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GENERICITY OF CAUSTICS ON A CORNER

TAKAHARU TSUKADA

Dedicated to Professor Masahiko Suzuki on his sixtieth birthday

Abstract. We introduce the notions of caustic-equivalence and weak caustic-equivalence re-

lations of reticular Lagrangian maps in order to give a generic classification of “shapes” of
caustics on a corner. We give the figures of all generic caustics on a corner in a smooth

manifold of dimension 2 and 3 under these equivalence relations.

1. Introduction

Lagrangian singularities can be found in many problems of differential geometry, calculus
of variations and mathematical physics. One of the most successful applications is the study
of singularities of caustics. For example, the particles incident along geodesics from a smooth
hypersurface V n−1 in a Riemannian manifold Mn to conormal directions define a Lagrangian
submanifold at a point in the cotangent bundle. The caustic generated by the hypersurface

Figure 1. Example of caustics on a corner

is regarded as the caustic of the Lagrangian map defined by the restriction of the cotangent
bundle projection to the Lagrangian submanifold. In [5] we investigated the theory of reticular
Lagrangian maps, which is a generalized notion of Lagrangian maps and can be described as
stable caustics generated by a hypersurface germ with a boundary(r = 1), a corner(r = 2), or an
r-corner in a smooth manifold. In [6] we gave classification lists of generic caustics in the case
r = 0, 1 respectively. In the case r = 2, that is the initial hypersurface has a corner, the method
used in [6] does not work well by the modality of generating families since the transversality
theorem can not work in this case.

In the case r = 2 we consider the following situation: Let V be a 2-dimensional hypersurface
germ in a 3-dimensional manifold M . We suppose that V is the light source with a corner and
there exist local coordinates (x1, x2, x3) such that V = {(x1, x2, 0) ∈ (R3, 0)|x1 ≥ 0, x2 ≥ 0}. We
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Figure 2. Example of caustics on a boundary

consider that the light rays are incident from each of V , V1 = V ∩ {x1 = 0}, V2 = V ∩ {x2 = 0},
and VI2 = V ∩{x1 = x2 = 0} to the conormal directions, where I2 = {1, 2}. We denote them by
L0
∅, L

0
1, L

0
2, L

0
I2

respectively. Then they are reduced to the following normal forms by a suitable

symplectic diffeomorphism on (T ∗R3, 0):

L0
σ = {(q, p) ∈ (T ∗R3, 0)|qσ = pI2\σ = q3 = 0, qI2\σ ≥ 0},

for σ = ∅, 1, 2, I2. Then all L0
σ are transposed around a point in T ∗M by a symplectic diffeo-

morphism S on T ∗M along geodesics. By taking a Lagrangian equivalence around this point,
we may assume that S is given by S : (T ∗R3, 0)→ (T ∗R3, 0). Let

L = {(q, p) ∈ T ∗R3|q1p1 = q2p2 = q3 = 0, q1 ≥ 0, q2 ≥ 0}

be a representative as a germ of the union of all L0
σ.

We define i = S|L. Let π : (T ∗R3, 0) → (R3, 0) be the canonical Lagrangian projection. We
consider the following map

(L, 0)
i−→ (T ∗R3, 0)

π−→ (R3, 0).

We define the caustic of π ◦ i to be the union of the caustics Cσ of the Lagrangian maps π ◦ i|L0
σ

for all σ ⊂ I2 and the quasi-caustic Qσ,τ = π ◦ i(L0
σ ∩ L0

τ ) for all σ, τ ⊂ Ir(σ 6= τ).
In the case r = 2, the caustic of π ◦ i is

C∅ ∪ C1 ∪ C2 ∪ C{1,2} ∪Q∅,1 ∪Q∅,2 ∪Q1,{1,2} ∪Q2,{1,2}.

Then the quasi-caustic Qσ,τ expresses the intersection of light rays incident from Vσ and Vτ .

Our purpose is the investigation of generic caustics under perturbations of S. All functions
and maps are smooth, unless stated otherwise.

We here give a review of the theory of reticular Lagrangian maps which is developed in [5].

Reticular Lagrangian maps: Let Ir = {1, . . . , r},

L = {(q, p) ∈ T ∗Rn| q1p1 = · · · = qrpr = qr+1 = · · · = qn = 0, qIr ≥ 0}

be a representative of the union of

L0
σ = {(q, p) ∈ (T ∗Rn, 0)|qσ = pIr\σ = qr+1 = · · · = qn = 0, qIr\σ ≥ 0}
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for all σ ⊂ Ir. We write qσ = 0 for the condition qi = 0 for all i ∈ σ and write qσ ≥ 0 for
the condition qi ≥ 0 for all i ∈ σ and write other notations analogously. The set L0

σ is the
normalization of the particles incident from the σ-edge Vσ := V ∩ {qσ = 0} of the light source
hypersurface V = {(q1, . . . , qn) ∈ (Rn, 0)|q1 ≥ 0, . . . , qr ≥ 0, qn = 0} with an r-corner for some
local coordinate system q of M to conormal directions. Let π : (T ∗Rn, 0) → (Rn, 0) be the
canonical Lagrangian projection.

A map germ π ◦ i : (L, 0)→ (T ∗Rn, 0)→ (Rn, 0) is called a reticular Lagrangian map if there
exists a symplectic diffeomorphism germ S on (T ∗Rn, 0) such that i = S|L.

We note that the particles incident from all Vσ
′s to the conormal directions are mapped along

geodesics. This map is extended to the reticular Lagrangian immersion i which is the generalized
notion of Lagrangian immersion.

