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ROOTS OF CHARACTERISTIC POLYNOMIALS AND INTERSECTION

POINTS OF LINE ARRANGEMENTS

TAKURO ABE

Abstract. We study a relation between roots of characteristic polynomials and intersection
points of line arrangements. Using these results, we obtain many applications for line ar-

rangements. Namely, we give (i) a generalized addition theorem for line arrangements, (ii)

a generalization of Faenzi-Vallès’ freeness criterion related to a certain multiple intersection
point, (iii) a partial result on the conjecture of Terao for line arrangements, and (iv) a new

sufficient condition for freeness over finite fields. Also, a higher-dimensional version of our
main results is considered.

1. Main results

We use the notation in section two to state the main results in this article. Here some basic
and special notation will be explained, which will be defined again in the next section.

Let K be a field of arbitrary characteristic and consider affine line arrangements in V = K2.
We say an affine line arrangementA is free with exponents exp0(A) = (d1, d2) if the cone cA ofA
is free with exponents (1, d1, d2). For a line H, define A∩H := {H∩H ′ 6= ∅ | H ′ ∈ A, H ′ 6= H}.
Namely, this is the set of intersection points on H. Put nH := |A ∩ H| and let χ(A, t) be the
characteristic polynomial of A. Now let us state the main result in this article.

Theorem 1.1. Let C be an affine line arrangement and assume that χ(C, t) = (t− a)(t− a− b)
with a, b ∈ C and |a| ≤ |a+ b|. Then
(1) there are no H ∈ C such that |a| < |C ∩H| < |a+ b|. In other words, χ(C, nH) ≥ 0.
(2) There are no line L 6∈ C such that |a| < |C ∩ L| < |a+ b|. In other words, χ(C, nL) ≥ 0.
(3) Assume that a, b ∈ Z≥0. Then C is free if there is a line H such that |C ∩H| = a or a+ b.
Equivalently, C is free if χ(C, nH) = 0 for some line H.

If we assume the freeness, then we can obtain a stronger geometric condition on the arrange-
ment.

Corollary 1.2. In the same notation as in Theorem 1.1, assume that C is free. Then
(1) |C ∩H| ∈ Z≤a ∪ {a+ b} for any H ∈ C, and
(2) |C ∩ L| ∈ {a} ∪ Z≥a+b for any line L 6∈ C.

Remark 1.3. (1) Theorem 1.1 (1) and (2) are non-trivial statements only when a, b ∈ R and
a < a+ b.
(2) Theorem 1.1 (1) gives some restriction on H ∈ C in terms of roots of χ(C, t). On the other
hand, Theorem 1.1 (2) seems to be more interesting. That is, the roots give a restriction on lines
which are not belonging to C. Hence Theorem 1.1 (2) says that combinatorics of C knows some
information on geometry of C.
(3) The case nH = a + b of Theorem 1.1 (3) when b > 0 is essentially known to experts. See,
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for example, [14] .
(4) Results similar to Theorem 1.1 (3) and Corollary 1.2 are proved by Faenzi and Vallès
as Propositions 5.2 and 5.3 in [8]. These authors also prove a result similar to Corollary 5.5.
However, the proofs in [8] and in this article are very different. The former are algebro-geometric
and in terms of Chern classes, and ours are algebraic and combinatorial, and in terms of Betti
numbers.

Let us check the statement in Theorem 1.1 and Corollary 1.2 in the following example.

Example 1.4. (1) The simplest but important example is a set of n-lines A in the real plane
which go through the origin. Then it is obvious that nH = 1 for H ∈ A, nL ∈ {1, n − 1, n} for
a line L 6∈ A and χ(A, t) = (t− 1)(t− (n− 1)). This is trivial by using the property of parallel
and generic lines, but Theorem 1.1 says that this holds true for all line arrangements.
(2) Let A be an affine line arrangement in R2 defined by

x(x2 − y2)(x2 − 4y2)(2x2 − y2)(y − 1) = 0.

Hence |A| = 8 and

χ(A, t) = t2 − 8t+ 13 = (t− (4−
√

3))(t− (4 +
√

3)).

Hence Theorem 1.1 (1) and (2) say that |H ∩ A| 6= 3, 4, 5. In fact, we can check that

|H ∩ A| ∈ {2, 7}

for H ∈ A and |A ∩ L| ∈ {1, 2, 6, 7, 8} for L 6∈ A.
(3) Let A be an affine line arrangement in R2 defined by

xy(x2 − 1)(y2 − 1)(x2 − y2)(x+ y + 1)(x+ y − 1)(x− y + 1)(x− y − 1) = 0.

Then χ(A, t) = (t−5)(t−7), and it is easy to check that |A∩H| = 3 or 5 for any H ∈ A, which
matches Theorem 1.1 (1). Since we can check that there are no line L 6∈ A such that |L∩A| = 6,
Theorem 1.1 (2) is satisfied. Also, Theorem 1.1 (3) shows that A is free.

The proofs of Theorem 1.1 and Corollary 1.2 are simple, but we need algebraic methods for
the proof of Theorem 1.1. In particular, recent developments on exponents of two-dimensional
multiarrangements (e.g., [15], [14] and [4]) play the key roles.

Recall that the coefficients of χ(C, t) are the Betti numbers of the open manifold V \
⋃
H∈C H

when K = C. Also, χ(C, t) can be computed combinatorially in the arrangement cases. Hence we
are interested in topological and combinatorial proofs of Theorem 1.1. As far as we investigated,
there are no such results similar to Theorem 1.1.

Also, these results have a lot of applications. The first corollary is the following generalization
of the addition theorem for line arrangements which includes a pair version of the conjecture by
Terao. To state it, let us introduce some terminologies. Define a deletion pair of affine line
arrangements (A,A′) by A ⊃ A′ and |A′| + 1 = |A|. We say that a deletion pair (A,A′) is
free if both A and A′ are free. Then the following addition-type theorem holds.

Corollary 1.5. A deletion pair (A,A′) is free if and only if χ(A, t) and χ(A′, t) have a common
root. In particular, the freeness of the deletion pair depends only on the combinatorics.

Also, by using Theorem 1.1, we can generalize Faenzi-Vallès’ theorem (Theorem 4.1) in [8]. In
Theorem 4.1, the key condition is the existence of a point with multiplicity h (n ≤ h ≤ n+r+1)
for the arrangement A with χ(A, t) = (t− n)(t− n− r). In this generalization, the role of this
point is replaced by a free arrangement with exponents (n− 1, n− s) (s ≥ 1), i.e., the following
holds.
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Theorem 1.6. Let K be a field of arbitrary characteristic and A an affine line arrangement
such that |A| = 2n+ r (n, r ∈ Z≥0) and χ(A, t) = (t− n)(t− n− r). Assume the following two
conditions:

(1) A contains a free arrangement B with exp0(B) = (n− s, n− 1) (s ≥ 1), and
(2) there are no subarrangements C ⊂ A such that B ⊂ C and that

χ(C, t) = (t− n− u+ 1)(t− n+ s)

with u > r + 1.

Then A is free. In particular, the freeness of such A depends only on combinatorics.

