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MILNOR FIBERS OF REAL LINE ARRANGEMENTS

MASAHIKO YOSHINAGA

Abstract. We study Milnor fibers of complexified real line arrangements. We give a new
algorithm computing monodromy eigenspaces of the first cohomology. The algorithm is based

on the description of minimal CW-complexes homotopic to the complements, and uses the

real figure, that is, the adjacency relations of chambers. It enables us to generalize a vanishing
result of Libgober, give new upper-bounds and characterize the A3-arrangement in terms of

non-triviality of Milnor monodromy.

1. Introduction

The Milnor fiber is a central object in the study of the topology of complex hypersurface
singularities. In particular, the monodromy action on its cohomology groups has been inten-
sively studied. Monodromy eigenspaces contain subtle geometric information. For example, for
projective plane curves, the Betti numbers of Milnor fiber of the cone detect Zariski pairs [1].
In other words, Betti numbers of Milnor fiber of the cone of a plane curve are not in general
determined by local and combinatorial data of singularities.

In the theory of hyperplane arrangements, one of the central problems is to what extent
topological invariants of the complements are determined combinatorially. For example, the
cohomology ring is combinatorially determined (Orlik and Solomon [16]), while the fundamental
group is not (Rybnikov [1, 11]). Between these two cases, local system cohomology groups and
monodromy eigenspaces of Milnor fibers recently received a considerable amount of attention.

There are several ways to compute monodromy eigenspaces of the Milnor fiber, especially
for line arrangements. One is the topological method developed by Cohen and Suciu [4]. They
first give a presentation of the fundamental group of the complement. Then, using Fox calculus,
they compute the monodromy eigenspaces. Another approach is the algebraic method, which
computes the multiplicities of monodromy eigenvalues as the superabundance of singular points.
This approach has recently been well developed, especially for line arrangements having only
double and triple points [14].

The purpose of this paper is to develop a topological method of computing Milnor monodromy
for complexified real arrangements following Cohen and Suciu. The new ingredient is a recent
study of minimal cell structures for the complements of complexified real arrangements [19,
22]. By using the description of twisted minimal chain complexes, we obtain an algorithm
which computes monodromy eigenspaces directly from real figures without passing through the
presentations of π1.

The paper is organized as follows. In §2 we recall a few results which are used in this paper.
§3 is the main section of the paper. First, in §3.1, we introduce discrete geometric notions, the
so-called k-resonant band and the standing wave on this band. These notions are used in §3.2 for
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the computation of eigenspaces. Several consequences of our algorithm are discussed in §3.3, §3.4
and §3.5. Among other things, we prove that if the arrangement contains more than 6 lines and
the cohomological monodromy action (of degree one) is non-trivial, then each line has at least
three multiple points (see Corollary 3.24 for a precise statement). Such arrangements have been
studied in discrete geometry as “configurations”, and several examples are provided in [8, 9]. In
§4, we apply our algorithm to arrangements appearing in papers by Grünbaum [8, 9]. We also
present several examples and conjectures.

2. Preliminaries

2.1. Milnor fiber of arrangements. Let A = {H1, . . . ,Hn} be an affine line arrangement
in R2 with the defining equation QA(x, y) =

∏n
i=1 αi, where αi is a defining linear equation

for Hi. In this paper, we assume that not all lines are parallel (or equivalently, A has at least
one intersection). The coning cA of A is an arrangement of n + 1 planes in R3 defined by the
equation QcA(x, y, z) = zn+1Q(xz ,

y
z ). The line {z = 0} ∈ cA is called the line at infinity and is

denoted by H∞. The space M(A) = C2 \ {QA = 0} = P2
C \ {QcA = 0} is called the complexified

complement. In this article, A always denotes a line arrangement in R2 and cA denotes a line
arrangement in RP2. We call p ∈ RP2 a multiple point if the multiplicity of cA at p (that is, the
number of lines passing through p) is greater than or equal to 3.

Definition 2.1. FA = {(x, y, z) ∈ C3 | QcA(x, y, z) = 1)} is called the Milnor fiber of A. The
automorphism ρ : FA −→ FA, (x, y, z) 7−→ (ζx, ζy, ζz), with ζ = exp(2πi/(n+ 1)), is called the
monodromy action.

The automorphism ρ has order n + 1. It generates the cyclic group 〈ρ〉 ' Z/(n + 1)Z. The
monodromy ρ induces a linear map ρ∗ : H1(FA,C) −→ H1(FA,C). Since (ρ∗)n+1 is the identity,
we have the eigenspace decomposition H1(FA,C) =

⊕
λn+1=1H

1(FA,C)λ, where H1(FA,C)λ is

the the set of λ-eigenvectors with eigenvalue λ ∈ C∗. When λ = 1, H1(FA)1 = H1(FA)ρ
∗

is the
subspace of elements fixed by ρ∗, which is isomorphic to H1(FA/〈ρ〉). It is easily seen that the
quotient by the monodromy action is FA/〈ρ〉 ' M(A). Therefore, the 1-eigenspace of the first
cohomology is combinatorially determined, H1(FA)1 ' H1(M(A)) ' Cn. In general, let Lλ be
a complex rank one local system associated with a representation

π1(M(A)) −→ C∗, γH 7−→ λ,

where γH is a meridian loop of the line H. Then it is known that

(1) H1(FA)λ ' H1(M(A),Lλ).