Equivalence relation: We call a symplectic diffeomorphism germ φ on (T ∗Rn, 0) a reticular
diffeomorphism if φ(L0

σ) = L0
σ for σ ⊂ Ir. We say that reticular Lagrangian maps

π ◦ i1, π ◦ i2 : (L, 0)→ (T ∗Rn, 0)→ (Rn, 0)

are Lagrangian equivalent if there exist a reticular diffeomorphism φ and a Lagrangian equivalence
Θ (a symplectic diffeomorphism which preserves the fiber of π) such that the following diagram
is commutative:

(L, 0)
i1−→ (T ∗Rn, 0)

π−→ (Rn, 0)
φ|L ↓ Θ ↓ g ↓

(L, 0)
i2−→ (T ∗Rn, 0)

π−→ (Rn, 0),

where g is the diffeomorphism of the base space of π induced by Θ.
It may be thought that a reticular diffeomorphism does not have to be a symplectic diffeo-

morphism. But a reticular diffeomorphism consists of compositions of two symplectic diffeomor-
phisms and a Lagrangian equivalence, it follows that a reticular diffeomorphism is automatically
a symplectic diffeomorphism. We also remark that if two reticular Lagrangian maps π ◦ i1 and
π◦ i2 are Lagrangian equivalent, then the Lagrangian maps π◦ i1|L0

σ
and π◦ i2|L0

σ
are Lagrangian

equivalent for each σ ⊂ Ir.

Let U, V be open sets in Rm1 ,Rm2 respectively. We denote by C∞(U, V ) the set which consists
of smooth maps from U to V . We define

Nf (l, ε,K) = { g ∈ C∞(U, V ) | |Dα(g − f)x| < ε ∀x ∈ K, |α| < l }

for each f ∈ C∞(U, V ), l ∈ N, ε > 0 and compact set K in U . Then the family of sets Nf (l, ε,K)
forms a basis for the C∞-topology on C∞(U, V ).

Let U be an open set in T ∗Rn, and S(U, T ∗Rn) be the set which consists of symplectic
embeddings from U to T ∗Rn. We equip S(U, T ∗Rn) the induced topology from C∞-topology
of C∞(U, T ∗Rn). We define S(T ∗Rn, 0) to be the set of symplectic diffeomorphism germs on
(T ∗Rn, 0).

We say that a reticular Lagrangian map π ◦ i : (L, 0) → (T ∗Rn, 0) → (Rn, 0) is stable if the

following holds: For any extension S ∈ S(T ∗Rn, 0) of i and any representative S̃ ∈ S(U, T ∗Rn) of

S, there exists a neighborhood NS̃ of S̃ such that for any T̃ ∈ NS̃ the reticular Lagrangian maps

π ◦ (T̃ |L at x0) and π ◦ i are Lagrangian equivalent for some x0 = (0, · · · , 0, P 0
r+1, · · · , P 0

n) ∈ U ,

where the map (T̃ |L at x0) is given by x(∈ L) 7→ T̃ (x+ x0)− T̃ (x0).
Generating family: Let Hr = {(x1, . . . , xr) ∈ Rr|x1 ≥ 0, . . . , xr ≥ 0} be an r-corner. We

denote by E(r; k) the set of all germs at 0 in Hr × Rk of smooth maps Hr × Rk → R and set
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M(r; k) = {f ∈ E(r; k)|f(0) = 0}. We write E(k) for E(0; k) and M(k) for M(0; k). Then E(r; k)
is an R-algebra in the usual way and M(r; k) is its unique maximal ideal.

We denote by J l(r + k, p) the set of l-jets at 0 of germs in E(r; k, p). There are natural
projections:

πl : E(r; k, p) −→ J l(r + k, p), πl1l2 : J l1(r + k, p) −→ J l2(r + k, p) (l1 > l2).

We write jlf(0) for πl(f) for each f ∈ E(r; k, p).

A function germ F (x, y, q) ∈M(r; k + n)2 is called S-non-degenerate if

x1, · · · , xr,
∂F

∂x1
, · · · , ∂F

∂xr
,
∂F

∂y1
, · · · , ∂F

∂yk

are independent on (Hk × Rk+n, 0), that is

rank


∂2F

∂x∂y

∂2F

∂x∂q
∂2F

∂y∂y

∂2F

∂y∂q


0

= r + k.

We say that an S-non-degenerate function germ F (x, y, q) ∈ M(r; k + n)2 is a generating
family of a reticular Lagrangian map π ◦ i if F |xσ=0 is a generating family of the Lagrangian
map π ◦ i|L0

σ
, that is

i(L0
σ) = {(q, ∂F

∂q
(x, y, q)) ∈ (T ∗Rn, 0)|xσ =

∂F

∂xIr\σ
=
∂F

∂y
= 0, xIr\σ ≥ 0}

for σ ⊂ Ir.

Generating families of reticular Lagrangian maps with caustics of Figure 1,2 are given as
follows:
Figure 1(left): F (x1, x2, q1, q2) = x21 − x1x2 + x22 + q1x1 + q2x2,
Figure 1(right): F (x1, x2, q1, q2, q3) = x21 − x1x2 − x32 + q1x1 + q2x2 + q3x

2
2,

Figure 2(left): F (x, q1, q2) = x3 + q1x
2 + q2x,

Figure 2(right): F (x, q1, q2, q3) = x4 + q1x
3 + q2x

2 + q1x.
We showed that the Lagrangian maps of figure 2 are stable in [5].