We will explain in §4 why Theorem 1.6 generalizes Faenzi-Vallès’ theorem.
If we remove the assumption that “B is free” from the statement in Theorem 1.6, then

can we say something on freeness and combinatorics? In fact, we can also show the following
combinatorial statement on freeness.

Theorem 1.7. Let K be a field of arbitrary characteristic and A an affine line arrangement
such that |A| = 2n + r (n, r ∈ Z≥0) and χ(A, t) = (t − n)(t − n − r). Assume that A contains
an arrangement B with χ(B, t) = (t − α)(t − β) such that α ≤ β are real numbers with α ≤ n
and n − 1 ≤ β. Then A is free if and only if there is a line H ∈ A such that nH ∈ {n, n + r}.
In particular, the freeness of such A depends only on combinatorics.

Also, we apply Theorem 1.1 and Corollary 1.2 to obtain some results related to the conjecture
of Terao (§5, Corollaries 5.4 and 5.5) and free arrangements over finite fields (§6, Theorem 6.3).
Moreover, a higher dimensional version of Theorem 1.1 (1) and (2) will be given in §7.

The organization of this article is as follows. In §2 we introduce several definitions and results
for the proof. Also, several lemmas for the proof of main results are proved. In §3 we prove
main theorems. In §4 we show generalized Faenzi-Vallès’ theorem as Theorems 1.6 and 1.7. In
§5 we show an application to the conjecture of Terao when one of the roots of the characteristic
polynomial is at most five. In §6 we consider the case when the base field is a finite field. In §7,
we give a higher dimensional version of Theorem 1.1.

Acknowledgements. The author is grateful to the referee for useful suggestions to this article.
This work is supported by JSPS Grants-in-Aid for Young Scientists (B) No. 24740012.

2. Preliminaries

In this section let us introduce several definitions and results, some of which were defined in
section one. We will use them throughout this article. We use [10] as a general reference on
arrangement theory. Also, a recent paper [17] is a nice reference on the algebraic aspects of
multiarrangements.

Let K be a field of arbitrary characteristic unless otherwise specified, V = K` and

S′ = Sym∗(V ∗) ' K[x1, x2, . . . , x`]

the coordinate ring of V . An affine arrangement C of hyperplanes in V is a finite collection
of affine hyperplanes in V . Let L(C) := {∩H∈BH 6= ∅ | B ⊂ C} be the intersection lattice of
C. For X ∈ L(C), the localization CX of C at X is defined by

CX := {H ∈ C | X ⊂ H}.
Define µ : L(C)→ Z by µ(V ) = 1, and by µ(X) := −

∑
X(Y⊂V µ(Y ). Then the characteristic

polynomial χ(C, t) of C is defined by

χ(C, t) :=
∑

X∈L(C)

µ(X)tdimX .
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For a hyperplane H, define H ∩ C := {H ∩H ′ 6= ∅ | H ′ ∈ C, H ′ 6= H} and put nH := |H ∩ C|.
Note that this definition is valid both when H ∈ C or H 6∈ C.

Let z be a new coordinate and define the cone cC of C as follows. If C is defined by a non-
homogeneous polynomial equation Q = 0, then cC is defined by z(cQ) = 0, where cQ is the
homogenized polynomial of Q by the coordinate z. Hence cC is a central arrangement in K`+1,
i.e., all hyperplanes contain the origin. We say that C is essential if L(C) contains the origin.
For H ∈ C, let cH ∈ cC denote the homogenized linear plane of H. Let S := K[x1, . . . , x`, z]
and DerS be the module of S-derivations with a basis ∂x1

, . . . , ∂x`
, ∂z dual to x1, . . . , x`, z

respectively. Let αcH be a defining linear form of cH ∈ cC. Hence the defining polynomial
Q(cC) of the cone cC of C is z(

∏
H∈C αcH). Then define

D(cC) : = {θ ∈ DerS | θ(αcH) ∈ SαcH (∀H ∈ C), θ(z) ∈ Sz},
D0(cC) : = {θ ∈ D(cC) | θ(z) = 0}.

We say that cC is free with exponents exp(cC) = (1, d1, d2, . . . , d`) if D(cC) is a free S-module

with homogeneous basis elements θE =
∑`
i=1 xi∂xi

+ z∂z, θ1, . . . , θ` such that deg θi = di
(i = 1, . . . , `). We say that an affine arrangement C is free with exponents exp0(C) = (d1, . . . , d`)
if cC is free with exp(cC) = (1, d1, . . . , d`).

Let A be a central hyperplane arrangement in V and m : A → Z>0 be a multiplicity. Here
αH denotes a defining linear form of H ∈ A. Then a pair (A,m) is called a multiarrangement
and we can define the logarithmic module

D(A,m) := {θ ∈ DerS′ | θ(αH) ∈ S′αm(H)
H (∀H ∈ A)}.

Define

|m| :=
∑
H∈A

m(H).

Let Q(A,m) :=
∏
H∈A α

m(H)
H . When ` = 2, S′ is two-dimensional. Hence D(A,m) is always

free. Thus we can define its exponents exp(A,m) = (d1, d2).

Definition 2.1. For a central arrangement of hyperplanes C and H0 ∈ cC, let (C′′,m) be the
Ziegler restriction of C onto H0 defined by C ′′ := {H ∩H0 | H ∈ C \ {H0}} and by

m(H ∩H0) := |{H ′ ∈ C \ {H0} | H ′ ∩H0 = H ∩H0}|.

The Ziegler restriction of an affine arrangement C onto H ∈ C is that of cC onto cH ∈ cC.
Also, the Ziegler restriction of an affine arrangement C at infinity is that of cC onto
{z = 0} ∈ cC.

Now let us introduce a useful criterion for freeness.

Theorem 2.2 (Saito’s criterion, [11], [19]). Let θ1, . . . , θ` ∈ D(A,m) be derivations with

deg θi = di, (i = 1, . . . , `).

Then they form a basis for D(A,m) if and only if θ1, . . . , θ` are S′-independent and

d1 + · · ·+ d` = |m| :=
∑
H∈A

m(H).

From now on, let us concentrate our interest on two-dimensional cases, i.e., line arrangements
and its cones. Let V = K2 and S′ = Sym∗(V ∗) ' K[x, y] the coordinate ring of V . In this case,
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an affine arrangement C in V is a finite collection of affine lines in V . In this article, for a line
arrangement C, the characteristic polynomial is denoted as follows:

χ(C, t) =
∑

X∈L(C)

µ(X)tdimX = t2 − |C|t+ b2(C).

Here recall that b2(C) coincides with the second Betti number of the open manifold V \
⋃
H∈C H

when K = C.
Let (d1(C), d2(C)) denote the exponents of the Ziegler restriction of an affine line arrangement

C onto H ∈ C. In general, we assume that d1(C) ≤ d2(C). Then the following is the key theorem
in this article.

Theorem 2.3 ([15], Theorem 3.2). It holds that χ(C, 0) = b2(C) ≥ d1(C)d2(C), and the equality
holds if and only if C is free.

Also, we use the results in the following papers; [12], [13], [19], [14], [4] and [2]. For the proof
and application of main results, let us introduce some of them.

