ‘dual’ operations,
the most efficient way of a giving a formula for s(X \ Y ) is to give a formula for its component
of dimension m, which reads [1]

s(X \ Y )m = s(X,M)m + (−1)n−m
n−m∑
j=0

(
n−m
j

)
Xj · s(Y,M)m+j ,

where n is the dimension of M and by Xj we mean the j-fold intersection product of (the divisor
class associated with) X with itself. So not only do the tensor and dual operations dispense of
the appearance of complicated summations involving binomial coefficients, they provide a means
of succinctly capturing all components of s(X \Y ) at once. Moreover, computations throughout
the rest of this note will serve as illustrations of their computational utility.

We conclude this section with a lemma needed for the proof of Theorem 1.1.

Lemma 2.1. Let M be a variety, M ′
i
↪→M be a regular embedding of codimension d, α ∈ A∗M ′

and let L →M be a line bundle. Then

(2.3) i∗ (α⊗M ′ i∗L ) = c(L )d ∩ (α⊗M L ) ,

where α = i∗α.

Proof. Denote the dimension of M ′ by k and write α ∈ A∗M
′ as α = α0 + · · · + αk, with

αi ∈ Ak−iM
′. Then

i∗α = αd + · · ·+ αd+k,

where αj = i∗α
j−d ∈ Ak+d−jM . Thus

i∗(α⊗M ′ i∗L ) = i∗

(
α0

c(i∗L )0
+ · · ·+ αk

c(i∗L )k

)
=

αd

c(L )0
+ · · ·+ αk+d

c(L )k

= c(L )d ∩
(

αd

c(L )d
+ · · ·+ αk+d

c(L )k+d

)
= c(L )d ∩ (α⊗M L ) .

(The second equality follows from the projection formula.) �

3. The proof(s)

We now provide a proof of Theorem 1.1, along with an alternative proof in codimension two
which may shed light on the more general case of an arbitrary global complete intersection.

Denote by M a smooth ambient variety and let X be a (global) complete intersection (in M)
corresponding to the zero-scheme of a section of a vector bundle E →M whose rank we denote
by k. We assume that there exists a smooth complete intersection Z in M of codimension k− 1



MILNOR CLASSES VIA INVARIANTS 5

such that X = Z ∩Mk (scheme-theoretically), where Mk is a hypersurface in M . Denote the
line bundle corresponding to Mk by L and let Y denote the singular scheme of X, which we
now define:

Definition 3.1. Let M be smooth of dimension n and let X ⊂ M be a (local) complete
intersection of codimension k. Then we define the singular (sub)scheme of X to be the subscheme
whose ideal sheaf over X is the restriction to X of the ideal sheaf over M which is locally
generated by a set of local defining equations (F1(x1, . . . , xn) = · · · = Fk(x1, . . . , xn) = 0) of X
along with the k × k minors of the corresponding matrix of partial derivatives aij = ∂Fi

∂xj
(i.e.,

the kth Fitting ideal of the coordinate ring of the corresponding affine open subscheme of X).

Remark 3.2. As X may often be embedded in different smooth varieties as a complete inter-
section, there arises an issue as to whether the notion of singular scheme given above is well
defined. However, it follows from general results in the theory of Fitting ideals that indeed it is
[9] (§20.2, Corollary 20.4).

Proof of Theorem 1.1. By assumption X is a hypersurface in Z, thus Aluffi’s hypersurface for-
mula (1.1) yields

(3.1) M(X) =
c(TZ)

c(L )
∩ (s(Y,Z)∨ ⊗Z L ) .

Since X is also a complete intersection in M ,

c(TM)

c(E )
= c(TXvir) =

c(TZ)

c(L )
,

where TXvir denotes the virtual tangent bundle of X. Moreover, since Y is a subscheme of Z,
which in turn is a smooth subvariety of M , Y is linearly embedded in M [11], so

(3.2) s(Y,Z) = c(NZM) ∩ s(Y,M),

where NZM denotes the normal bundle to Z in M . Formula (2.1) then yields

s(Y,Z)∨ = c(NZM
∨) ∩ s(Y,M)∨.