We calculate the caustic of the first example: The canonical relation

Pi := {(x, i(x)) ∈ (L× T ∗R, (0, 0))}

of i is given by the generating family H(Q1, Q2, q1, q2) = Q2
1 −Q1Q2 +Q2

2 +Q1q1 +Q2q2 such
that

Pi = {(Q1, Q2,−
∂H

∂Q1
,− ∂H

∂Q2
, q1, q2,

∂H

∂q1
,
∂H

∂q2
)}

= {Q1, Q2,−2Q1 +Q2 − q1, Q1 − 2Q2 − q2, q1, q2, Q1, Q2)}.
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Therefore we have that

i(L0
∅) = L∅ = {(q1, q2,

∂F

∂q1
,
∂F

∂q2
) ∈ (T ∗R2, 0)| ∂F

∂x1
=
∂F

∂x2
= 0}

= {(−2x1 + x2, x1 − 2x2, x1, x2)},

i(L0
1) = L1 = {(q, ∂F

∂q
)|x1 =

∂F

∂x2
= 0} = {(q1,−2x2, 0, x2)},

i(L0
2) = L2 = {(q, ∂F

∂q
)|x2 =

∂F

∂x1
= 0} = {(−2x1, q2, x1, 0)},

i(L0
{1,2}) = L{1,2} = {(q, ∂F

∂q
)|x1 = x2 = 0} = {(q1, q2, 0, 0)}.

Therefore C∅ = C1 = C2 = C{1,2} = ∅.

Q∅,1 = {(x2,−2x2) ∈ (R2, 0)|x2 ≥ 0}, Q∅,2 = {(−2x1, x1)|x1 ≥ 0},

Q1,{1,2} = {(q1, 0)}, Q2,{1,2} = {(0, q2)}.
Stability of unfoldings: We recall the theory of unfolding which is developed in [5, p.583

Section 4]. Let (x, y) = (x1, . . . , xr, y1, . . . , yk) be a fixed coordinate system of (Hr ×Rk, 0). We
denote by B(r; k) the group of diffeomorphism germs on (Hr × Rk, 0) of the form:

Φ(x, y) = (x1φ
1
1(x, y), . . . , xrφ

r
1(x, y), φ12(x, y), . . . , φk2(x, y)).

We also denote by Bn(r; k+n) the group of diffeomorphism germs on (Hr×Rk+n, 0) of the form:

Φ(x, y, q) = (x1φ
1
1(x, y, q), . . . , xrφ

r
1(x, y, q), φ12(x, y, q), . . . , φk2(x, y, q),

φ13(q), . . . , φn3 (q)).

We write Φ(x, y, q) = (xφ1(x, y, q), φ2(x, y, q), φ3(q)), x∂f∂x = (x1
∂f
∂x1

, · · · , xr ∂f∂xr ) and write other
notations analogously.

We say that f, g ∈ E(r; k) are reticular R-equivalent if there exists φ ∈ B(r; k) such that
g = f ◦ φ.

We say that F,G ∈ E(r; k + n) are reticular P-R+-equivalent if there exist Φ ∈ Bn(r; k + n)
and a ∈M(n) such that G(x, y, q) = F ◦ Φ(x, y, q) + a(q) for (x, y, q) ∈ (Hr × Rk+n, 0). We say
that F ∈ E(r; k1 + n) and G ∈ E(r; k2 + n) are stably reticular P-R+-equivalent if F and G are
reticular P-R+-equivalent after the addition of nondegenerate quadratic forms of y.

We say that a function germ f ∈M(r; k) is R-simple if the following holds: For a sufficiently
large integer l, there exists a neighborhood N of jlf(0) in J l(r + k, 1) such that N intersects
with a finite number of R-orbits. By [1] we have that:

Theorem 1.1. (see also [2, p.279]) An R-simple function germ in M(1; k)2 is stably R-equivalent
to one of the following function germs:

B±l : ±xl (l ≥ 2), C±l : xy ± yl (l ≥ 3), F±4 : ±x2 + y3.

Let U be an open set in Rn. We equip C∞(U,Rn) with the C∞-topology. Let f ∈ M(r; k)
and F ∈M(r; k+n) be an unfolding of f . We say that F is reticular P-R+-stable if the following

condition holds: For any neighborhood U of 0 in Rr+k+n and any representative F̃ ∈ C∞(U,R) of

F , there exists a neighborhood NF̃ of F̃ such that, for any element G̃ ∈ NF̃ , the germ G̃|Hr×Rk+n
at (0, y0, q0) is reticular P-R+-equivalent to F for some (0, y0, q0) ∈ U .
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We say that F is reticular P-R+-infinitesimal versal if

E(r; k) = 〈x∂f
∂x
,
∂f

∂y
〉E(r;k) + 〈1, ∂F

∂q
|q=0〉R.

In [5] we define other stabilities of unfoldings: versatility, infinitesimal stability, homotopical
stability.

As a consequence of Damon’s theory of good action, we have the following theorem:

Theorem 1.2. (see [5, Theorem 4.5]) Let F ∈ M(r; k + n) be an unfolding of f ∈ M(r; k).
Then the following are all equivalent.
(1) F is reticular P-R+-stable.
(2) F is reticular P-R+-versal.
(3) F is reticular P-R+-infinitesimally versal.
(4) F is reticular P-R+-infinitesimally stable.
(5) F is reticular P-R+-homotopically stable.

The relation between reticular Lagrangian maps and their generating families are
given in the following theorems:

Theorem 1.3. (see [5, Theorem 3.2]) (1) For any reticular Lagrangian map π ◦ i, there exists
a function germ F ∈M(r; k + n)2 which is a generating family of π ◦ i.
(2) For any S-non-degenerate function germ F ∈M(r; k+n)2, there exists a reticular Lagrangian
map of which F is a generating family.
(3) Two reticular Lagrangian maps are Lagrangian equivalent if and only if their generating
families are stably reticular P-R+-equivalent.

We remark that Nguyen Huu Duc, Nguyen Tien Dai and F. Pham proved the same theorem
in the complex analytic category (cf., [3]). But their method does not work well for the C∞-
category because Ft = (1 − t)F + tF ′′ on p.14 may be degenerate at some point in [0, 1]. We
solved this problem in [5, p.577-582]. Our method is available for all of C∞, real analytic, and
complex analytic categories.

