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THE UNIVERSAL ABELIAN COVER OF A GRAPH MANIFOLD

HELGE MØLLER PEDERSEN

Abstract. Complex surfaces singularities with rational homology sphere links play an im-
portant role in singularity theory. They include all rational and splice quotient singularities,
and in particular in the latter case the universal abelian cover of the link is a key element of
the theory. All such links of singularities are graph manifolds, and to a rational homology
sphere graph manifold one can associate a weighted tree invariant called splice diagram. It is
known that the splice diagram determines the universal abelian cover of the manifold. In this
paper we give an explicit method for constructing the universal abelian cover from the splice
diagram, which works for most of the graph manifolds in particular for all links of singularities.

1. Introduction

Splice quotient singularities are an important class of normal complex surface singularities
with rational homology sphere links (QHS) recently discovered by Neumann and Wahl (see
[NW05b] and [NW05a]). They include all rational and minimally elliptic singularities with QHS
links by work of Okuma [Oku04], and all weighted homogeneous singularities with QHS links
([Neu83a]). Splice quotient singularities also play an important role in recent works of Némethi
and Okuma ([NO08, NO09]). Their analytic structures are defined by the corresponding ana-
lytic structures of their universal abelian covers which in turn are given by complete intersection
equations called splice diagram equations. Although these equations are fairly simple, the topol-
ogy of the universal abelian cover is in general rather complicated. The aim of this paper is to
give a general way to describe it.

Links of normal complex surface singularities belong to a specific class of 3-manifolds called
graph manifolds, which are defined as having only Seifert fibered pieces in their JSJ-decomposi-
tions, or alternatively having no hyperbolic pieces in their geometric decompositions. If one
restricts to QHS’s, then one has a non complete invariant of graph manifolds called splice
diagrams. Splice diagrams were original introduced by Eisenbud and Neumann in [EN85] and
by Siebermann in [Sie80] for integer homology sphere graph manifolds, and were then later
generalized by Neumann and Wahl to QHS’s in [NW02]. In [NW05a], Neumann and Wahl
define the splice diagram equations when the splice diagram Γ of M satisfies, what they call the
semigroup condition. The splice diagram equations define an isolated complete intersection. IfM
also satisfies the congruence condition, they show that there exists a splice quotient singularity
whose link is M , and that the link of the isolated complete intersection is the universal abelian
cover of M .

Based on the result for links of singularities in [NW05a] Neumann and Wahl conjectured that
the splice diagram determines the universal abelian cover for a QHS graph manifold, even when
the graph manifold is not a singularity link. In [Ped10] the following theorem proved this:

Theorem 1.1 ([Ped10]; 6.3). LetM1 andM2 be twoQHS graph manifolds having the same splice
diagram. Let M̃i →Mi be the universal abelian cover. Then M̃1 and M̃2 are homeomorphic.
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Graph manifolds are also the 3-manifolds which are boundaries of plumbed 4-manifolds. A
very common method to describe a graph manifold M is to give a plumbing diagram of a 4-
manifold X, such thatM = ∂X. Neumann gave a complete calculus for changing X but keeping
M fixed in [Neu81]. In section 3 we are going to construct a plumbing diagram of the universal
abelian cover.

The proof of Theorem 1.1 consists of inductively constructing the universal abelian cover from
the splice diagram, and the purpose of this article is to extract from this proof an algorithm
for constructing the topology of the universal abelian cover. The explicit construction given
will only work under the assumption that the splice diagram has no edge weight of 0. This
assumption is always satisfied if the manifold is a singularity link.

In the proof of Theorem 1.1 one had to extend the notion of splice diagram to a class of
orbifolds called graph orbifolds, and in [Pedb] the congruence condition is extended to graph
orbifolds. Hence if X is a singularity defined by the splice diagram equations associated to the
splice diagram Γ, one can use this algorithm to construct a dual resolution diagram, provided
that there is a manifold or orbifold satisfying the congruence condition and having Γ as its splice
diagram. This is for example always true if Γ only has two nodes (see [Pedb]). Neumann and
Wahl conjecture that in fact the splice diagram equations always define the universal abelian
cover.