(See [4] for details.)

2.2. Multinets and Milnor monodromy. In this section, we recall a relation between the
combinatorial structures known as multinets and the eigenvalues of Milnor monodromy. We note
that a k-multinet gives a lower bound on the eigenspace.

Definition 2.2. A k-multinet on cA is a pair (N ,X ), where N is a partition of cA into k ≥ 3
classes A1, . . . ,Ak and X is a set of multiple points such that

(i) |A1| = · · · = |Ak|;
(ii) H ∈ Ai and H ′ ∈ Aj (i 6= j) imply that H ∩H ′ ∈ X ;
(iii) for all p ∈ X , |{H ∈ Ai | H 3 p}| is constant and independent of i;
(iv) for any H,H ′ ∈ Ai (i = 1, . . . , k), there is a sequence H = H0, H1, . . . ,Hr = H ′ in Ai

such that Hj−1 ∩Hj /∈ X for 1 ≤ j ≤ r.

The following is a consequence of [7, Theorem 3.11] and [6, Theorem 3.1 (i)]
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Theorem 2.3. Suppose there exists a k-multinet on cA for some k ≥ 3 and set λ = e2πi/k.
Then

dimH1(FA)λ ≥ k − 2.

2.3. Twisted minimal cochain complexes. In this section, we recall the construction of the
twisted minimal cochain complex from [19, 20, 21], which will be used for the computation of
the right hand side of (1).

A connected component of R2 \
⋃
H∈AH is called a chamber. The set of all chambers is

denoted by ch(A). A chamber C ∈ ch(A) is called bounded (resp. unbounded) if the area is
finite (resp. infinite). For an unbounded chamber U ∈ ch(A), the opposite unbounded chamber
is denoted by U∨ (see [21, Definition 2.1] for the definition; see also Figure 1 below).

Let F be a generic flag in R2

F : ∅ = F−1 ⊂ F0 ⊂ F1 ⊂ F2 = R2,

where Fk is a generic k-dimensional affine subspace.

Definition 2.4. For k = 0, 1, 2, define the subset chkF (A) ⊂ ch(A) by

chkF (A) := {C ∈ ch(A) | C ∩ Fk 6= ∅, C ∩ Fk−1 = ∅}.

The set of chambers decomposes into a disjoint union as

ch(A) = ch0F (A) t ch1F (A) t ch2F (A).

The cardinality of chkF (A) is equal to bk(M(A)) for k = 0, 1, 2.
We further assume that the generic flag F satisfies the following conditions:

• F1 does not separate intersections of A,
• F0 does not separate n-points A ∩ F1.

Then we can choose coordinates x1, x2 so that F0 is the origin (0, 0), F1 is given by x2 = 0, all
intersections of A are contained in the upper-half plane {(x1, x2) ∈ R2 | x2 > 0} and A ∩ F1 is
contained in the half-line {(x1, 0) | x1 > 0}.

We set Hi ∩F1 to have coordinates (ai, 0). By changing the numbering of lines and the signs
of the defining equation αi of Hi ∈ A we may assume that

• 0 < a1 < a2 < · · · < an,
• the origin F0 is contained in the negative half-plane H−i = {αi < 0}.

We set chF0 (A) = {U0} and chF1 (A) = {U1, . . . , Un−1, U
∨
0 } so that Up∩F1 is equal to the interval

(ap, ap+1) for p = 1, . . . , n− 1. It is easily seen that the chambers U0, U1, . . . , Un−1 and U∨0 have
the following expression:

U0 =

n⋂
i=1

{αi < 0},

Up =

p⋂
i=1

{αi > 0} ∩
n⋂

i=p+1

{αi < 0}, (p = 1, . . . , n− 1),

U∨0 =

n⋂
i=1

{αi > 0}.

(2)

The notations introduced to this point are illustrated in Figure 1.
Let L be a complex rank-one local system on M(A). The local system L is determined by

non-zero complex numbers (monodromy around Hi) qi ∈ C∗, i = 1, . . . , n. Fix a square root

q
1/2
i ∈ C∗ for each i.
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Figure 1. Numbering of lines and chambers.