Theorem 1.4. (see [5, Theorem 5.5] or [6, Theorem 3.1]) Let π◦i : (L, 0)→ (T ∗Rn, 0)→ (Rn, 0)
be a reticular Lagrangian map with the generating family F (x, y, q) ∈M(r; k + n)2. Then π ◦ i
is stable if and only if F is a reticular P-R+-stable unfolding of F |q=0.

We investigated the genericity of caustics on an r-corner and gave the generic classification
for the cases r = 0 and 1 in [6]. We also showed that the method in [6] does not work well for the
case r = 2 by the modality of generating families. In this paper we introduce two equivalence
relations of reticular Lagrangian maps which are weaker than Lagrangian equivalence in order
to give a generic classification of caustics on a corner.

2. Caustic- and Weak Caustic-equivalences

We introduce equivalence relations on reticular Lagrangian maps and their generating fam-
ilies.

Let π ◦ ij be reticular Lagrangian maps for j = 1, 2. We say that they are caustic-equivalent
if there exists a diffeomorphism germ g on (Rn, 0) such that

(1) g(C1
σ) = C2

σ, g(Q1
σ,τ ) = Q2

σ,τ for all σ, τ ⊂ Ir (σ 6= τ).
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When all Ciσ and Qiσ,τ are smooth, we may define weak caustic-equivalence. We say that

reticular Lagrangian maps π ◦ i1 and π ◦ i2 are weakly caustic-equivalent if all Ciσ and Qiσ,τ are

smooth and there exists a homeomorphism germ g on (Rn, 0) such that g is smooth on all C1
σ,

Q1
σ,τ , and satisfies (1).

We shall define the stabilities of reticular Lagrangian maps under the above equivalence re-
lations and define the corresponding equivalence relations and stabilities of their generating
families.

The purpose of this paper is to show the following theorem:

Theorem 2.1. Let n = 2, 3, U a neighborhood of 0 in T ∗Rn, S(T ∗Rn, 0) be the set of symplectic
diffeomorphism germs on (T ∗Rn, 0), and S(U, T ∗Rn) be the space of symplectic embeddings from
U to T ∗Rn with the C∞-topology. Then there exists a residual set O ⊂ S(U, T ∗Rn) such that

for any S̃ ∈ O and x ∈ U , the reticular Lagrangian map π ◦ S̃x|L is weakly caustic-stable or

caustic-stable, where S̃x ∈ S(T ∗Rn, 0) is defined by the map x0 7→ S̃(x0 + x)− S̃(x).

A reticular Lagrangian map π ◦ S̃x|L for any S̃ ∈ O and x ∈ U is weakly caustic-equivalent to

one which has a weak reticular P-C-stable generating family B±,+,12,2 , B±,+,22,2 , B±,−2,2 , or is caustic

equivalent to one which has a reticular P-C-stable generating family B±,02,2 , B±.±2,2,3, B±,±2,3 , B±,±3,2 ,

C±,±3,2 :

B±,+,12,2 : F (x1, x2, q1, q2) = x21 ± x1x2 + 1
5x

2
2 + q1x1 + q2x2,

B±,+,22,2 : F (x1, x2, q1, q2) = x21 ± x1x2 + x22 + q1x1 + q2x2,

B±,−2,2 : F (x1, x2, q1, q2) = x21 ± x1x2 − x22 + q1x1 + q2x2,

B±,02,2 : F (x1, x2, q1, q2, q3) = x21 ± x22 + q1x1 + q2x2 + q3x1x2,

B±,±2,2,3: F (x1, x2, q1, q2, q3) = (x1 ± x2)2 ± x32 + q1x1 + q2x2 + q3x
2
2,

B±,±2,3 : F (x1, x2, q1, q2, q3) = x21 ± x1x2 ± x32 + q1x1 + q2x2 + q3x
2
2,

B±,±3,2 : F (x1, x2, q1, q2, q3) = x31 ± x1x2 ± x22 + q1x1 + q2x2 + q3x
2
1,

C±,±3,2 : F (y, x1, x2, q1, q2, q3) = ±y3 + x1y ± x2y + x22 + q1y + q2x1 + q3x2.

In order to describe the caustic-equivalence of reticular Lagrangian maps by their generat-
ing families, we introduce the following equivalence relation of function germs. We say that
function germs f, g ∈ E(r; k) are reticular C-equivalent if there exist φ ∈ B(r; k) and a non-zero
number a ∈ R such that g = a · f ◦ φ. We construct the theory of unfoldings with respect
to the corresponding equivalence relation. Then the relation of unfoldings is given as follows:
Two function germs F (x, y, q), G(x, y, q) ∈ E(r; k + n) are reticular P-C-equivalent if there exist
Φ ∈ Bn(r; k + n) and a unit a ∈ E(n) and b ∈M(n) such that G = a · F ◦ Φ + b. We define the
stable reticular (P-)C-equivalence in the usual way. We remark that a reticular P-C-equivalence
class includes the reticular P-R+-equivalence classes.

We review the results of the theory of function germs under this equivalence relation. Let
F (x, y, q) ∈M(r; k + n) be an unfolding of f(x, y) ∈M(r; k).

We say that F is reticular P-C-stable if the following condition holds: For any neighborhood
U of 0 in Rr+k+n and any representative F̃ ∈ C∞(U,R) of F , there exists a neighborhood NF̃
of F̃ in the C∞-topology such that for any element G̃ ∈ NF̃ the germ G̃|Hr×Rk+n at (0, y0, q0) is
reticular P-C-equivalent to F for some (0, y0, q0) ∈ U .