In section 2 we recall the definition of splice diagrams from [Ped10], and their relation with
plumbing diagrams, and we state the results needed for the algorithm. In section 3 we describe
the algorithm giving the plumbing diagram of the universal abelian cover by performing it on
an example, and we give further examples.

Acknowledgements: The auther was supported by the Hungarian Academy of Sciences’
Lendület LDT program.

2. Splice Diagrams

A splice diagram is a weighted tree with no vertices of valence two. By the valence of a vertex
we mean the number of adjacent edges. We call vertices of valence greater than two nodes. At
a node one assigns a sign, and on edges adjacent to nodes one assigns a non negative integer
weight.

Let M be a QHS graph manifold. Let M =
⋃

vMv be the JSJ-decomposition of M , that is
the unique minimal decomposition of M into Seifert fibered pieces Mv with ∂Mv a union of tori.
We associate a splice diagram Γ(M) to M by the following procedure:

• Take a vertex v for each Mv.
• Connect two vertices v and w by an edge if Mv

⋂
Mw 6= ∅.

• Add a leaf, i.e., a valence one vertex connected by an edge, to a vertex v for each singular
fiber of the Seifert fibration of Mv.

• To each vertex v assign the sign of the linking number of two nonsingular fibers of Mv.
See Definition 2.1 in [Ped10] for the precise definition of these linking numbers.

• Let v be a node and e an edge adjacent to v. Then the edge weight dve is determined
in the following way. Cut M along the torus T corresponding to e (either a torus of the
boundary of Mv or the boundary of a tubular neighborhood of a singular fiber) into the
pieces M ′v and M ′ve, where Mv ⊂M ′v. Then glue a solid torus into the boundary of M ′ve
by identifying a meridian with the image of a fiber of Mv, and call this new closed graph
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manifold Mve. Then

dve :=

{
|H1(Mve)| if H1(Mve) is finite
0 if H1(Mve) is infinite.

A common way to represent graph manifolds is by plumbing diagrams, and we will next
describe how to get the splice diagram from a plumbing diagram ∆ of M .

To construct the graph structure of Γ(M) from ∆ one just suppresses all vertices of valence
two, i.e., replacing any configuration like

v

◦
−b1◦

−b2◦
−bk◦

w

◦
with an edge

v

◦
w

◦ .

Let A(∆) be the intersection matrix of the 4 manifold defined by ∆. The edge weights and
signs are computed by the following two results.

Lemma 2.1 ([Ped10] 2.1). Let v be a node in Γ(M) and e be an edge at that node. We get the
weight dve by dve = |det(−A(∆(M)ve))|, where ∆(M)ve is the connected component of ∆(M)
after we remove e, which does not contain v.

∆(M) =
...

v

avv

◦
e

aww

◦
...

︸ ︷︷ ︸
∆(M)ve

Lemma 2.2 ([Ped10] 2.3). Let v be a node in Γ(M). Then the sign ε at v is ε = − sign(avv),
where avv is the entry of A(M)−1 corresponding to the node v.

In the algorithm the rational Euler number of a Seifert fibered piece of M will play an
important role. If M is a closed Seifert fibered manifold, then the rational Euler number eM is
defined by

eM :=

n∑
i=0

qi
pi
,

where (p0, q0), . . . , (pn, qn) are the unnormalized Seifert invariants (see [NR78]). Notice that we
use the opposite choice of orientation when we define the invariants, this is the reason for the
sign difference in our formula for eM compared to the one they use. If we consider M as a
plumbed manifold, then the plumbing diagram is star shaped with n strings connected to the
central vertex. As explained in [NR78] one can change the Seifert invariants such that p0 = 1
and pi > qi > 0 for i = 1, . . . n. Then q0 is the weight at the central vertex, and pi/qi for
i = 1, . . . n is the continued fraction

[ai1, ai2, . . . , aiki ] = ai1 −
1

ai2 − 1
ai3−...