Definition 2.5. (1) For C,C ′ ∈ ch(A), let us denote by Sep(C,C ′) the set of lines Hi ∈ A
which separate C and C ′.
(2) Define the complex number ∆(C,C ′) ∈ C by

∆(C,C ′) :=
∏

Hi∈Sep(C,C′)

q
1/2
i −

∏
Hi∈Sep(C,C′)

q
−1/2
i .

Now we construct the cochain complex (C[ch•F (A)], dL).

(i) The map dL : C[ch0F (A)] −→ C[ch1F (A)] is defined by

dL([U0]) = ∆(U0, U
∨
0 )[U∨0 ] +

n−1∑
p=1

∆(U0, Up)[Up].

(ii) dL : C[ch1F (A)] −→ C[ch2F (A)] is defined by

dL([Up]) = −
∑

C∈ch2F (A)
αp(C)>0
αp+1(C)<0

∆(Up, C)[C] +
∑

C∈ch2F (A)
αp(C)<0
αp+1(C)>0

∆(Up, C)[C], (for p = 1, . . . , n− 1),

dL([U∨0 ]) = −
∑

αn(C)>0

∆(U∨0 , C)[C].

Example 2.6. Let A = {H1, . . . ,H5}, and let the flag F be as in Figure 1. Then

dL([U0]) = ([U1], [U2], [U3], [U4], [U∨0 ])


q
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1 − q−1/21
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 ,

dL([U1], [U2], [U3], [U4], [U∨0 ]) = ([U∨1 ], [U∨2 ], [U∨3 ], [U∨4 ], [C1], [C2])

×
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Theorem 2.7. Under the above notation, (C[ch•F (A)], dL) is a cochain complex and

Hk(C[ch•F (A)], dL) ' Hk(M(A),L).

See [19, 20, 21] for details.

3. Resonant band algorithm

Let A = {H1, . . . ,Hn} be an arrangement of affine lines in R2, and let F be a generic flag as
in §2.3.

Fix an integer k > 1 with k|(n + 1), and set λ = e2πi/k. In this section, we will give an
algorithm for computing the λ-eigenspace H1(FA)λ of the first cohomology of a Milnor fiber.

3.1. Resonant bands and standing waves.

Definition 3.1. A band B is a region bounded by a pair of consecutive parallel lines Hi and
Hi+1.

Each band B includes two unbounded chambers U1(B), U2(B) ∈ ch(A). By definition, U1(B)
and U2(B) are opposite each other, U1(B)∨ = U2(B) and U2(B)∨ = U1(B).

Define the adjacency distance d(C,C ′) between two chambers C and C ′ to be the number of
lines H ∈ A that separate C and C ′, that is,

d(C,C ′) = |Sep(C,C ′)|.

The distance d(U1(B), U2(B)) is called the length of the band B.

Remark 3.2. Let B be the closure of B in the real projective plane RP2. B intersects H∞ in
one point, B ∩ H∞. Each line H ∈ A ∪ {H∞} either passes B ∩ H∞ or separates U1(B) and
U2(B). Therefore the length of B is equal to n+ 1−mult(B ∩H∞).

Definition 3.3. A band B is called k-resonant if the length of B is divisible by k. We denote
the set of all k-resonant bands by RBk(A).

To a k-resonant band B ∈ RBk(A), we can associate a standing wave ∇(B) ∈ C[ch(A)] on
the band B as follows:

∇(B) =
∑

C∈ch(A),
C⊂B

(
e
πid(U1(B),C)

k − e−
πid(U1(B),C)

k

)
· [C]

=
∑

C∈ch(A),
C⊂B

(
λ
d(U1(B),C)

2 − λ−
d(U1(B),C)

2

)
· [C]

= 2i ·
∑

C∈ch(A),
C⊂B

sin

(
πd(U1(B), C)

k

)
· [C].

(3)

Remark 3.4. Since the length d(U1(B), U2(B)) of the band B is divisible by k, the coefficients
of [U1(B)] and [U2(B)] in the linear combination in (3) are zero. Hence the chambers in the
summations in (3) run only over bounded chambers contained in B. We also note that exchanging
of U1(B) and U2(B) affects at most the sign of ∇(B).

Remark 3.5. To indicate the choice of U1(B) and U2(B), we always put the name B of the
band in the unbounded chamber U1(B) (see Figure 2).
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3.2. Eigenspaces via resonant bands. The map B 7−→ ∇(B) can be naturally extended to
the linear map

(4) ∇ : C[RBk(A)] −→ C[ch(A)].

Theorem 3.6. The kernel of ∇ is isomorphic to the λ-eigenspace of the Milnor fiber monodromy,
that is,

Ker (∇ : C[RBk(A)] −→ C[ch(A)]) ' H1(FA)λ.

In particular, dimH1(FA)λ is equal to the number of linear relations among the standing waves
∇(B), B ∈ RBk(A).