282 TAKAHARU TSUKADA

We say that F is reticular P-C-versal if all unfoldings of f are reticular P-C-f -induced from
F . That is, for any unfolding G ∈M(r; k + n′) of f , there exist a map germ

Φ : (Hr × Rk+n
′
, 0)→ (Hr × Rk+n, 0)

and a unit a ∈ E(n′) and b ∈M(n′) satisfying the following conditions:
(1) Φ(x, y, 0) = (x, y, 0) for all (x, y) ∈ (Hr × Rk, 0) and a(0) = 1, b(0) = 0,
(2) Φ can be written in the form: Φ(x, y, q) = (xφ1(x, y, q), φ2(x, y, q), φ3(q)),

(3) G(x, y, q) = a(q) · F ◦ Φ(x, y, q) + b(q) for all (x, y, q) ∈ (Hr × Rk+n′
, 0).

We say that F is reticular P-C-infinitesimally versal if

(2) E(r; k) = 〈x∂f
∂x
,
∂f

∂y
〉E(r;k) + 〈1, f, ∂F

∂q
|q=0〉R.

We say that F is reticular P-C-infinitesimally stable if

E(r; k + n) = 〈x∂F
∂x

,
∂F

∂y
〉E(r;k+n) + 〈1, F, ∂F

∂q
〉E(n).

We say that F is reticular P-C-homotopically stable if for any smooth path-germ

(R, 0)→ E(r; k + n), t 7→ Ft

with F0 = F , there exists a smooth path-germ

(R, 0)→ Bn(r; k + n)× E(n)× E(n), t 7→ (Φt, at, bt)

with (Φ0, a0, b0) = (id, 1, 0) such that each (Φt, at, bt) is a reticular P-C-isomorphism from F to
Ft, that is Ft = at · F ◦ Φt + bt for t around 0.

The following theorem is used to prove that the stabilities of reticular Lagrangian maps and
their generating families are equivalent.

Theorem 2.2. (cf., [5, Theorem 4.5]) Let F ∈ M(r; k + n) be an unfolding of f ∈ M(r; k).
Then the following are all equivalent.
(1) F is reticular P-C-stable.
(2) F is reticular P-C-versal.
(3) F is reticular P-C-infinitesimally versal.
(4) F is reticular P-C-infinitesimally stable.
(5) F is reticular P-C-homotopically stable.

For a non-quasihomogeneous function germ f(x, y) ∈ M(r; k), if 1, f, a1, . . . , an ∈ E(r; k) is
a representative of a basis of the vector space

E(r; k)/〈x∂f
∂x
,
∂f

∂y
〉E(r;k),

then the function germ f + a1q1 + · · · + anqn ∈M(r; k + n) is a reticular P-C-stable unfolding
of f by (2). We call n the reticular C-codimension of f . We remark that the dimension of the
vector space is (n+ 2), but the reticular C-codimension is n.

If f is quasihomogeneous then f is included in 〈x∂f∂x ,
∂f
∂y 〉E(r;k). This means that the reticular

C-codimension of a quasihomogeneous function germ is equal to its reticular R+-codimension.
Therefore if 1, a1, . . . , an ∈ E(r; k) is a representative of a basis of the vector space, the function
germ f + a1q1 + · · · + anqn ∈ M(r; k + n) is a reticular P-C-stable unfolding of f . In this case
the dimension of the vector space is (n+ 1), but the reticular C-codimension is n.
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We define the simplicity of function germs under the reticular C-equivalence in the usual way
(cf., the definition before Theorem 1.1).

Theorem 2.3. (cf., Theorem 1.1) A reticular C-simple function germ in M(1; k)2 is stably
reticular C-equivalent to one of the following function germs:

Bl : xl (l ≥ 2), Cεl : xy + εyl (εl−1 = 1, l ≥ 3), F4 : x2 + y3.

The relation between reticular Lagrangian maps and their generating families under the
caustic-equivalence are given as follows:

Proposition 2.4. Let π◦ij be reticular Lagrangian maps with generating families Fj for j = 1, 2.
If F1 and F2 are stably reticular P-C-equivalent then π ◦ i1 and π ◦ i2 are caustic-equivalent.

Proof. The function germ F2 may be written as F2(x, y, q) = a(q)F3(x, y, q), where a is a unit
and F1 and F3 are stably reticular P-R+-equivalent. Then the reticular Lagrangian map π ◦ i3
given by F3 and π ◦ i1 are Lagrangian equivalent and the caustic of π ◦ i2 and π ◦ i3 coincide
with each other. �

This proposition shows that it is enough to classify function germs under stable reticular
P-C-equivalence in order to classify reticular Lagrangian maps under caustic-equivalence. We
give here the following classification list:

Theorem 2.5. (see [5, p.592]) Let f ∈ M(2; k)2 have reticular C-codimension ≤ 3. Then f is
stably reticular C-equivalent to one in the following list.

k Normal form codim Conditions Notation

0 x21 ± x1x2 + ax22 3 0 < a < 1
4 B±,+,12,2,a

x21 ± x1x2 + ax22 3 a > 1
4 B±,+,22,2,a

x21 ± x1x2 + ax22 3 a < 0 B±,−2,2,a

x21 ± x22 3 B±,02,2

(x1 ± x2)2 ± x32 3 B±,±2,2,3

x21 ± x1x2 ± x32 3 B±,±2,3

x31 ± x1x2 ± x22 3 B±,±3,2

1 ±y3 + x1y ± x2y + x22 3 C±,±3,2

We remark that the stable reticular C-equivalence class B+,+
2,3 of x21 +x1x2 +x32 consists of the

union of the stable reticular R-equivalence classes of x21 + x1x2 + ax32 and −x21 − x1x2 − ax32 for

a > 0. Since x1
∂f
∂x1

, x2
∂f
∂x2

, f are linear independent, this means that the C-equivalence class of

f is simple. The same things hold for B±,±2,2,3, B±,±2,3 , B±,±3,2 , C±,±3,2 .

We also remark that the classification list looks like that of D.Siersma [4, p.126]. But our
equivalence relation differs from his.

3. Caustic-stability

We define the caustic-stability of reticular Lagrangian maps and reduce our investigation to
finite-dimensional jet spaces of symplectic diffeomorphism germs.