,

where −ai1,−ai2, . . . ,−aiki
are the weights along the i’th string of the plumbing diagram leading

from the central vertex. In this case the splice diagram of M is also star shaped, it has n leaves
with weights p1, . . . , pn, and the sign at the node is − sign(eM ).
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We need the rational Euler number eMv
of a Seifert fibered piecesMv of the JSJ-decomposition

of M . Since Mv is not closed, we need additional information to define it. We consider a simple
closed curve in each boundary component ofMv. Each curve is the image of a fiber of the Seifert
fibered piece on the other side of the corresponding torus. One glues a solid torus in each of
the boundary components of Mv, by identifying the simple closed curve with a meridian, and
takes eMv

to be the rational Euler number of this closed manifold. If M is given by a plumbing
diagram ∆, then the Mv’s correspond to the vertices v’s with valence ≥ 3 (or vertices with non
zero genus). One gets eMv

as the rational Euler number of the starshaped piece containing v,
after one removes from ∆ all the vertices corresponding to Mw’s with w 6= v.

The splice diagram itself does not determine neither the rational Euler numbers nor |H1(M)|.
But |H1(M)| and the splice diagram do determine the rational Euler number of any of the Seifert
fibered pieces of M , for this result we need the following definition. The edge determinant D(e)
associated to an edge e between two nodes v and w is

D(e) := rvrw − εvεw(
∏
i

nvi)(
∏
j

nwj),

where rv and rw are the edge weights on e, where εv and εw are the signs on the nodes and
where the nvi’s and nwj ’s are the weights adjacent to the nodes not on e.

Proposition 2.3 ([Ped10] 3.4). Let v be a node in a splice diagram decorated as in Figure 1
below, with ri 6= 0 for i 6= 1, and let ev be the rational Euler number of Mv. Then

ev = −d
(

εs1

ND1

∏k
j=2 rk

+

k∑
i=2

εiMi

riDi

)
,(1)

where d = |H1(M)|, N =
∏k

j=1 nj, Mi =
∏li

j=1mij, and Di is the edge determinant associated
to the edge between v and vi.

v1
◦
m11

m1ll

...

◦
...

v

◦
n1

nk

r1

s1

rk

sk

...

◦
vk
◦
mk1

mklk

...

Figure 1 .
Note that this does give a formula for ev/|H1(M)| from Γ, which we will need later.

In the algorithm to construct the universal abelian cover ofM from Γ(M), a number associated
to each end of an edge in Γ(M) is going to be very important. It is the ideal generator, which
is constructed in the following way. Let v and w be two vertices of Γ(M), then we define the
linking number lvw of v and w as the product of all edge weights adjacent to but not on the
shortest path from v to w. We define l′vw in the same way, except that we omit weights adjacent
to v and w. If e is an edge adjacent to v, we let Γve be the connected component of Γ(M) − e
not containing v, and define the following ideal in Z

Ive := 〈l′vw| w a leaf in Γve〉.

Then we define the ideal generator dve associated to v and e to be the positive generator of Ive.
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Definition 2.4. A splice diagram Γ satisfies the ideal condition if the ideal generator dve divides
the edge weight dve for all nodes v and adjacent edges e.

Proposition 2.5. Let M be a QHS graph manifold. Then Γ(M) satisfies the ideal condition.

This proposition follows from the following topological description of the ideal generator in
Appendix 1 of [NW05a].

Theorem 2.6. The ideal generator dve equals |H1(M/M ′v)|.

Remember we definedM ′v, when we constructed Γ(M) at the beginning of the present section.

3. Construction of the Universal Abelian Cover: An Example

In this section we explain how the proof of Theorem 1.1 [Ped10] can be used to construct the
universal abelian cover M̃ of a graph manifold M from the splice diagram Γ(M). We specify
M̃ by constructing a plumbing diagram ∆ for M̃ . To illustrate the construction we use the
following example

◦ ◦
Γ =

v1
◦

3

18

23 15
v2
◦

2

3◦ ◦
.