First, let us introduce three results. Namely, the first one is the addition theorem in [12],
the second the factorization theorem in [13], and the third the Ziegler’s restriction theorem in
[19]. Note that all of these three were proved for any dimensional arrangements in these papers.
Since we focus on line arrangements, we introduce the line arrangement cases of these results as
follows.

Theorem 2.4 (Addition theorem, [12]). Let A be an affine line arrangement and fix H ∈ A.
Define A′ := A \ {H} and nH := |A ∩H|. Assume that χ(A, nH) = χ(A′, nH) = 0. Then A is
free if and only if A′ is free.

Theorem 2.5 (Factorization theorem, [13]). Let A be a free affine line arrangement with
exp0(A) = (d1, d2). Then χ(A, t) = (t− d1)(t− d2).

Theorem 2.6 ([19]). If A is a free affine line arrangement with exp0(A) = (a, b), then its
Ziegler restriction (A′′,m) is free with exp(A′′,m) = (a, b).

The statements of Corollary 1.5 and Theorem 2.4 are similar, and it is easy to see that
the former is a generalization of the latter. The next two results are specialized ones for line
arrangements. The first one is originally in [14].

Lemma 2.7 ([4], Lemma 4.2, Lemma 4.3). Let A be a central line arrangement and let m,m′

be multiplicities on A such that |m| = |m′|+ 1 and m(H) ≥ m′(H) for any H ∈ A.
If exp(A,m′) = (d1, d2), then exp(A,m) = (d1 + 1, d2) or (d1, d2 + 1).

Theorem 2.8 ([2]). Let A be an affine line arrangement defined over a field of characteristic
zero. Put χ(A, t) = (t − α)(t − β) for α, β ∈ C. For the Ziegler restriction (A′′,m) of A onto
H0 ∈ A, put exp(A′′,m) = (d1, d2) with d1 ≤ d2. Assume that |m| ≥ 2m(H) for any H ∈ A′′
and |A′′| =: h > 2. Then
(1) d2 − d1 ≤ h− 2, and
(2) ||α| − |β|| ≤ h− 2. In particular, A is free if ||α| − |β|| ∈ {h− 2, h− 3}.
Proof. The statement (1) is the same as Theorem 3.5 in [2]. Also, the statement (2) is essentially
proved in [2]. That is, combine Z 3 αβ ≥ d1d2 (by Theorem 2.3) and α+β = d1+d2 = |A| = |m|
with (1) and Theorem 2.3. �

When (A′′,m) satisfies the condition |m| ≥ 2m(H) for any H ∈ A′′ in Theorem 2.8, we
say that (A′′,m) is balanced. We say that an affine line arrangement A is balanced if every
Ziegler restriction of A is balanced. The following is famous in the theory of two-dimensional
multiarrangements. We give a proof for the completeness.
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Lemma 2.9. Let A be an affine line arrangement which is not balanced. Then the freeness of
A depends only on L(A).

Proof. By definition, one of the Ziegler restrictions (A′′,m) of A is not balanced. We may
assume that H := {x = 0} ∈ A satisfies 2m(H) > |m|. Let ϕ := (Q(A′′,m)/xm(H))∂y. Then
clearly ϕ ∈ D(A′′,m) is a non-zero derivation of the smallest degree. Hence exp(A′′,m) is
combinatorially determined as (|m| −m(H),m(H)) and Theorem 2.2 completes the proof. �

Now let us prove several statements for the proof of main results introduced in §1. Some of
them are well-known, but we give the whole proof for the completeness.

Lemma 2.10. Let A be a central line arrangement with |A| = n, m be a multiplicity on A and
put exp(A,m) = (d1, d2) with d1 ≤ d2.
(1) If |m| ≥ 2n− 2, then di ≥ n− 1.
(2) If |m| ≤ 2n− 2, then d1 = |m| − n+ 1, d2 = n− 1.
(3) Let |m| = α+ β with α, β ∈ R and α < β. If α < n− 1 < β, then α < d1 ≤ d2 < β.

Proof. (1) Note that exp(A) = (1, n−1). Take any multiplicity m′ such that m(H) ≥ m′(H) ≥ 1
for any H ∈ A and |m′| = 2n− 2. Let θE be the Euler derivation. Then it is easily checked that
θ := (Q(A,m′)/Q(A))θE ∈ D(A,m′) is a non-zero element in D(A′,m) of degree n − 1 such
that there are no θ′ ∈ D(A,m′) satisfying fθ′ = θ for f ∈ S′ with deg f > 0. Hence Theorem
2.2 implies that exp(A,m′) = (n− 1, n− 1). Since D(A,m′) ⊃ D(A,m), we complete the proof.
(2) Use the same θ = (Q(A,m)/Q(A))θE as in the proof of (1). Then deg θ = |m| − n+ 1 and
it is clear that θ is a non-zero element of D(A,m) of the smallest degree. Hence Theorem 2.2
completes the proof.
(3) First assume that α ≥ d1. Then the construction of θ in the proofs above shows that
d2 = n − 1. Hence |m| = d1 + d2 ≤ α + n − 1 < α + β = |m|, which is a contradiction. Hence
d1 > α. Assume that d2 ≥ β. Then |m| = d1 + d2 > α + β = |m|, which is a contradiction.
Hence d2 < β. �

Lemma 2.11. Let A be a central line arrangement and m,m′ be multiplicities on A such that
m(H) ≥ m′(H) for any H ∈ A. Put exp(A,m′) = (d1, d2) and exp(A,m) = (e1, e2) with
d1 ≤ d2, e1 ≤ e2. Then d1 ≤ e1, d2 ≤ e2.

Proof. Let θ1, θ2 (resp:ϕ1, ϕ2) be a basis for D(A,m′) (resp: D(A,m)) with deg θi = di (resp:
degϕi = ei). Since D(A,m) ⊂ D(A,m′), it is clear that e1 ≥ d1. Assume that e2 < d2. Then
ϕ2 = fθ1 for f ∈ S′. Put ϕ1 = gθ1 + hθ2 for g, h ∈ S′. Then the inequality e1 ≤ e2 < d2 shows
that h = 0. Hence ϕ1 and ϕ2 are S′-dependent, which is a contradiction. �

Proposition 2.12. Let A ⊃ B be affine line arrangements such that

χ(A, t) = (t− a)(t− c), χ(B, t) = (t− a)(t− b)

with a, b, c ∈ Z≥0. Assume that a ≤ b ≤ c. Then A is free if B is free.

Proof. Assume that B is free. Then (d1(B), d2(B)) = (a, b) by Theorem 2.6. By Theorem 2.3, it
suffices to show that (d1(A), d2(A)) = (a, c). If not, then Lemma 2.11 and Theorem 2.3 show a
contradiction. �

105



Example 2.13. The inequality and the conditions on freeness in Proposition 2.12 are essential.
Consider

A : = xy(y2 − 1)(x2 − 4y2)(x2 − 9y2),

B : = x(y − 1)(x2 − 4y2)(x2 − 9y2),

C : = (x2 − 4y2)(x2 − 9y2).

Then exp0(A) = (3, 5), exp0(C) = (1, 3) and χ(B, t) = (t− 3)2, but B is not free.