Thus7

M(X) =
c(TM)

c(E )
∩ ((c(NZM

∨) ∩ s(Y,M)∨)⊗Z L )

(2.3)
=

c(TM)c(L )k−1

c(E )
∩ ((c(NZM)∨ ∩ s(Y,M)∨)⊗M L )

(2.2)
=

c(TM)c(L )k−1

c(E )
∩
(
c(NZM

∨ ⊗L )

c(L )k−1
∩ (s(Y,M)∨ ⊗M L )

)
=

c(TM)

c(E )
∩ (c(E ∨ ⊗L ) ∩ (s(Y,M)∨ ⊗M L )) .

7As a consequence of taking duals in M rather than Z, the second equality should yield a factor of (−1)k−1,

which we omit due to the absence of a standard sign convention associated with M(X) in the literature. We do

however envoke a sign convention in §4 that accounts for the ‘missing’ factor of (−1)k−1.
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To arrive at the last equality we cancelled a common factor of c(L )k−1 from the numerator and
denominator of the previous expression, and then we used the fact that since E = NZM ⊕L ,
E ∨ ⊗L = (NZM

∨ ⊗L )⊕ O, thus

c(E ∨ ⊗L ) = c(NZM
∨ ⊗L ),

concluding the proof. �

We now provide an alternative proof in codimension two, as we feel it may lead to a proof of
the general case in codimension two (i.e. when both hypersurfaces cutting out X are possibly
singular), which in turn may yield the correct form for a general formula in arbitrary codimension.
Before doing so we need the following [3]

Definition 3.3. Let X be a hypersurface in some smooth ambient variety M and denote its
singular scheme by Y . We define the SM-Segre class of X to be the class

s◦(X,M) := s(X,M) + c(O(X))−1 ∩ (s(Y,M)∨ ⊗M O(X)) ∈ A∗M.

Note that by formula (1.1) M(X) = c(TM) ∩ (s◦(X,M)− s(X,M)). Another way of say-
ing this is that cSM(X) = c(TM) ∩ s◦(X,M), so by inclusion-exclusion for Chern-Schwartz-
MacPherson classes (3.2) we may now inductively define s◦(X,M) for X a global complete
intersection.

Definition 3.4. LetX be a global complete intersection of codimension k in some smooth variety
M , and let M1, . . . ,Mk be hypersurfaces such that X = M1 ∩ · · · ∩Mk (scheme-theoretically).
Then we define the SM-Segre class of X to be the class

s◦(X,M) :=

k∑
s=1

(−1)s−1

( ∑
i1<···<is

s◦(Xi1 ∪ · · · ∪Xis ,M)

)
∈ A∗M.

Since by inclusion-exclusion cSM(X) = c(TM) ∩ s◦(X,M), it follows that this definition is
independent of the hypersurfaces chosen to cut out X.

Alternative proof in codimension two. We assume here that X = M1 ∩M2 ⊂ M is a complete
intersection of codimension two (the extra assumption in Theorem 1.1 in this case requires that
one of the Mi be smooth, but at this point we make no smoothness assumptions on the Mi),
and we denote by Li the line bundle corresponding to Mi. By definiton of Milnor and SM-Segre
classes we have

M(X) = c(TM) ∩ (s◦(X,M)− s(X,M)) .