There are four different manifolds which have Γ as their splice diagram, and also several non
manifold graph orbifolds. By Theorem 4.1 in [Ped10] Γ is the splice diagram of a singularity link,
and [Peda] gives that M̃ is a rational homology sphere. The example is also interesting, since
none of the manifolds having splice diagram Γ satisfy the congruence condition of Neumann
and Wahl (see [NW05a]). But there are non manifold orbifolds with splice diagram Γ which
satisfy the orbifold congruence condition (see [Pedb]). Below are plumbing diagrams for the four
manifolds having splice diagram Γ:

−3
◦

−2
◦−1

◦
−5
◦−3

◦
−2
◦−3

◦
−2
◦−2

◦−2
◦ .

−2
◦ −2

◦
−2
◦−1

◦
−5
◦−18

◦
−2
◦ −2

◦ .
−3
◦

−2
◦−1

◦
−2
◦

−4
◦

−5
◦−18

◦
−2
◦ −2

◦ .
−2
◦ −2

◦
−2
◦−2

◦
−2
◦

−4
◦

−5
◦−2

◦
−2
◦−2

◦
−2
◦−3

◦−3
◦ .
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The construction of the universal abelian cover is done in two steps. First we construct a
one-node splice diagram for each node in Γ, each of these one-node splice diagrams is then used
to define a Seifert fibered manifold. We call these Seifert fibered manifolds the building blocks.
In the second step we take a number of copies of the building blocks, and use the information
given by Γ to glue them together to create the universal abelian cover.

3.1. Constructing the building blocks. The inductive procedure in the construction of the
universal abelian cover consists of taking an edge e between two nodes of Γ, and making a new
non connected splice diagram Γe, where e has been replaced by two leaves. So starting with
the edge called e1 and going through this process of cutting the edges until we have cut the
last edge between two nodes eN−1, we get that ΓeN−1

is a collection of one-node splice diagrams
ΓeN−1

= {Gi}Ni=1. For each of these one-node splice diagrams Gi one then takes a number of
copies of a specific manifold Mi, and uses the information from the Γej ’s to glue the pieces
together. So the first step is to determine these manifolds {Mi}Ni=1, which are the building
blocks of the universal abelian cover.

First let us describe the Γej ’s. Each time we cut an edge e between the nodes w1 and w2 in
Γ, we divide every edge weight dve′ such that w1 or w2 is in Γve′ , by the ideal generator dwie

of the edge weight dwie, where v is not in Γwie. In our example we only have two edge weights,
which have to be divided when we cut along the central edge e namely dv1e = 23 and dv2e = 15,
and dv1e = 1 and dv2e = 3. So the two one-node splice diagrams G1 and G2 are

◦ ◦
G1 =

v1
◦

3

18

23 (1,1)
◦, G2 =

(1,3)
◦ 5

v2
◦

2

3◦ ◦ .
The pair added to the new leaves, which will be used to describe the gluings, is defined as follows:
the first number specifies the order the sequence of cuttings this is, and the second number is
the ideal generator associated to the weight before cutting.

Next we want to find the building block Mi associated to each of the Gi’s. To do this we have
to separate the Gi’s into two types. The first type consists of the Gi’s that do not have an edge
weight of 0, and the second type consists of the Gi’s that have an edge weight of 0. At most
one weight adjacent to a node can be 0, since if there were two edge weights of 0 adjacent to
a node the edge determinant of any edge with the edge weight 0 would be 0. Then by using
The Edge Determinant Equation (Corollary 3.3 of [Ped10]) the Seifert fibration can be extended
over the torus corresponding to the edge, hence we would not have cut along this torus in the
JSJ-decomposition of M .