3. Proof of Theorem 1.1 and Corollary 1.2

In this section we prove main results introduced in section one.

Proof of Theorem 1.1. If both a and b are not real numbers, then |a| = |a + b|. Hence there is
nothing to prove. So in the proof below, we may assume that a and b are both real numbers. Also,
we may assume that a and a+b are both non-negative since the roots of χ(C, t) = t2−|C|t+b2(C)
are apparently non-negative. Hence in the below, we may replace |a| and |a+ b| by a and a+ b
respectively.

(1) Assume that such H ∈ C exists. Let (C′′,m) be the Ziegler restriction of C onto H. Then
|C ′′| = nH + 1 by definition of the cone. Thus exp(C′′) = (1, nH) with a < nH < a + b. Let
exp(C′′,m) = (d1, d2) with d1 ≤ d2. Then it follows that a < d1 ≤ d2 < a + b by Lemma 2.10
(3). Hence d1d2 > a(a+ b) = b2(C), which contradicts Theorem 2.3.

(2) First, note that the statement in (1) can be also written as

n2H − |C|nH + b2(C) ≥ 0.

Or equivalently,

b2(C) ≥ nH(|C| − nH).

Now let B := C ∪ {L}. Then |B| = |C| + 1 and b2(C) = b2(B) + nL by definition. Apply the
inequality version of Theorem 1.1 (1) just above to B and L ∈ B to obtain

b2(B) = b2(C) + nL ≥ nL(|B| − nL) = nL(|C|+ 1− nL).

Hence we conclude that

b2(C) ≥ nL(|C| − nL),

which completes the proof.
(3) If H 6∈ C, replace C by C ∪ {H} and we may assume that H ∈ C by Theorem 2.4. First

assume that |C ∩H| = a+b. Let (C′′,m) be the Ziegler restriction of C onto H. Then exp(C′′,m)
is combinatorially determined as (a, a+ b) by Lemma 2.10 (2). Hence C is free by Theorem 2.3.
Next assume that |C ∩H| = a. Then exp(C′′) = (1, a). Hence Lemma 2.10 (1) shows that di ≥ a
for exp(C′′,m) = (d1, d2). Again by Theorem 2.3, we know that a(a + b) ≥ d1d2. So Lemma
2.11 implies that d1 = a, d2 = a+ b, which implies the freeness of C by Theorem 2.3. �

By Theorem 1.1 we know that χ(C, nH) ∈ Z≥0. Since χ(C, nH) is a combinatorial invariant
for H ∈ C, it is natural to ask the meaning of this non-negative integer. The following is one of
answers.

Proposition 3.1. In the notation above, it holds that

dim coker(π : D0(cC)→ D((cC)′′,m)) ≤ χ(C, nH),

where ((cC)′′,m) is the Ziegler restriction of cC onto H ∈ C and π is the Ziegler restriction map
([19]).

Proof. Immediate from Theorem 2.3 and the proof of Theorem 1.1. �
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Proof of Corollary 1.2. (1) By Theorem 1.1, it suffices to show that |C ∩H| ≤ a+ b for H ∈ C.
Assume not. Then Lemma 2.10 (2) shows that d1d2 < a(a+ b) for exp(C′′,m) = (d1, d2), which
contradicts Theorem 2.3.

(2) First assume that a = 0. This occurs only when all lines in C are parallel. In this case,
Corollary 1.2 is obvious. Hence we may assume that a > 0.

Since there is at least one point in L(C) by the previous paragraph, it holds that χ(C, 0) > 0
and |C| ≥ 2. Also, it is well-known that χ(C, 1) ≥ 0 (e.g., by Zaslavsky’s theorem, [18]). Since
1 ≤ |C|/2, the non-negativity of χ(C, 0) and χ(C, 1) implies that a ≥ 1. Hence in the arguments
below, we assume that a ≥ 1.

By Theorem 1.1, it suffices to show that |C ∩ L| ≥ a for any line L 6∈ C. Assume not and put
C1 := C ∪ {L}. Let (C ′′1 ,m1) be the Ziegler restriction of C1 at infinity and n := |C1 ∩ L| < a.
Then b2(C1) = b2(C) + n. On the other hand, exp(C′′1 ,m1) = (a + 1, a + b) or (a, a + b + 1)
because exp(C′′,m) = (d1, d2) = exp0(C) = (a, a + b) and Lemma 2.7, where (C′′,m) is the
Ziegler restriction of C at infinity. Hence a ≥ 1 implies that

b2(C1) = b2(C) + n = a(a+ b) + n < a(a+ b+ 1) ≤ (a+ 1)(a+ b),

which contradicts Theorem 2.3. �

Proof of Corollary 1.5. Let a ∈ C be a common root of χ(A, t) and χ(A′, t). Recall the famous
deletion-restriction formula

χ(A, t) = χ(A′, t)− χ(A ∩H, t),

where {H} = A \ A′. See [10], Corollary 2.57 for example. Hence

0 = χ(A, a) = χ(A′, a)− χ(A ∩H, a) = −χ(A ∩H, a).

By definition, χ(A ∩H, t) = t − nH . Thus χ(A ∩H, a) = a − nH . Hence a = nH ∈ Z≥0, and
both characteristic polynomials factorize into

χ(A′, t) = (t− a)(t− b),
χ(A, t) = (t− a)(t− b− 1).

Thus Theorem 1.1 (3) shows the freeness of both arrangements. �

Remark 3.2. Corollary 1.5 makes several proofs of the freeness of line arrangements easier,
especially those related to extended Catalan and Shi arrangements. For example in [1], the free-
ness of several deformations of the Coxeter arrangements of the type A2 are proved by checking
all the addition steps. However, if we use Corollary 1.5, it suffices to find a line H on each
deformations such that nH is one of the roots of their characteristic polynomials.

Example 3.3. Theorem 1.1 (3) and Corollary 1.5 are useful as we saw above, but they are not
enough to show freeness of all arrangements combinatorially. Recall the affine line arrangement
A consisting of all edges and diagonals of a regular pentagon. Then χ(A, t) = (t− 5)2 and A is
free, but |A∩H| = 4 for any H ∈ A. Hence we cannot apply Theorem 1.1 (3) and Corollary 1.5
to show its freeness combinatorially. Of course, it is easy to see that there is a line L 6∈ A such
that |A∩L| = 5. Hence Theorem 1.1 (3) shows that A is free, but this proof is not combinatorial.
Also, it is easy to check that A contains a free arrangement with exponents (3, 3), but A does
not satisfy the sufficient condition of freeness in Theorem 1.6. Hence the condition in Theorem
1.6 is essential.

Remark 3.4. In the recent paper [7] by Cuntz and Hoge, an affine line arrangement which is
free but is not obtained as the deletion pair is found.
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4. Proof of Theorems 1.6 and 1.7

Before the proof of Theorem 1.6 as an application of Theorem 1.1, let us recall the following
Faenzi-Vallès’ theorem.