We now compute s◦(X,M)− s(X,M):
It follows from Theorem 1.1 in [4] that

s(X,M) = s(M1,M) + s(M2,M)− s(M1 ∪M2)−
c(L1 ⊗L2)−1 ∩ (s(X,M)∨ ⊗M L1 ⊗L2),

and from the definition of SM-Segre classes we have
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s◦(X,M) = s◦(M1,M) + s◦(M2,M)− s◦(M1 ∪M2,M)

=
(
s(M1,M) + c(L1)−1 ∩ (s(Y1,M)∨ ⊗M L1)

)
+
(
s(M2,M) + c(L2)−1 ∩ (s(Y2,M)∨ ⊗M L2)

)
−
(
s(M1 ∪M2) + c(L1 ⊗L2)−1 ∩

(
s(X,M)∨ ⊗M L1 ⊗L2

))
,

where Yi denotes the singular scheme of the possibly singular hypersurface Mi and X denotes
the singular scheme of M1 ∪M2 (note that X is a subscheme of X). We then have

s◦(X,M)− s(X,M) = c(L1)−1 ∩ (s(Y1,M)∨ ⊗M L1) + c(L2)−1 ∩ (s(Y2,M)∨ ⊗M L2)

−c(L1 ⊗L2)−1 ∩
(
(s(X,M)− s(X,M))∨ ⊗M L1 ⊗L2

)
.

Now if we assume that M1 is smooth, then by Proposition IV.5 in [2] we have

(3.3) s(X,M)− s(X,M) = c(L1)−1 ∩ (s(Y2,M)⊗M L1) + c(L2)−1 ∩ (s(Y,M1)⊗M L1).

Moreover, the smoothness assumption on M1 makes the term c(L1)−1 ∩ (s(Y1,M)∨ ⊗M L1) in
the equation above for s◦(X,M)− s(X,M) vanish, then plugging in (the dual of) equation (3.3)
into the same equation (and using the fact that s(Y,M1) = c(L1) ∩ s(Y,M) by formula (3.2))
yields the conclusion of Theorem 1.1 (after repeatedly using formulas (2.1) and (2.2) to simplify
the expression). �

What we find somewhat surprising about this proof is that the expression derived above for
s◦(X,M)− s(X,M) depends solely on the the Segre classes of the singular schemes of M1, M2,
M1∪M2 and the Segre class of X. But after assuming that M1 is smooth and then plugging in our
computation of (s(X,M)−s(X,M))∨ into the formula we derived above for s◦(X,M)−s(X,M),
the term c(L2)−1 ∩ (s(Y2,M)∨ ⊗M L2) cancels and all that remains is an expression depending
on the Segre class of Y (the singular scheme of X). We then naturally suspect that if one may
compute (s(X,M) − s(X,M))∨ without any smoothness assumptions on M1 or M2, the result
of which would cancel both the contributions of the c(Li)

−1∩ (s(Yi,M)∨ ⊗M Li) in the formula
derived for s◦(X,M)−s(X,M), again yielding an expression which depends only on the singular
scheme of X. Unfortunately, a means for such a computation presently eludes us.

4. An example with application

We now invoke the following sign convention for Milnor classes:

M(X) := (−1)s(cF(X)− cSM(X)),

where X is a complete intersection in some smooth variety M and we set s equal to the parity
of the codimension of X in M .

Example 4.1. Let X = Q ∩H, where Q : (x20 − x1x2 = 0) ⊂ M = P4 is a singular quadric and
H : (x0 = 0) is a hyperplane, whose class in A∗P4 we denote by H as well (thus [Q] = 2H).
Then X is the union of two linear subspaces of codimension two in P4 which intersect along



8 JAMES FULLWOOD

a linear subspace of codimension three, which is the singular scheme Y of X (the singular
scheme is reduced in this case). The normal bundle to X in P4 is then (the restriction to X of)
E = O(1)⊕ O(2), and the dual of the Segre class of Y in P4 is

s(Y,M)∨ =

(
−H

1−H

)3

.

Since Q is singular and H is smooth, L in formula (1.2) is necessarily O(2). Theorem 1.1 then
yields8

M(X) = (−1)
(1 +H)5(1 +H)

(1 +H)(1 + 2H)
∩

((
−H

1−H

)3

⊗P4 O(2)

)

= (−1)
(1 +H)5

(1 + 2H)
∩
(

−H
(1 + 2H −H)

)3

= (−1)
(1 +H)2

(1 + 2H)
∩ (−H3)

= [P1].