In the first case we use the following theorem

Theorem 3.1. Let M be a QHS orbifold S1-fibration over a orbifold surface with Seifert invari-
ants (α1, β1), . . . , (αn, βn). Then the universal abelian cover of M is the link of the Brieskorn
complete intersection Σ(α1, . . . , αn).

The way one constructs the manifolds after cutting an edge may result in graph orbifolds
instead of just graph manifolds as explained in the proof of 6.3 in [Ped10]. Hence we need this
theorem for orbifold S1-fibrations. Neumann proves this theorem for Seifert fibered manifolds
in [Neu83a] and [Neu83b], but the proof given in [Neu83b] also works in the general case of an
orbifold S1-fibration. These theorems assume that the rational Euler number eM is positive,
but if eM < 0 one just composes with an orientation reversing map. Notice that α1, . . . , αn are
exactly the edge weights of Γ(M). The value of the sign ε at the node does not matter, since
reversing the orientation of a Seifert fibered manifold only changes the βi’s not the αi’s, and
hence only changes the splice diagrams by replacing ε with −ε.



THE UNIVERSAL ABELIAN COVER OF A GRAPH MANIFOLD 211

So in our example M1 is the link of Σ(3, 18, 23), and M2 is the link of Σ(2, 3, 5).
Next we use the description of the Seifert invariants of Σ(α1, . . . , αn) given by Neumann and

Raymond in [NR78] to get plumbing diagrams for the Mi’s.

Theorem 3.2. Let M be the link of the Brieskorn complete intersection Σ(α1, . . . , αn). A
plumbing diagram for M is given by

[g]

−b
◦

−a11

◦
−a11

◦
−an1

◦
−an1

◦
−a1k1◦ · · ·

−a1k1◦
−ankn◦ · · ·

−ankn◦︸ ︷︷ ︸ · · · ︸ ︷︷ ︸
t1 tn .

The values of g and of the ti’s are given by

ti =

∏
j 6=i(αj)

lcmj 6=i(αj)
(2)

g = 1
2

(
2 +

(n− 2)
∏

i αi

lcmi(αi)
−

n∑
i=1

ti
)
.(3)

One calculates numbers p1, . . . , pn as

pi =
lcmj(αj)

lcmj 6=i(αj)
,(4)

and finds numbers q1, . . . , qn as the smallest no negative solutions to the equations

lcmj(αj)

αi
qi ≡ −1( mod pi).(5)

The aij’s are given by the continued fraction pi/qi = [ai1, . . . , aiki
]. If pi = 1 then the string of

valence two vertices is empty. Finally b is given by

b =

∏
i αi + lcmk(αk)

∑
i qi
∏

j 6=i αj

(lcmk αk)2
.(6)

Before we use this theorem to make a plumbing diagram ∆i for Mi, notice that we have to
remove some solid tori from Mi to make the gluing, so we need to record this data in ∆i. Some
leaves in Gi have a pair of integers attached. These leaves correspond to the tori in M we cut
along when we created Gi. Since Mi is the universal abelian cover of any graph orbifold having
splice diagram Gi, several fibers sit above the singular fiber corresponding to these leaves. We
have to remove a neighborhood of each of these fibers. So if αj is an edge weight in Gi to a leaf
with a pair attached, the tj fibers above the leaf correspond to all the strings with the weights
−aj1, . . . ,−ajnj

. So in the plumbing diagram for Mi we replace these strings by arrows, and
add a triple which consists of the pair attached to the leaf and pj/qj = [aj1, . . . , ajkj

] to each of
the arrows. If the fibers sitting above are non singular, i.e., the set {aji} is empty, we still add
tj arrows and triples, and in this case the third number is 1/0.
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Using this on our example we get the following plumbing diagrams

−2
◦

∆1 =
−6
◦

−2
◦

(1,1,23/14)

<<

(1,1,23/14)//

(1,1,23/14)

!!

∆2 =
−2
◦

(1,3,5/4)oo
−2
◦ −2

◦ .