Theorem 4.1 ([8], Theorem 3.1). Let K be a field and A be an affine 2-arrangement in V = K2

such that |A| = 2n + r (n, r ∈ Z≥0) and that its localization B ⊂ A at the origin consists of
h-lines with n ≤ h ≤ n+ r + 1. If χ(A, t) = (t− n)(t− n− r), then A is free.

Now note the following easy lemma.

Lemma 4.2. Let A be an affine line arrangement. Assume that A is free with

exp0(A) = (n, n+ r) (r ≥ 0).

Then there are no subarrangements B ⊂ A with χ(B, t) = (t−α)(t−β), α, β ∈ Z and β > n+r.

Proof. Assume that such B exists. By Theorem 2.6, the Ziegler restriction of A at infinity is free
with exponents (n, n+r). Let (d1, d2) be the exponents of the Ziegler restriction of B at infinity.
Then Theorem 2.3 shows that αβ ≥ d1d2. In other words, d2 ≥ β ≥ n + r, which contradicts
Lemma 2.11. �

If A contains a point with multiplicity h with n ≤ h ≤ n + r + 1, then it implies that A
contains a free arrangement B with exp0(B) = (1, h − 1) and n − 1 ≤ h − 1 ≤ n + r. Hence
by applying Lemma 4.2, we may regard Theorem 1.6 as a generalization of Theorem 4.1 in the
sense of freeness. Also, note that Theorem 1.6 holds true over any fields of any characteristic.

For the proof of Theorem 1.6, let us introduce the following corollary and lemma by using
the results in the previous section. The first corollary might be similar to non-freeness criterion
in [9].

Corollary 4.3. Let A ⊃ B be an affine line arrangement such that

χ(A, t) = (t− a)(t− b), χ(B, t) = (t− c)(t− d)

with integers a ≤ b, c ≤ d and B is free. If |A ∩ H| < b, then for H ∈ A \ B, it holds that
|B ∩H| ∈ {c} ∪ {d, d+ 1, . . . , a}.

Proof. Obvious by Theorem 1.1 and Corollary 1.2. �

Lemma 4.4. Let A and B be affine line arrangements such that A ⊃ B with |A \ B| = f . Then
we can order lines of A \ B = {H1, . . . ,Hf} in such a way that, for B0 := B, Bi := Bi−1 ∪ {Hi}
and ni := |Bi−1 ∩Hi|, it holds that n1 ≤ n2 ≤ · · · ≤ nf .

Proof. We use induction on i. First, let H1 ∈ A \ B be a line such that

|B ∩H1| = min
H∈A\B

|B ∩H|.

Then for any H ∈ A \ (B ∪ {H1}), it is obvious that |B ∩H1| ≤ |(B ∪ {H1}) ∩H|. Assume that
H1, . . . ,Hi ∈ A\B satisfy the condition in the statement. Then choose Hi+1 ∈ A\Bi such that
|Bi ∩Hi+1| = minH∈A\Bi

|Bi ∩H|. Then it is obvious that ni ≤ |Bi ∩H| for any H ∈ A\Bi. �

Proof of Theorem 1.6. If there is a line H ∈ A such that nH = n or n + r, then Theorem 1.1
shows that A is free. Assume that nH 6= n, n+ r. Again by Theorem 1.1, we may assume that
nH < n or nH > n+r. Also, by Corollaries 1.2 and 4.3, |H∩B| ∈ Z≥n−1∪{n−s} for H ∈ A\B.
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Let A\B = {H1, . . . ,Hr+s+1}, B0 := B and Bi := B ∪ {H1} ∪ · · · ∪ {Hi}. By Lemma 4.4, we
may assume that n1 ≤ n2 ≤ · · · ≤ nr+s+1 for ni := |Bi−1 ∩ Hi| (i = 1, . . . , r + s + 1). By the
previous paragraph, we know that {n − s} ∪ Z≥n−1 3 n1 ≤ nr+s+1 ∈ Z<n ∪ Z>n+r. Note that
nr+s+1 = |A ∩Hr+s+1|.
Case 1. Assume that n1 = n− s.
Case 1-1. Assume that n2 > n − s. Then B1 is free with exp0(B1) = (n, n − s). By Theorem
1.1, n2 ≥ n. Since n ≤ n2 ≤ nr+s+1 6= n, we have nr+s+1 > n+ r by Theorem 1.1. Hence

b2(A) = b2(B1) + (n2 + · · ·+ nr+s) + nr+s+1

> n(n− s) + (r + s− 1)n+ n+ r

= n(n+ r) + r

≥ n(n+ r)

= b2(A),

which is a contradiction. Note that we often use this kind of computations in the rest of this
section.
Case 1-2. Assume that n1 = · · · = nu = n − s < nu+1 for some u > 1. Then Bu is free with
exp0(Bu) = (n+ u− 1, n− s). If r ≥ u− 1, then ni ≥ n+ u− 1 > n− 1 for i > u by Corollary
1.2 and n+ u− 1 ≤ n+ r. Hence

b2(A) > (n+ u− 1)(n− s) + (r + s+ 1− u)(n+ u− 1)

= (n+ u− 1)(n+ r + 1− u) ≥ n(n+ r) = b2(A)

because of 0 ≤ r + 1− u ≤ r and nr+s+1 > n+ r, which is a contradiction.
If r < u − 1, then there exists B ⊂ C ⊂ A such that χ(C, t) = (t − n − u + 1)(t − s) and

r < u− 1, which contradicts the condition (2).
Case 2. So we may assume that n1 ≥ n− 1. If nr+s+1 = n− 1, then

b2(A) = (n− 1)(n− s) + (r + s+ 1)(n− 1) = (n− 1)(n+ r + 1) < n(n+ r) = b2(A),

which is a contradiction. Hence nr+s+1 ≥ n. By the assumption and Theorem 1.1, it holds that
nr+s+1 > n+ r. Hence

b2(A) > (n− 1)(n− s) + (r + s)(n− 1) + n+ r = n(n+ r) = b2(A),

which is a contradiction. �

It is natural to ask whether the same statement as in Theorem 1.6 holds true for s ≤ 0. The
answers is affirmative as follows.

Proposition 4.5. In the same notation and condition as in Theorem 1.6, we assume that
−r ≤ s ≤ 0. Then A is free if and only if nH ∈ {n, n+ r} for some H ∈ A.

Proof. The “if” part follows by Theorem 1.1 (3). Conversely, assume that A is free and
nH 6∈ {n, n+ r}. Then Theorem 1.1 (1) shows that nH < n or nH > n + r. Since A is free,
Theorem 2.3 and Lemma 2.10 (2) imply that nH < n. Let A \ B = {H1, . . . ,Hr+s+1}. Put Bi
and ni in the same way as in Theorem 1.6 by Lemma 4.4. Then Theorem 1.1 and Corollary 1.2
show that n− 1 ≤ n1 ≤ nr+s+1 ≤ n− 1. However,

b2(A) = (n− 1)(n− s) + (r + s+ 1)(n− 1) = (n− 1)(n+ r + 1) < n(n+ r) = b2(A),

which is a contradiction. �

Before the proof of Theorem 1.7, we need the following lemma.
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Lemma 4.6. Let A ⊃ B be the same arrangements as in Theorem 1.7. Let us order

A \ B = {H1, . . . ,Hf} (f := 2n+ r − α− β)

in such a way that B0 := B, Bi := Bi−1 ∪ {Hi} and n1 ≤ · · · ≤ nf for ni := |Bi−1 ∩ Hi| by
Lemma 4.4. Let a be the smallest integer satisfying α ≤ a. Assume that nf ≤ n− 1, n− 1 < β
and put χ(Bi, t) = (t − αi)(t − βi) with |αi| ≤ |βi| (i = 1, . . . , f). Then αi and βi are both real
numbers, and αi+1 ≤ αi ≤ α ≤ β ≤ βi ≤ βi+1 for any i. In particular, ni ≤ a for i = 1, . . . , f .