We say that a reticular Lagrangian map π ◦ i is caustic-stable if the following condition holds:
For any extension S ∈ S(T ∗Rn, 0) of i and any representative S̃ ∈ S(U, T ∗Rn) of S, there exists

a neighborhood NS̃ of S̃ such that for any S̃′ ∈ NS̃ the reticular Lagrangian map π ◦ S̃′|L at x0
and π ◦ i are caustic-equivalent for some x0 = (0, . . . , 0, p0r+1, . . . , p

0
n) ∈ U .

Definition 3.1. Let π ◦ i be a reticular Lagrangian map and l be a non-negative number. We
say that π ◦ i is caustic l-determined if the following condition holds: For any extension S of
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i, the reticular Lagrangian map π ◦ S′|L and π ◦ i are caustic-equivalent for any symplectic
diffeomorphism germ S′ on (T ∗Rn, 0) satisfying jlS(0) = jlS′(0).

Lemma 3.2. Let π ◦ i : (L, 0) → (T ∗Rn, 0) → (Rn, 0) be a reticular Lagrangian map. If a
generating family of π ◦ i is reticular P-C-stable then π ◦ i is caustic (n+ 2)-determined.

Proof. This is proved in a manner analogous to that of [6, Theorem 5.3]. We give a sketch of
the proof. Let S be an extension of i. Then we may assume that there exists a function germ
H(Q, p) such that the canonical relation PS has the form:

PS = {(Q,−∂H
∂Q

(Q, p),−∂H
∂p

(Q, p), p) ∈ (T ∗Rn × T ∗Rn, (0, 0))}.

Then the function germ F (x, y, q) = H0(x, y) + 〈y, q〉 is a reticular P-C-stable generating family
of π ◦ i, and H0 is reticular R-(n+ 3)-determined, where H0(x, y) = H(x, 0, y). Let a symplectic
diffeomorphism germ S′ on (T ∗Rn, 0) satisfying jn+2S(0) = jn+2S′(0) be given. Then there
exists a function germ H ′(Q, p) such that the canonical relation PS′ has the same form for H ′

and the function germ G(x, y, q) = H ′0(x, y) + 〈y, q〉 is a generating family of π ◦ S′|L. Then
it holds that jn+3H0(0) = jn+3H ′0(0). There exists a function germ G′ such that G and G′

are reticular P-R-equivalent and F and G′ are reticular P-C-infinitesimal versal unfoldings of
H0(x, y). It follows that F and G are reticular P-C-equivalent by Theorem 1.2. Therefore π ◦ i
and π ◦ S′|L are caustic-equivalent. �

Let Sl(n) be the Lie group which consists of l-jets of symplectic diffeomorphisms on (TnR, 0).

Orbits of the caustic-equivalence classes B±,±2,2,3, B
±,±
2,3 B±,±3,2 , C±,±3,2 : Let [SX ]c be the

caustic-equivalence class of SX ∈ S(T ∗R3, 0) for each X = B±,±2,2,3, B
±,±
2,3 B±,±3,2 , C±,±3,2 in Theorem

2.5 such that π ◦ SX |L has a generating family which is a reticular P-C-stable unfolding of X.
Since the above singularities are reticular C-simple, this means that [jlSX(0)]c(:= jl[SX(0)]c)
are immersed manifolds in Sl(3) for l ≥ 2.

4. Weak Caustic-equivalence

There exist modalities in the classification list of Theorem 2.5. This means that caustic-
equivalence is still too strong for a generic classification of caustics on a corner. In order to
obtain a generic classification, we need to admit weak caustic-equivalence and the corresponding
equivalence relation on generating families.

We say that a reticular Lagrangian map π ◦ i is weakly caustic-stable if the following condition
holds: For any extension S ∈ S(T ∗Rn, 0) of i and any representative S̃ ∈ S(U, T ∗Rn) of S, there

exists a neighborhood NS̃ of S̃ such that for any S̃′ ∈ NS̃ the reticular Lagrangian map π ◦ S̃′|L
at x0 and π ◦ i are weakly caustic-equivalent for some x0 = (0, . . . , 0, p0r+1, . . . , p

0
n) ∈ U .

We say that two function germs in M(r; k + n)2 are weakly reticular P-C-equivalent if they
are generating families of weakly caustic-equivalent reticular Lagrangian maps. We say that two
function germs in M(r; k)2 are weakly reticular C-equivalent if they have unfoldings which are
weakly reticular P-C-equivalent. We define the stable weakly reticular (P-)C-equivalence in the
usual way.

We say that a function germ F (x, y, q) ∈ M(r; k + n) is weakly reticular P-C-stable if the
following condition holds: For any neighborhood U of 0 in Rr+k+n and any representative
F̃ ∈ C∞(U,R) of F , there exists a neighborhood NF̃ of F̃ in the C∞-topology such that for any
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element G̃ ∈ NF̃ the germ G̃|Hr×Rk+n at (0, y0, q0) is weakly reticular P-C-equivalent to F for
some (0, y0, q0) ∈ U .

Orbits of weak caustic-equivalence classes B±,+,12,2,a , B
±,+,2
2,2,a , B

±,−
2,2,a: We investigate here

the weak reticular C-equivalence classes B+,+,2
2,2,a of function germs. The same methods are valid

for the classes B±,+,12,2,a , B±,+,22,2,a , B±,−2,2,a. So we discuss only the classes B+,+,2
2,2,a .

We consider the reticular Lagrangian maps π ◦ ia : (L, 0) → (T ∗R2, 0) → (R2, 0) with the
generating families Fa(x1, x2, q1, q2) = x21+x1x2+ax22+q1x1+q2x2 (a > 1

4 ). We give the caustics

of π ◦ ia and π ◦ ib for 1
4 < a < b. In these figures Q1,I2 , Q2,I2 , Q∅,2 are in the same positions.