One may also computeM(X) in this example ‘by hand’: Since we know that the singular scheme
of X is just a (reduced) line in P4, we know M(X) = [P1] + n[pt] for some integer n. But n is

necessarily χtop(X̃) − χtop(X), where X̃ is a smooth representative of the rational equivalence
class of X, i.e., a smooth quadric surface. As smooth quadrics are isomorphic to P1 × P1, we
have χtop(X̃) = 2 · 2 = 4, and by inclusion-exclusion we have

χtop(X) = χtop(P2) + χtop(P2)− χtop(P1) = 3 + 3− 2 = 4,

thus n = 0 and M(X) = [P1], as given above by Theorem 1.1.

As mentioned in §1, formulas for Milnor classes in terms of Segre classes of singular schemes
may be used to compute Segre classes, which in general are very difficult to compute from their
definition alone. As an illustration we use the previous example to compute the Segre class of
the singular scheme of the hypersurface Z which is the union of Q and H as given in Example
4.1., i.e.

Z : (x30 − x0x1x2 = 0) ⊂ P4.

Computing partial derivatives we see that the singular scheme of Z, which we denote by Zs, is
the subscheme of Z corresponding to the (homogeneous) ideal

I = (3x20 − x1x2, x0x2, x0x1).

We now compute s(Zs,P4) by first inverting the formula for the Milnor class of Z, which we then
relate to the CSM classes of Q, H and X = Q∩H (which all have simple singular schemes), the
details of which are given via the proof of the following

8We also use H to denote c1(O(1)).
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Claim 4.2. Let Zs be the singular scheme of the hypersurface Z defined above. Then

s(Zs,P4) = 2[P2]− 4[P1]

Proof. By formula (1.1) we have

M(Z) =
c(TP4)

c(O(3))
∩
(
s(Zs,P4)∨ ⊗P4 O(3)

)
,

thus

(4.1)
c(O(3))

c(TP4)
∩M(Z) = s(Zs,P4)∨ ⊗P4 O(3).

Tensoring both sides of (4.1) by O(−3) and then taking duals we get

(4.2) s(Zs,P4) =

(
c(O(3))

c(TP4)
∩M(Z)

)∨
⊗P4 O(3).

Now by inclusion-exclusion for CSM classes along with the fact that cSM(Z) = cF(Z) +M(Z)
we have

M(Z) = cSM(Q) + cSM(H)− cSM(X)− cF(Z).

As the singular scheme of Q is the line l : (x0 = x1 = x2 = 0) ⊂ P4 (which is the same as the
singular scheme of X), whose (dual) Segre class was computed in Example 4.1, its CSM class is
easily computed (via formula (1.1)) to be

cSM(Q) =
(1 +H)5 · 2H − (1 +H)2 ·H3

1 + 2H
.

Moreover9

cSM(H) =
(1 +H)5 ·H

1 +H
, cF(Z) =

(1 +H)5 · 3H
1 + 3H

,

and by adding cF(X) = (1+H)5·2H2

(1+H)(1+2H) toM(X) (which was computed in Example (4.1)) we have

cSM(X) =
(1 +H)5 · 2H2 + (1 +H)3 ·H3

(1 +H)(1 + 2H)
.

Thus10

M(Z) =
(1 +H)2(1−H) · 2H2

(1 + 3H)

= 2[P2]− 4[P1] + 10[P0].

9We apologize here for denoting both the hyperplane {x0 = 0} and c1(O(1)) by H.
10In particular, this tells us that χtop(Z) = 4.
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Plugging M(Z) into equation (4.2) then yields

s(Zs,P4) = 2[P2]− 4[P1],

as desired.
�
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