Proof. Let us prove by induction on i. Since χ(B, t) = (t−α)(t−β), Theorem 1.1 (1) shows the
case i = 0. Assume that the statement is true when i ≤ k. Since n− 1 < β ≤ βk, it holds that
nk+1 ≤ αk by Theorem 1.1 (2). Since

χ(Bk+1, t) = t2 − (αk + βk + 1)t+ αkβk + nk+1,

the roots of this polynomial are of the form

t± =
αk + βk + 1±

√
(αk − βk − 1)2 + 4(αk − nk+1)

2
.

Since αk ≥ nk+1, it follows that t± ∈ R. Also, it is easy to see that t− ≤ αk and βk ≤ t+. Hence
Theorem 1.1 (1) completes the proof. �

Proof of Theorem 1.7. The “if” part follows from Theorem 1.1 (3). Assume that A is free and
there are no H ∈ A such that nH ∈ {n, n+r}. Then by Corollary 1.2, nH ≤ n−1 for H ∈ A. Let
us order A\B = {H1, . . . ,Hf} (f := 2n+r−α−β) in such a way that B0 := B, Bi := Bi−1∪{Hi}
and n1 ≤ · · · ≤ nf ≤ n− 1 for ni := |Bi−1 ∩Hi| by Lemma 4.4.

Case 1. Assume that α ≤ n− 1 ≤ β. If β = n− 1, then

b2(A) ≤ α(n− 1) + (n− 1)(2n+ r − n+ 1− α)

= (n− 1)(n+ r + 1) < n(n+ r) = b2(A),

which is a contradiction. Hence we may assume that n− 1 < β.
Let a, b be integers such that α ≤ a < α+ 1 and β − 1 < b ≤ β. Hence α+ β = a+ b. Since

α + β = |A| ∈ Z, it holds that a ≤ n − 1 ≤ b and αβ ≤ ab. Since n − 1 < β, we may apply
Lemma 4.6 to obtain that ni ≤ a. Hence

b2(A) ≤ ab+ a(2n+ r − a− b)
= a(2n+ r − a) < n(n+ r) = b2(A),

which is a contradiction.

Case 2. Assume that n− 1 < α ≤ β < n. Then α+ β = 2n− 1 and αβ ≤ (n− 1

2
)2. Hence

b2(A) ≤ (n− 1

2
)2 + (n− 1)(2n+ r − 2n+ 1)

= (n− 1)(n+ r + 1) +
1

4
< n(n+ r) = b2(A),

which is a contradiction.
Case 3. Assume that n− 1 < α ≤ n, n ≤ β. Let a and b be the same integers as in the Case

1. Hence n ≤ b and a = n. Since ni ≤ n − 1 and n ≤ β, we may apply Lemma 4.6 to obtain
that ni ≤ a. Hence

b2(A) ≤ nb+ n(2n+ r − n− b)
= n(n+ r) = b2(A).

The equality holds only when α = n = n1 = · · · = nf , which contradicts nf ≤ n− 1. �
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5. Applications related to the conjecture of Terao

In this section we study the relation between the conjecture of Terao and the results in the
previous sections.

First, let us show the following proposition, which is a generalization of Theorem 1.6 in a
special case.

Proposition 5.1. Let A be an affine line arrangement such that χ(A, t) = (t−n)(t−n−r) with
n ∈ Z≥0 and r ∈ Z≥1. Assume that A contains an arrangement B with χ(B, t) = (t − n + 2)2.
Then A is free if and only if nH = n or n+ r for some H ∈ A.

Proof. The “if” part follows by Theorem 1.1 (3). Assume that A is free and nH 6∈ {n, n + r}.
Then nH > n + r or nH < n by Theorem 1.1. Also, nH > n + r implies the non-freeness of A
by Theorem 2.3 and Lemma 2.10 (2). Hence we may assume that nH < n.

Let {H1, . . . ,Hr+4} = A \ B. Put B0 := B, Bi := Bi−1 ∪ {Hi} (i = 1, . . . , r + 4). Then for
ni := |Hi ∩ Bi−1|, we may assume that n1 ≤ n2 ≤ · · · ≤ nr+4 < n by Lemma 4.4. Then

b2(A) ≤ (n− 2)2 + (n− 1)(2n+ r − (2n− 4))

= n(n+ r)− r < n(n+ r) = b2(A),

which is a contradiction. �

Proposition 5.1 has the following corollary.

Corollary 5.2. Let A be an affine line arrangement.
(1) If χ(A, t) = (t− 2)(t− 2− r) with r ≥ −2, then the freeness of A depends only on L(A).
(2) If L(A) contains a point and χ(A, t) = (t− 3)(t− 3− r) with r ≥ −3, then the freeness of
A depends only on L(A).

Proof. (1) When r = −2,−1, 0, the statement can be directly checked. Assume that r > 0.
Since A contains an empty arrangement with exponents (0, 0), Proposition 5.1 completes the
proof.
(2) When r = −3,−2,−1, 0, the statement can be directly checked. Assume that r > 0. Since A
contains a Boolean arrangement with exponents (1, 1), Proposition 5.1 completes the proof. �

The following can be proved by the same way as in Proposition 5.1.

Proposition 5.3. Let A be an affine line arrangement such that χ(A, t) = (t − n)(t − n − r)
with n, r ∈ Z≥0.
(1) Assume that r ≥ 2 and A contains an arrangement B with χ(B, t) = (t− n+ 2)(t− n+ 3).
Then A is free if and only if nH = n or n+ r for some H ∈ A.
(2) Assume that r ≥ 4 and A contains an arrangement B with χ(B, t) = (t− n+ 3)2. Then A
is free if and only if nH = n or n+ r for some H ∈ A.

On the conjecture of Terao, which asserts that the freeness of an arrangement A depends only
on its combinatorics L(A), we can give a few contribution by using Corollary 5.2 and Proposition
5.3 with Theorem 2.8. The conjecture of Terao for line arrangements in C2 is confirmed when
|A| ≤ 10 by Wakefield-Yuzvinsky ([14], Corollary 7.5), and |A| ≤ 11 by Faenzi-Vallès. ([8],
Corollary 6.5). Also, see [3].

Now using the results in this article, first, we can show the following.