Proof. Let Lλ be the rank-one local system on M(A) defined by q1 = · · · = qn = λ ∈ C∗ (see
§2.1 and §2.3). In this case, ∆(C,C ′) depends only on the adjacency distance d(C,C ′), or more
precisely,

∆(C,C ′) = λ
d(C,C′)

2 − λ−
d(C,C′)

2 .

Now, we consider the first cohomology group H1(C[ch•F (A)], dL) of the twisted minimal cochain
complex. The image dL : C[ch0F (A)] −→ C[ch1F (A)] is generated by

dL([U0]) =

n−1∑
p=1

(λ
p
2 − λ−

p
2 )[Up] +

(
λ
n
2 − λ−n2

)
[U∨0 ].

Since λ = e2πi/k with k > 1 and k|(n + 1), we have λ
n
2 − λ−n2 = λ−

n
2 (λn − 1) 6= 0. Thus the

coefficient of [U∨0 ] in dL([U0]) is non-zero. Define the subspace V of C[ch1F (A)] by

V =

n−1⊕
p=1

C · [Up]

( ' Coker
(
dL : C[ch0F (A)] −→ C[ch1F (A)]

)
).

(5)

Then H1(C[ch•F (A)], dL) is isomorphic to Ker
(
dL|V : V −→ C[ch2F (A)]

)
. It is sufficient to show

that Ker(dL|V ) ' Ker∇, which will be done in several steps. Suppose that

ϕ =

n−1∑
p=1

cp · [Up] ∈ Ker(dL|V ).

(i) If Hi and Hi+1 are not parallel, then ci = 0.

Note that if j 6= i, then the chamber [U∨i ] does not appear in dL([Uj ]). Thus the coefficient of
[U∨i ] in

dL(ϕ) =

n−1∑
p=1

cp · dL([Up])

is ci ·∆(Ui, U
∨
i ) = ci(λ

n
2 − λ−n2 ). This equals zero if and only if ci = 0.

Now we may assume that ϕ =
∑
p cp · [Up] ∈ Ker(dL) is a linear combination of [Up]s such

that Hp and Hp+1 are parallel. Suppose that Hi and Hi+1 are parallel and denote by Bi the
band determined by these lines.

(ii) If Bi is not k-resonant, then ci = 0.

In this case, ∆(Ui, U
∨
i ) = λ

d(Ui,U
∨
i )

2 −λ−
d(Ui,U

∨
i )

2 . By the assumption that d(Ui, U
∨
i ) is not divisible

by k, we have ∆(Ui, U
∨
i ) 6= 0. Since ϕ is a linear combination of [Up]s with parallel boundaries

Hp and Hp+1, the term [U∨i ] appears only in dL([Ui]), which is equal to ci · ∆(Ui, U
∨
i )[U∨i ].

Therefore ci = 0.
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Finally we may assume that ϕ is a linear combination of [Up]s such that the boundaries Hp

and Hp+1 are parallel and the length of the corresponding band Bp is divisible by k. In this
case, it is straightforward to check that the maps dL and ∇ are identical. This completes the
proof. �

Example 3.7. (A3-arrangement, A(6, 1) or B6) The three arrangements in Figure 2 are pro-
jectively equivalent, and are respectively called A3-arrangement, A(6, 1) or B6. (See §4 for the
latter two notations.) We use the left figure to compute dimH1(FA)λ. (The symbol∞ indicates
that the line at infinity is an element of A.) Since |cA| = n + 1 = 6, k ∈ {2, 3, 6} and we have
RB2(A) = RB6(A) = ∅, RB3(A) = {B1, B2}. By definition, we have

∇(B1) =
√
−3 · [C1] +

√
−3 · [C2]

∇(B2) =
√
−3 · [C1] +

√
−3 · [C2].

Hence we have a linear relation ∇(B1 − B2) = 0 and dimH1(FA)λ = 1 for λ = e2πi/3. (Hence
the A3-arrangement is pure-tone; see Definition 4.1.)
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Figure 2. The A3-arrangement (= A(6, 1) = B6)

Example 3.8. (A(12, 2) from [8]) Let A be the line arrangement in Figure 3 (together with
the line at infinity). Then |cA| = n + 1 = 12. There are seven bands, B1, . . . , B7. Among
them, B5, B6 and B7 have length 7 which is coprime with 12 so we can ignore them. We have
RB3(A) = {B1, B4} and RB2(A) = RB4(A) = {B2, B3}. First consider the case k = 3. Then

∇(B1) =
√
−3 · [C1] + . . . ,

∇(B4) =
√
−3 · [C6] + . . . .

Since the chamber C6 is not contained in the band B1, it does not appear in the linear com-
bination for ∇(B1). Hence ∇(B1) and ∇(B4) are linearly independent. We conclude that
H1(FA)λ = 0 for λ = e2πi/3. The cases k = 2 and k = 4 are similar. More precisely, since
B2, B3 ∈ RB2(A) = RB4(A) are parallel and they do not overlap, ∇(B2) and ∇(B3) are lin-
early independent. Consequently we have H1(FA) 6=1 = 0 and so the cohomology does not have
non-trivial eigenvalues.