Figure 3. the caustics of π ◦ ia Figure 4. the caustics of π ◦ ib

Suppose that there exists a diffeomorphism germ g on (R2, 0) such that Q1,I2 , Q2,I2 , Q∅,2 are
invariant under g. Then g can not map Q∅,1 from one to the other. This implies that caustic-
equivalence is too strong for generic classifications. But these caustics are equivalent under weak
caustic-equivalence. The homeomorphism germ Φba on (R2, 0) is given as follows: We consider
the unit circle U with center 0 and let Ua, Ub be the intersection of U and the caustics of π ◦ ia,
π ◦ ib respectively. Then there exists a diffeomorphism φba on U such that φba(Ua) = Ub and φba
depends smoothly on a, b. We extend naturally the source space of φba to R2 − {0} and define

Φba(x) =

{
φba(x) x 6= 0

0 x = 0.

Then the map germ Φba at 0 gives a weak caustic-equivalence of π ◦ ia and π ◦ ib. We remark
that Φba is smooth and depends smoothly on a, b except at the origin. This means that the weak
caustic-equivalence Φ1

a is naturally extended for weak caustic equivalence from the (caustic)
stable reticular Lagrangian map with the generating families

F ′a(x1, x2, q1, q2, q3) = x21 + x1x2 + ax22 + q1x1 + q2x2 + q3x
2
2

to F ′(x1, x2, q1, q2, q3) = x21 + x1x2 + x22 + q1x1 + q2x2. The figure of the corresponding caustic
is given in Figure 8. We also remark that the functions x21 + x1x2 + x22 + q1x1 + q2x2 and
x21 + x1x2 + 1

5x
2
2 + q1x1 + q2x2 are not weakly reticular P-C-equivalent because Q∅,1 and Q∅,1 of

their caustics are in the opposite positions to each other.
Then we have that the function germs fa(x) = x21 +x1x2 +ax22(a > 1

4 ) are all weakly reticular
C-equivalent to each other.
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We define the weak reticular C-equivalence class [fa]w of fa by
⋃
a> 1

4
[fa]c. We also define the

weak reticular C-equivalence class [jlfa(0)]w of jlfa(0) by
⋃
a> 1

4
jl([fa]c).

Since x1
∂fa
∂x1

, x2
∂fa
∂x2

, x22 are linear independent and span the tangent space of the weak reticular

C-equivalence class [fa]w, we have that [fa]w is an immersed manifold in J3(2, 1).

We classify function germs in M(2; k)2 with respect to the reticular C-equivalence and weak
reticular C-equivalence with the codimension≤ 3. Then we have the following list:

k Normal form codim Notation

0 x21 ± x1x2 + 1
5x

2
2 2 B±,+,12,2

x21 ± x1x2 + x22 2 B±,+,22,2

x21 ± x1x2 − x22 2 B±,−2,2

x21 ± x22 3 B±,02,2

(x1 ± x2)2 ± x32 3 B±,±2,2,3

x21 ± x1x2 ± x32 3 B±,±2,3

1 ±y3 + x1y ± x2y + x22 3 C±,±3,2

We need to show the following proposition:

Proposition 4.1. Let π◦ ia : (L, 0)→ (T ∗R2, 0)→ (R2, 0) be the reticular Lagrangian map with

the generating family x21 + x1x2 + ax22 + q1x1 + q2x2(B+,+,2
2,2 ). Let Sa ∈ S(T ∗R2, 0) be extensions

of ia. Then the weak caustic-equivalence class

[jlS1(0)]w :=
⋃
a> 1

4

[jlSa(0)]c

is an immersed manifold in Sl(2) for l ≥ 1.

Proof. Let f(x1, x2) = x21 + x1x2 + ax22. The tangent space of [jlf(0)]w is spanned by

jl(x1
∂f
∂x1

)(0), jl(x2
∂f
∂x2

)(0), jl(x22)(0) and these are linearly independent for l ≥ 2. This means

that [jlf(0)]w is an immersed manifold of J l(2, 1) for l ≥ 2. This means that [jlS1(0)]w is an
immersed manifold of Sl(2) for l ≥ 1. �

We consider the (caustic) stable reticular Lagrangian map

π ◦ ia : (L, 0)→ (T ∗R3, 0)→ (R3, 0)

with the generating family

x21 + x1x2 + ax22 + q1x1 + q2x2 + q3x
2
2

and take an extension S′a ∈ S(T ∗R2, 0) of ia, then we have by the analogous method that:

Corollary 4.2. Let S′a be as above. Then the weak caustic-equivalence class

[jlS′1(0)]w :=
⋃
a> 1

4

[jlS′a(0)]c

is an immersed manifold in Sl(3) for l ≥ 1.

Theorem 4.3. The function germ F (x1, x2, q1, q2) = x21 + x1x2 + x22 + q1x1 + q2x2 is a weakly
reticular P-C-stable unfolding of f(x1, x2) = x21 + x1x2 + x22

Proof. We define F ′ ∈ M(2; 3)2 by F ′(x1, x2, q1, q2, q3) = F (x1, x2, q1, q2) + q3x
2
2 Then F ′

is a reticular P-R+-stable unfolding of f . It follows that for any neighborhood U ′ of 0 in
R5 and any representative F̃ ′ ∈ C∞(U,R), there exists a neighborhood NF̃ ′ such that for
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any G̃′ ∈ NF̃ ′ the function germ G̃′|H2×R3 at p′0 is reticular P-R+-equivalent to F ′ for some
p′0 = (0, 0, q01 , q

0
2 , q

0
3) ∈ U ′.