Corollary 5.4. Let A be an affine line arrangement in C2 such that χ(A, t) = (t−n)(t−n− r)
with n, r ∈ Z≥0. If r ≥ n− 3, then the freeness of A depends only on L(A).
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Proof. Let (A′′,m) be the Ziegler restriction of A at infinity. By Lemma 2.9, we may assume
that A and (A′′,m) are balanced. Put exp(A′′,m) = (d1, d2) with d1 ≤ d2. By Theorem 2.8
(2), we know that the combinatorial invariant h := |A′′| ≥ r + 2. When h = r + 2 or r + 3,
the freeness of A is confirmed by Theorem 2.8 (2). Assume that h ≥ r + 4 ≥ n + 1. Then
Theorem 1.1 (1) shows that h 6∈ {n + 2, . . . , n + r}, and Theorem 1.1 (3) shows that A is free
when h = n+ 1 or n+ r + 1. Also, the non-freeness of A when h > n+ r + 1 is checked in [14],
or by applying Theorem 2.3 and Lemma 2.10 (2). �

Using Corollary 5.4, in this article, we check the conjecture of Terao under the restriction on
the roots of characteristic polynomials, not on the number of lines.

Corollary 5.5. Let A be an affine line arrangement in C2 such that χ(A, t) = (t−n)(t−n− r)
with n, r ∈ Z≥0. If {n, n+r}∩{0, 1, 2, 3, 4, 5} 6= ∅, then the freeness of A depends only on L(A).

Proof. If {n, n + r} ∩ {0, 1} 6= 0, then the conjecture of Terao is easy to check. Assume that
n+r ∈ {2, 3, 4, 5}. Then [14] and [8] complete the proof. So we may assume that n ∈ {2, 3, 4, 5}.
Also, the case r = 0 can be verified by [14] and [8]. So assume that r > 0.

Assume that n = 2. Then Corollary 5.2 (1) completes the proof. Assume that n = 3. Then
a point is contained in L(A). Hence Corollary 5.2 (2) completes the proof.

Assume that n = 4. By Lemma 2.9, we may assume that A is balanced. Then Corollary 5.4
verifies the statement when r ≥ 1. Hence it suffices to check when χ(A, t) = (t − 4)2, which is
checked in [14] and [8].

Assume that n = 5. By Lemma 2.9, we may assume that A is balanced. Then Corollary 5.4
verifies the statement when r ≥ 2. Hence it suffices to check when χ(A, t) = (t − 5)(t − 6) or
(t− 5)2, which is checked in [8] or Theorem 1.1 and Corollary 1.2 in [3]. �

6. The case over finite fields

In this section let us consider the case when K is a finite field Fq. We give an another proof
of Theorem 10 in [16]. Also, we give a new sufficient condition for freeness which is a similar
result to that in [16]. Namely, in [16], it is shown that an arrangement which has q as the root
of the characteristic polynomial is free. Here we show that the same holds true when q − 1 is a
root.

In this section we use the following setup. Let Fq be a finite field of cardinality q = pn for a
prime number p and V = F2

q. Recall that, for an affine line arrangement A in V , it holds that

χ(A, q) =
∣∣∣V \ ⋃

H∈A
H
∣∣∣.

See Theorem 2.69 in [10] for example. Now consider a multiarrangement (A,m) in V . Put
exp(A,m) = (d1, d2) with d1 ≤ d2.

Proposition 6.1. Assume that m(H) ≤ q for any H ∈ A. Then
(1) the inequality d1 < q < d2 cannot occur.
(2) If |m| ≥ 2q, then d1 = q.
(3) If |m| = 2q − 1, then d2 = q.

Proof. (1) Let θ1, θ2 be a basis for D(A,m) with deg θi = di. Assume that d1 < q < d2. Note
that ϕ := xq∂x + yq∂y ∈ D(A,m), which is of degree q. Hence ϕ = fθ1 for some polynomial f .
Since ϕ has no divisors in Der(S′), this is a contradiction.
(2) By (1) and |A| = d1 + d2 ≥ 2q, we know that d2 ≥ d1 ≥ q. Since ϕ ∈ D(A,m), we know
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that d1 ≤ q , which completes the proof.
(3) By assumption, d2 ≥ q. If d2 > q, then d1 < q < d2, which is a contradiction. �

The following is proved in [16]. Here we give an another proof of it.

Corollary 6.2 ([16], Theorem 10). Let A be an affine line arrangement in V .
(1) If χ(A, q) = 0, then A is free.
(2) If |A| ≥ 2q − 1 and A is free, then χ(A, q) = 0.

Proof. Let (A′′,m) be the Ziegler restriction of A at infinity. Put exp(A′′,m) = (d1, d2) with
d1 ≤ d2. Note that d1 + d2 = |A|. Also, note that we may apply Proposition 6.1 since the base
field is Fq.

(1) Let χ(A, t) = (t − q)(t − r). Note that q + r = d1 + d2 = |A| = |m|. First assume that
r ≤ q. Then Theorem 2.3 implies that qr ≥ d1d2. Hence d1 ≤ r ≤ q ≤ d2. By Proposition 6.1
(1), we know that q = d1 or q = d2. Hence A is free by Theorem 2.3.

Second assume that r > q. Then again the inequalities d1 ≤ q < r ≤ d2 and Proposition 6.1
(1) show that d1 = q, which implies the freeness.

(2) Since |m| = |A| ≥ 2q − 1, Proposition 6.1 (2) and (3) imply that d1 = q or d2 = q. Then
the freeness of A, Theorems 2.5 and 2.6 complete the proof. �

By applying Theorem 1.1, we can prove the following new result on arrangements in F2
q.

Theorem 6.3. Let A be an affine arrangement in V = F2
q. If χ(A, q − 1) = 0, then A is free.

Proof. Put χ(A, t) = (t− q + 1)(t− q + r) with r ∈ Z. Since χ(A, q) = r = |V \
⋃
H∈AH| ≥ 0,

we know that r ∈ Z≥0, and A is free if r = 0 by Corollary 6.2. Assume that r ≥ 1. Since
χ(A, 0) ≥ 0, it holds that χ(A, q) = r ≤ q. Let V \

⋃
H∈AH = {p1, . . . , pr} and we may assume

that p1 is the origin. Then there are (q + 1)-lines containing p1 and not belonging to A. Hence
there is at least one line L 6∈ A such that p1 ∈ L and pi 6∈ L for i = 2, . . . , r. Then |A∩L| = q−1.
Hence Theorem 1.1 (3) shows that A is free. �

Example 6.4. (1) Let V = F2
3 and A be an arrangement defined by

xy(x− y)(x− 1)(y − 1) = 0.

The cone of A is nothing but the Weyl arrangement of the type A3. Since χ(A, t) = (t−2)(t−3)
and 2 = |F3| − 1, this is a free arrangement.

(2) Let A be an arrangement in V = F`q such that |A| = 2q − 2 and |V \
⋃
H∈AH| = 1.

Then A is free. Let us show this. Since χ(A, q) = 1, it holds that χ(A, t) = (t− q + 1)2. Hence
Theorem 6.2 shows that A is free. Let us give an example of an arrangement like this. For an
arbitrary α1, . . . , αq−1 ∈ Fq and an arbitrary sequence {ωj}q−1j=1 of distinct elements of Fq \ {0},
define A by

q−1∏
j=1

(y + αjx− ωj)(x− ωj) = 0.