The argument used in Example 3.8 is generalized in the next section. See §4 for further
examples.
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Figure 3. A(12, 2)

Remark 3.9. The cohomology of the Milnor fiber H1(FA) depends only on the projective
arrangement A ∪ {H∞}. The change of the line at infinity H∞ sometimes makes the structure
of resonant bands RBk simpler. This fact will be used in Corollary 3.16.

3.3. Vanishing. Fix k and λ as above. We describe some corollaries to Theorem 3.6.

Corollary 3.10. If RBk(A) = ∅, then H1(FA)λ = 0.

Proof. Since C[RBk(A)] = 0, obviously Ker(∇ : C[RBk(A)]→ C[ch(A)]) = 0. By Theorem 3.6,
H1(FA)λ = 0. �

Using the interpretations in Remark 3.2, we have the following.

Proposition 3.11. A band B is k-resonant if and only if mult(B ∩H∞) is divisible by k.

Corollary 3.12. Suppose that there are no points on H∞ where the multiplicity of

cA = A ∪ {H∞}
is divisible by k. Then H1(FA)λ = 0.

Proof. By Proposition 3.11, the assumption is equivalent to RBk(A) = ∅. We then use Corollary
3.10. �

Remark 3.13. Corollary 3.12 is proved by Libgober [13, Corollary 3.5] for more general complex
arrangement cases.

For the real case, we obtain a stronger result as follows.

Theorem 3.14. Suppose that all k-resonant bands are parallel to each other. Then H1(FA)λ = 0.

Proof. By the assumption, RBk(A) = {B1, . . . , Bm} consists of parallel bands. Now, the sup-
ports of ∇(B1), . . . ,∇(Bm), that is, the set of chambers appearing in each standing wave, are
mutually disjoint. They are obviously linearly independent. (Recall that, in this paper, we as-
sume that the arrangement A has at least one intersection.) Hence H1(FA)λ = 0. (See Example
3.8.) �

Corollary 3.15. Suppose that there is at most one point p ∈ H∞ such that the multiplicity of
cA = A ∪ {H∞} at p is divisible by k. Then H1(FA)λ = 0.
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Proof. Again by Proposition 3.11, the assumption is equivalent to RBk(A) consisting of parallel
bands. We then use Theorem 3.14. �

Let us denote by H1(FA)6=1 =
⊕
λ6=1

H1(FA)λ the direct sum of non-trivial eigenspaces. The

following is immediate from Corollary 3.15 and Remark 3.9.

Corollary 3.16. (1) Suppose that H1(FA)λ 6= 0. Then each line H ∈ cA = A∪ {H∞} has
at least two multiple points, such that the multiplicity is divisible by k.

(2) Suppose that H1(FA)6=1 6= 0. Then each line H ∈ cA = A ∪ {H∞} has at least two
multiple points.

Proof. Let H be such a line. Choose an affine open set in such a way that H is a line at
infinity. �

Remark 3.17. We do not know whether Corollary 3.16 holds for complex arrangements. We
will prove a stronger result in §3.5.

3.4. Upper-bound. Recall that two lines H,H ′ in the real projective plane RP2 divide the
space into two regions.

Definition 3.18. Let cA be a line arrangement in the real projective plane RP2. Then the
pair of lines Hi, Hj ∈ cA is said to be a sharp pair if all intersection points of cA \ {Hi, Hj}
are contained in one of two regions or lie on Hi ∪Hj . (In other words, there are no intersection
points in one of the two regions determined by Hi and Hj .)

Example 3.19. A fiber-typer arrangement has a sharp pair of lines.

Example 3.20. In the Pappus arrangement (Figure 7), the line at infinity and the leftmost
vertical line form a sharp pair. So do the two boundary lines of the band B1. Furthermore,
all line arrangements appearing in this paper contain sharp pairs of lines. (There also exist
arrangements which have no sharp pairs.)

Theorem 3.21. Assume that the arrangement cA contains a sharp pair of lines. Then:

(i) dimH1(F )λ ≤ 1 for λ 6= 1.
(ii) Suppose that the pair H1, H2 ∈ cA is sharp. Let p = H1 ∩H2 be the intersection. If the

multiplicity of cA at p is not divisible by k, then H1(F )λ = 0 for λ = e2πi/k.

Proof. By the PGL3(C) action, we may assume that the line at infinity H∞ and H1 = {x = 0}
form a sharp pair and that there are no intersections in the region {(x, y) ∈ R2 | x < 0} (see
Figure 3). The intersection is p = H∞ ∩ H1 = {(0 : 1 : 0)}. Let B be a horizontal (that
is, non-vertical) band, that does not passing through the point p. Denote by CB the leftmost
bounded chamber in B (e.g., in Figure 3, CB1

= C1, CB2
= C3, CB3

= C4 and CB4
= C6).