Let a neighborhood U of 0 in R4 and a representative F̃ ∈ C∞(U,R) be given. We set
the open interval I = (−0.5, 0.5) and set U ′ = U × I. Then there exists NF̃ ′ for which the

above condition holds. We can choose a neighborhood NF̃ of F̃ such that for any G̃ ∈ NF̃
the function G̃+ q3x

2
2 ∈ NF̃ ′ . Let a function G̃ ∈ NF̃ be given. Then the function germ

G′ = (G̃+ q3x
2
2)|H2×R3 at p′0 is reticular P-R+-equivalent to F ′ for some

p′0 = (0, 0, q01 , q
0
2 , q

0
3) ∈ U ′.

We define G ∈M(2; 2)2 by G̃|H2×R2 at p0 = (0, 0, q01 , q
0
2) ∈ U . Then it holds that

G′(x, q) = G(x, q1, q2) + (q3 + q03)x22,

and G′|q=0 = G(x, 0) + q03x
2
2 is reticular R-equivalent to f . Let (Φ, a) be the reticular P-R+-

equivalence from G′ to F ′. We write Φ(x, q) = (xφ1(x, q), φ21(q), φ22(q), φ23(q)). By shrinking U if
necessary, we may assume that the map germ

(q1, q2) 7→ (φ21(q1, q2, 0), φ22(q1, q2, 0)) on (R2, 0)

is a diffeomorphism germ. Then F is reticular P-R+-equivalent to G1 ∈ M(2; 2)2 given by
G1(x, q) = G(x1, x2, q1, q2) + (φ23(q1, q2, 0) + q03)x22. It follows that the reticular Lagrangian maps
defined by F and G1 are Lagrangian equivalent. We have that

j2(G+ q03x
2
2)(0) = j2G1(0), q03 > −0.5.

This means that the caustic of G1 is weakly caustic-equivalent to the caustic of G because the
reticular Lagrangian maps of G1 and F are the same weak caustic-equivalence class that is
1-determined under weak caustic-equivalence. This means that F and G are weakly reticular
P-C-equivalent. Therefore F is weakly reticular P-C-stable. �

By the above consideration, we have that: For each singularity B±,+,12,2 , B±,+,22,2 , B±,−2,2 , if we

take the symplectic diffeomorphism germ Sa(S′a) as the above method, then the weak caustic-
equivalence class [jlSa(0)]w([jlS′a(0)]w) is one class and immersed manifold in Sl(2)(Sl(3)) for
l ≥ 1 respectively. Since the caustics of π ◦ Sa|L and π ◦ S′a|L are determined by their linear
parts, this means that the reticular Lagrangian maps are weakly caustic 1-determined.

We now start to prove the main theorem: We choose the weakly caustic-stable reticular
Lagrangian maps π ◦ iX : (L, 0)→ (T ∗Rn, 0)→ (Rn, 0) for

(3) X = B±,+,12,2 , B±,+,22,2 , B±,−2,2 .

We also choose the caustic-stable reticular Lagrangian maps π◦iX : (L, 0)→ (T ∗R3, 0)→ (R3, 0)
for

(4) X = B±,02,2 , B
±.±
2,2,3, B

±,±
2,3 , B±,±3,2 , C±,±3,2 .

Then other reticular Lagrangian maps are not caustic-stable since other singularities have retic-
ular C-codimension > 3. We choose extensions SX ∈ S(T ∗Rn, 0) of iX for all X. We define

O′1 = {S̃ ∈ S(U, T ∗Rn) |
j10 S̃ is transversal to [j1SX(0)]w for all X in (3)},

O′2 = {S̃ ∈ S(U, T ∗Rn) |
jn+2
0 S̃ is transversal to [jn+2SX(0)]c for all X in (4)},
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where jl0S̃(x) = jlS̃x(0). Then O′1 and O′2 are residual sets. We set

Y = {jn+2S(0) ∈ Sn+2(n) | the codimension of [jn+2S(0)]L > 8}.
Then Y is an algebraic set in Sn+2(n) by [6, Theorem 6.6 (a’)]. Therefore we can define

O′′ = {S̃ ∈ S(U, T ∗Rn) | jn+2
0 S̃ is transversal to Y }.

For any S ∈ S(T ∗Rn, 0) with jn+2S(0) ∈ Y and any generating family F of π ◦ S|L, the
function germ F |q=0 has reticular R+-codimension > 4. This means that F |q=0 has reticular
C-codimension > 3. It follows that jn+2S(0) does not belong to the above equivalence classes.
Then Y has codimension > 6 because all elements in Y are adjacent to one of the list (4) which
are caustic-simple. Then we have that

O′′ = {S̃ ∈ S(U, T ∗Rn) | jn+2
0 S̃(U) ∩ Y = ∅}.

We define O = O′1 ∩ O′2 ∩ O′′. Since all π ◦ iX for X in (3) are weak caustic 1-determined, and
all π ◦ iX in (4) are caustic 5-determined by Lemma 3.2. Then O has the required condition. �

B∗,∗2,2 in 2D

Figure 5. B+,+,1
2,2 , B+,+,2

2,2 Figure 6. B−,+,12,2 , B−,+,22,2 Figure 7. B+,−
2,2 , B−,−2,2

B∗,∗2,2 in 3D

Figure 8. B+,+,1
2,2 , B+,+,2

2,2 Figure 9. B−,+,12,2 , B−,+,22,2 Figure 10. B+,−
2,2 , B−,−2,2
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Figure 11. B+,0
2,2 Figure 12. B−,02,2

Figure 13. B+,+
2,2,3 Figure 14. B+,−

2,2,3

Figure 15. B−,+2,2,3 Figure 16. B−,−2,2,3
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Figure 17. B+,+
2,3 Figure 18. B+,−

2,3

Figure 19. B−,+2,3 Figure 20. B−,−2,3
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Figure 21. C+,+
3,2 Figure 22. C+,−

3,2

Figure 23. C−,+3,2 Figure 24. C−,−3,2
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