Then apparently V \
⋃
H∈AH consists of the origin. Hence this A is free by the arguments above.

7. Higher dimensional version

In this section we prove a higher dimensional version of Theorem 1.1. Unless otherwise
specified, we use the following notation in this section. Let A be an affine arrangement of
hyperplanes in V = K` with ` ≥ 3. Let Li(A) := {X ∈ L(A) | codimV X = i} and denote
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χ(A, t) = t` − b1t`−1 + b2t
`−2 + · · · + (−1)`b`. When K = C, bi is the i-th Betti number of the

open manifold V \
⋃
H∈AH. It is known that b1 = |A|.

The following is a direct generalization of Theorem 1.1 to an arbitrary dimensional arrange-
ments.

Theorem 7.1. For a hyperplane H, let χ(A∩H, t) =
∑`−1
i=0(−1)icit

`−1−i. If we put |A∩H| =: h,
then

b2 ≥ c2 + (b1 − h− 1)h.

In particular, when (b1 − 1)2 − 4b2 + 4c2 ≥ 0, there are no hyperplanes L such that

b1 − 1−
√

(b1 − 1)2 − 4b2 + 4c2
2

< |A ∩ L| <
b1 − 1 +

√
(b1 − 1)2 − 4b2 + 4c2

2
.

To prove Theorem 7.1, let us recall one definition and introduce two results.

Proposition 7.2 ([6], Theorem 4.1 (1)). Let (B,m) the Ziegler restriction of cA onto H ∈ cA.
Define b2(B,m) :=

∑
X∈L2(B) d

X
1 d

X
2 , where

BX : = {H ∈ B | X ⊂ H},
mX : = m|BX

,

exp(BX ,mX) : = (dX1 , d
X
2 , 0, . . . , 0).

Then b2(A) ≥ b2(B,m).

Proof. Let us recall the definition of the characteristic polynomial χ(B,m, t) of the multiar-
rangement (B,m) (Definition 2.6, [5]). Then the local-global formula (Theorem 3.3, [5]) shows
that the b2(B,m) above coincides with that of the coefficient of t`−2 of χ(B,m, t). Hence the
inequality is nothing but Theorem 4.1 (1) in [6]. �

Proof of Theorem 7.1. Assume that H ∈ A. Let cA be the cone of A and (B,m) be the Ziegler
restriction of cA onto cH. By Proposition 7.2, we know that b2(A) ≥ b2(B,m).

Next assume that H 6∈ A. Let cA1 be the cone of A1 := A∪{H} and (B1,m1) be the Ziegler
restriction of cA1 onto cH. By Proposition 7.2, we know that b2(A∪{H}) = b2+h ≥ b2(B1,m1).

Hence it suffices to show that b2(B,m) ≥ c2 + h(b1 − h− 1) when H ∈ A, and

b2(B1,m1) ≥ c2 + h(b1 + 1− h− 1)

when H 6∈ A. Since |A ∩H| = h, we know that |B| = |B1| = h+ 1. Hence the following Lemma
7.3 completes the proof. �

Lemma 7.3. Let (B,m′) be a multiarrangement and mH : B → {0, 1} be the multiplicity defined
by mH(L) := δH,L for H,L ∈ A. Define m := m′ +mH and let |B| − 1 =: h. Then

b2(B,m) ≥ b2(B,m′) + h.

Proof. For X ∈ L2(B), define

exp(BX ,mX) =: (dX1 , d
X
2 , 0, . . . , 0) and exp(BX ,m′X) =: (eX1 , e

X
2 , 0, . . . , 0).

Then Proposition 7.2 shows that

b2(B,m)− b2(B,m′) =
∑

X∈L2(B), X⊂H

(dX1 d
X
2 − eX1 eX2 ).
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Recall that exp(BX) = (1, |BX | − 1, 0, . . . , 0). Hence Lemmas 2.7 and 2.10 show that

dX1 d
X
2 − eX1 eX2 ≥ |BX | − 1.

Since
∑
H⊃X∈L2(B)(|BX | − 1) = h, it holds that

b2(B,m)− b2(B,m′) ≥ h,
which completes the proof. �

Remark 7.4. Theorem 7.1 can be also proved by applying Theorem 1.1 (1) and (2) with the
combinatorial restriction map in [6].

Example 7.5. Let A be a Weyl arrangement of the type B4 defined by

xyzw(x2 − y2)(x2 − z2)(x2 − w2)(y2 − z2)(y2 − w2)(z2 − w2) = 0

and A := A|αH=1 for some H ∈ A. Then χ(A, t) = (t− 3)(t− 5)(t− 7). Also,

χ(A ∩H, t) = (t− 1)(t− 3)(t− 5)

for any H ∈ A. Hence b1 = 15, b2 = 71 and c2 = 23 in the notation of Theorem 7.1. Hence
Theorem 7.1 shows that there are no L such that |A ∩ L| = 7.

Theorem 7.1 is not easy to apply. To make it useful, let us prove the following Lemma.

Lemma 7.6. Let B be an essential arrangement in V with |B| = h+ 1. Then

b2(B) ≥ (`− 1)(h− `+ 2) + (`− 1)(`− 2)/2.

Proof. We use the double induction on ` and h. When ` = 1 there is nothing to show. Note
that the essential arrangement in V = K` requires |B| ≥ `. When h + 1 = `, B is nothing but
the Boolean arrangement. Hence it is free with exponents (1, . . . , 1). Thus

b2(B) = `− 1 + (`− 1)(`− 2)/2.

Now let B be an arbitrary essential arrangement in V = K` with |B| > `. Then obviously
there is a hyperplane H ∈ B such that B′ := B \ {H} and B′′ := B ∩H are both essential. Now
apply the induction assumption to obtain that

b2(B′) ≥ (`− 1)(h− `+ 1) + (`− 1)(`− 2)/2,

b1(B′′) ≥ `− 1.

By the deletion-restriction formula which appeared in the proof of Corollary 1.5, we know that

b2(B) = b2(B′) + b1(B′′),
which completes the proof. �

Corollary 7.7. For a hyperplane H, let h := |A ∩H|. Assume that

dA,H := (b1 + `− 2)2 − 4b2(A)− 2(`− 1)(`− 2) ≥ 0

and L`(A) 6= ∅. Then there are no hyperplane H such that

b1 + `− 2−
√
dA,H

2
< |A ∩H| <

b1 + `− 2 +
√
dA,H

2
.

In particular, it holds that
h2 − b1h+ b2 ≥ 0.
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Proof. Combine Theorem 7.1 and Lemma 7.6. �

Remark 7.8. When ` = 2, Corollary 7.7 is nothing but Theorem 1.1 (1) and (2).

Example 7.9. Let A be an affine arrangement of planes in V = K3 defined by

(x± 1)(x± 2)(x± 3)(x± 4)y(y ± 1)(z ± 1) = 0.

Then it is easy to check that χ(A, t) = (t − 2)(t − 3)(t − 8). Hence |A| = 13 and b2(A) = 46.
Since L3(A) 6= ∅, Corollary 7.7 shows that there are no planes L such that

6 ≤ |A ∩ L| ≤ 8.
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