First, consider the case where the multiplicity of cA at p is not divisible by k. Then all
k-resonant bands are horizontal. Let B ∈ RBk(A). Then

(6) ∇(B) = 2i sin
(π
k

)
· [CB ] + · · · ,

and so [CB ] has a non-zero coefficient. Since CB is contained in the unique k-resonant band B,
[CB ] does not appear in the linear combinations of other k-resonant bands. Hence,

∇(B), B ∈ RBk(A)

are linearly independent. Thus (ii) is proved.
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Now we assume that the multiplicity of A at p is divisible by k. In this case, there are vertical
k-resonant bands. Denote by Bleft the leftmost vertical band (in Figure 3, Bleft = B5). Suppose
that

cleft ·Bleft + · · · ∈ Ker(∇).

Let B ∈ RBk(A) be a horizontal k-resonant band. Then, since CB is contained in only B and
Bleft, the coefficient cleft of Bleft determines the coefficient of B. The coefficients of other
vertical k-resonant bands are also determined by those of the horizontal bands. Hence Ker(∇)
is at most one-dimensional. �

Example 3.22. Let A be as in Figure 4, with |cA| = 12. Let k = 3. Then

RB3 = {B1
1 , B

1
2 , B

1
3 , B

1
4 , B

2
1 , B

2
2 , B

2
3 , B

2
4}

contains eight bands. Suppose that
∑2
i=1

∑4
j=1 cij [B

i
j ] ∈ Ker(∇). By computing

2∑
i=1

4∑
j=1

cij∇(Bij),

as in the figure, we conclude that all the coefficients are cij = 0. Hence H1(FA)λ = 0 for

λ = e2πi/3. Note that the multiple points on the diagonal line are triple points. If we put the
diagonal line at infinity, then RB2 = RB4 = RB6 = ∅. Therefore,

H1(FA)−1 = H1(FA)i = H1(FA)e2πi/6 = 0

by Corollary 3.16.

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"∞

B1
1 B1

2 B1
3 B1

4

B2
1

B2
2

B2
3

B2
4

c11+c21

c11+c21

c22

−c11+c23

−c11+c24

c12

c12

c22

−c12+c23

−c12+c24

c13−c21

c13−c22

−c23

−c13

−c13

c14−c21

c14−c22

−c23

−c14−c24

−c14−c24

Figure 4. Example 3.22
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3.5. A characterization of the A3-arrangement. Now we give a characterization of the
A3-arrangement in terms of non-trivial Milnor monodromy.

Theorem 3.23. Assume that H1(FA)λ 6= 0 with λ = e2πi/k 6= 1, and that the set of k-resonant
bands RBk(A) consists of at most two directions (this condition is equivalent to H∞ containing
at most two multiple points which have multiplicities divisible by k). Then cA is equivalent to
the A3-arrangement.

Proof. If RBk(A) consists of one direction, then by Theorem 3.14, H1(FA)λ = 0. Thus we
may assume that RBk(A) consists of two directions. After a suitable change of coordinates, we
assume the following (see Figure 5):

• RBk(A) = {B1
1 , B

1
2 , . . . , B

1
p , B

2
1 , B

2
2 , . . . , B

2
q}.

• B1
1 , B

1
2 , . . . , B

1
p are parallel to the vertical line x = 0 and may be expressed as

B1
i = {(x, y) ∈ R2 | ai < x < ai+1}

with a1 < · · · < ap+1. The lines H1
i = {x = ai}, i = 1, . . . , p + 1, which are vertical

lines, are boundaries of these bands.
• B2

1 , B
2
2 , . . . , B

2
q are parallel to the horizontal line y = 0 and may be expressed as

B2
i = {(x, y) ∈ R2 | bi < y < bi+1}

with b1 < · · · < bq+1. The lines H2
i = {y = bi}, i = 1, . . . , q + 1, which are horizontal

lines, are boundaries of these bands.

• Let
p∑
i=1

c1i ·B2
i +

q∑
i=1

c2i ·B2
i ∈ Ker(∇) be a non-trivial relation among k-resonant bands.

σ

B1
1 B1

2 · · · B1
p

H1
1 H1

2 H1
p+1

B2
1

...

B2
q

H2
1

H2
q+1

K
�
�
�
�
�
�
�
�
�
�
�
�

C

#
#
#
#
#
#
#
#
#
#
#
#
#
#

K

Figure 5. Proof of Theorem 3.23

The multiplicity of cA at (0 : 1 : 0) = B1
i ∩ H∞ is p + 2, which must be divisible by k by

Proposition 3.11. Hence p can be expressed as p = ks − 2 (s ∈ Z>0). Similarly, set q = kt − 2
(t ∈ Z>0). So far, together with H∞, we have (s+t)k−1 lines. The remaining n+1−(s+t)k+1
can be expressed as ku + 1, which in particular cannot be zero. We prove that (1) u = 0, (2)
k = 3, (3) p = q, (4) p = q = 1, and conclude that cA is the A3-arrangement.

(1) We first prove that u = 0. Consider the open segment

σ = {(x : y : 1) ∈ R2 | y = b1,−∞ < x < a1} ⊂ H2
1
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which is bounded by the two points (1 : 0 : 0) and (a1 : b1 : 1). (See Figure 5.) Let us prove
that there are no intersections on σ. Suppose that the line K ∈ A intersects σ. The leftmost
chamber C in B2

1 is not contained in the other k-resonant bands and satisfies d(U1(B2
1), C) = 1.

Since

∇(B1
1) = 2i sin

(π
k

)
· [C] + · · · ,

and the coefficient of [C] is non-zero, we have c21 = 0. This implies that

c11 = c12 = · · · = c1p = 0.

Then we have c22 = · · · = c2q = 0. This contradicts the hypothesis that H1(FA)λ 6= 0. This
contradiction proves that there are no intersections on the segment σ. Similarly there are no
intersections on the seven other similar segments, that is, the boundaries of the four regions

{(x : y : 1) | x < a1, y < b1}, {(x : y : 1) | x < a1, y > bq},
{(x : y : 1) | x > ap, y < b1}, {(x : y : 1) | x > ap, y > bq}.

Thus K ∈ A must be one of the two diagonals

K1 = the line connecting (a1 : b1 : 1) and (ap : bq : 1),

K2 = the line connecting (ap : b1 : 1) and (a1 : bq : 1).

Hence ku+ 1 ≤ 2, and we have u = 0.
(2) Now we prove k = 3. Using the above notation, we may assume that

A = {H1
1 , . . . ,H

1
ks−1, H

2
1 , . . . ,H

2
kt−1,K},

where K is the diagonal line connecting (a1 : b1 : 1) and (ap : bq : 1). Then the point (a1 : b1 : 1)
has multiplicity 3. The line H1

1 has exactly two multiple points, (a1 : b1 : 1) and (0 : 1 : 0). By
Corollary 3.16, k is a common divisor of 3 and the multiplicity of (0 : 1 : 0). Since k 6= 1, we
have k = 3.

(3) If p 6= q, then there exists a (either vertical or horizontal) line which intersects the diagonal
line K normally (that is, with multiplicity 2, the right-hand side of Figure 5). Then the line has
only one multiple point on H∞ (either (0 : 1 : 0) or (1 : 0 : 0)). This contradicts Corollary 3.16.
Hence p = q.

(4) If p = q > 1, then we can prove that H1(FA)e2πi/3 = 0 by an argument similar to Example
3.22. Hence p = q = 1. This obviously implies that cA is isomorphic to the A3-arrangement. �

Corollary 3.24. Assume that A is a real arrangement as above, and assume that

|cA| = n+ 1 ≥ 7.

If H1(FA)λ 6= 0, then each line H ∈ cA passes through at least three multiple points which have
multiplicities divisible by k.

Remark 3.25. We do not know whether Theorem 3.23 and Corollary 3.24 hold for complex
arrangements.

4. Examples and Conjectures

By the previous result (Corollary 3.24), the Milnor fiber cohomology has non-trivial eigenspaces
only when each line has at least three multiple points. Classes of line arrangements known
as “simplicial arrangements” and “configurations” provide such examples. In this section, we
present examples of non-trivial eigenspaces H1(FA)6=1 6= 0.
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4.1. Observation. As far as the author knows, all examples of real arrangements with

H1(FA)6=1 6= 0

have the following “pure-tone” property, that is, only the third root of 1 appears with multiplicity
one.

Definition 4.1. A is said to be pure-tone if H1(FA)λ = 0 for λ3 6= 1 and dimH1(FA)λ = 1 for
λ = e±2πi/3.

Furthermore, it is observed that all known examples with H1(FA)6=1 6= 0 satisfy

• cA has a sharp pair of lines,
• cA has a k-multinet structure with k = 3.

These two properties imply by Theorem 3.21 and Theorem 2.3 that A is pure-tone.

4.2. Simplicial arrangements. Let A = {H1, . . . ,Hn} be a line arrangement in R2. Then the
projective arrangement cA = A ∪ {H∞} in the real projective plane RP2 is called simplicial if
each chamber is a triangle. Grünbaum [8] presents a catalogue of known simplicial arrangements
with up to 37 lines (see [5] for additional information).

Notation. The symbol ∞ in a figure indicates that the (n + 1)-st line is H∞. The notation
A(n, k) comes from [8], which is the k-th simplicial arrangement of n-lines.

Example 3.7 can be generalized in two ways.

Definition 4.2. For a positive integer n ∈ Z>0, A(2n, 1) is described as follows. Starting with
a regular convex n-gon in the Euclidean plane, A(2n, 1) is obtained by taking n lines determined
by the sides of the n-gon together with the n-lines of symmetry of that n-gon. A(2n, 1) is a
simplicial arrangement of 2n-lines.

Obviously, the A3-arrangement is equivalent to A(6, 1).

Example 4.3. Let cA = A(12, 1) (Figure 6). Then RB3(A) = {B1, . . . , B7}.

∇(B2) =
√
−3(C1 +C3 −C5 −C6 +C8 +C10)

∇(B3) =
√
−3(C1 +C3 −C7 −C9 )

∇(B6) =
√
−3( C2 +C4 −C8 −C10)

∇(B7) =
√
−3( C2 +C4 −C5 −C6 +C7 +C9 )

Hence we have a linear relation

∇(B2)−∇(B3) +∇(B6)−∇(B7) = 0,

and so we have that A(12, 1) is pure-tone.

More generally, using Theorem 2.3 and Theorem 3.21, we can prove that A(6m, 1) is pure-
tone. All other examples except for A(6m, 1) in the catalogue [8] (and [5]) satisfy H1(FA)6=1 = 0.
It seems natural to pose the following.

Conjecture 4.4. Assume that cA is a simplicial arrangement. Then the following are equiva-
lent.

(a) cA = A(6m, 1) for some m > 0.
(b) H1(FA) 6=1 6= 0.
(c) A is pure-tone.
(d) cA has a k-multinet structure for some k ≥ 3.
(e) cA has a 3-multinet structure.
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∞

B1

B2

B3 B4 B5 B6

B7

1 2

3 4

5 6

7 8

9 10

Figure 6. A(12, 1)

4.3. Zoo of non-trivial eigenspaces.

Example 4.5. Let cA be the Pappus arrangement (Figure 7), so that |cA| = n + 1 = 9. Let
k = 3. Then RB3(A) = {B1, B2, B3}. By the expressions

∇(B1) =
√
−3(C1 +C3 −C9 −C11)

∇(B2) =
√
−3(C1 +C2 +C3 +C4 −C8 −C9 −C10 −C11)

∇(B3) =
√
−3( C2 +C4 −C8 −C10 )

there is a unique relation ∇(B1) − ∇(B2) + ∇(B3) = 0. Hence the Pappus arrangement is
pure-tone.

∞

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Z
Z

Z
Z
Z

Z
Z
Z

Z
Z
Z

Z
Z
Z

Z
Z
Z

Z
Z

Z

Z
Z

Z
Z

Z
Z
Z

Z
Z
Z

Z
Z

Z
Z
Z

Z
Z
Z

Z
ZB1 B2 B3

C1

C2

C3
C4

C5 C6 C7

C8 C9

C10 C11

Figure 7. Pappus arrangement (Example 4.5)
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Example 4.6. (Taken from [9, page 244].) Let A be as in the right-hand side of Figure 8. Then
|cA| = n+ 1 = 12 and RB3(A) = {B1, . . . , B5}. There is a unique linear relation

∇(B1)−∇(B2) +∇(B3)−∇(B4) = 0

(B5 does not appear). Hence A is pure-tone.

∞

B1 B2 B3

B4

B5

Figure 8. Example 4.6

Example 4.7. (Taken from [9, page 244].) Let A be as in the right-hand side of Figure 9. Then
|cA| = n+ 1 = 12 and RB3(A) = {B1, . . . , B4}. There is a unique linear relation

∇(B1)−∇(B2) +∇(B3)−∇(B4) = 0.

Hence A is pure-tone.

Example 4.8. (Taken from [9, page 44].) Let A be as in the right-hand side of Figure 10. Then
|cA| = n+ 1 = 15 and RB3(A) = {B1, . . . , B7}. There is a unique linear relation

∇(B1)−∇(B3) +∇(B4)−∇(B6) +∇(B7) = 0

(B2 and B5 do not appear). Hence A is pure-tone.

Definition 4.9. For a positive integer m ∈ Z>0, B3m is described as follows. Starting with a
regular convex 2m-gon in the Euclidean plane, B3m is obtained by taking 2m lines determined
by the sides of the 2m-gon together with m-diagonal lines connecting opposite vertices. (Note
that B6 is equivalent to the A3-arrangement, see Figure 2.)

Example 4.10. Using Theorem 2.3 and Theorem 3.21, we can prove that the B3m-arrangement
is pure-tone.
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∞

B1

B2

B3

B4

Figure 9. Example 4.7

∞

B1

B2 B3 B4 B5 B6

B7

Figure 10. Example 4.8
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Figure 11. B15 and B18
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