Notice that the weight of the node is only well define for a closed manifold, so when we remove
the solid torus corresponding to an arrow we lose that information. The weight of the nodes are
then gotten trough the gluing process in the next section.

The second case, i.e., when there is an edge weight of 0, is not as easy. The proof of Theorem
6.3 in [Ped10] gives an explicit construction as a gluing of 3-spheres along S2 boundaries in this
case. But it might not be a Seifert fibered manifold, and I have at the present no simple way to
find a plumbing diagram for the building blocks in this case. Hence the explicit algorithm does
not work in this case.

3.2. Gluing the building blocks. The only thing that remains to construct the universal
abelian cover is to glue together the building blocksMi. This will be done by using the plumbing
diagrams ∆i to create a plumbing diagram ∆ for M̃ .

We start by taking two of the ∆i’s and create a plumbing diagram G1. Then we take another
of the ∆i’s and glue this to G1 to create G2. We continue this process until all the ∆i’s have
been used, and then ∆ = GN−1 where GN−1 is the last created plumbing diagram.

Now the order we glue the ∆i’s together in is important. This is why we added a triple to
the arrows. We start by taking ∆i which has at least one arrow having the triple (N − 1, di, ri),
where N −1 is the highest value for the first number in any triple. We next take ∆j such that at
least one arrow has the triple (N − 1, dj , rj). By the method we constructed the ∆i’s, there are
exactly two graphs ∆i and ∆j satisfying respectively these conditions. Then we take di copies
of ∆i and dj copies of ∆j . We create an intermediate G̃1 by removing the arrows with triple
(N − 1, di, ri) (respectively (N − 1, dj , rj)) on the ∆i’s (respectively ∆j ’s), and by replacing
these with dashed lines between copies of ∆i and ∆j , such that a copy of ∆i is only connected
to a copy of ∆j once. We also replace the weights at the nodes in the ∆i piece by an unknown
variable bi and in the ∆j piece by an unknown variable bj . This will create a connected weighted
graph G̃1, with no arrows which have first number in the triple equal to N − 1.

Let us see how this is done in our example. We only have two ∆i’s, so we start by gluing ∆1

to ∆2. The triples are (1, 1, 23/14) and (1, 3, 5/4). So we start by taking one copy of ∆1 and
three copies of ∆2, replacing each of the arrows in the copy of ∆1 with a dashed line to one of
the copies of ∆2 replacing its arrow, and replace the weights at the nodes. We get

−2
◦

−b2

◦
−2
◦

−2
◦ −2

◦
G̃1 =

−6
◦

−b1◦
−b2◦

−2
◦−b2◦

−2
◦

−2
◦

−2
◦

−2

◦
.
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The next step to create G1 is to replace the dashed lines by a string of valence two vertices
and find the weights at the nodes. We have to compute the number of vertices along the string
and their Euler numbers. First by symmetry all the strings will be the same, so we only have
to calculate one of them. Likewise the weights at the nodes are the same at the corresponding
ends of the identified strings.

Now G1

⋃
(
⋃

l 6=i,j ∆l) is a plumbing diagram for the non-connected manifold which is the
universal abelian cover of any non-connected manifold with splice diagram ΓeN−2

. Hence it is
ΓeN−2

we need to use, when we make the calculations in the following.
Choose nodes vi and vj of G̃1, which are attached to each other by a dashed line such that

vk comes from a ∆k piece. First we find the fiber intersection number p, which is also the
numerator of the two continued fractions associated to the string. Now p = fi · fj where fk
is a fibre in the boundary of Mk. These fibres are gotten as connected components of the
preimage of fibres f̃k of a graph orbifold M̃ with splice diagram Γ(M̃) = ΓeN−2

. This implies
that π−1(f̃i) · π−1(f̃j) = d(f̃i · f̃l) where d = |Horb

1 (M̃)|. The intersection number f̃i · f̃j = |D|/d
by The Edge Determinant Equation (Corollary 3.3 of [Ped10]), where D is the edge determinant
of the corresponding edge in ΓeN−2

. Hence ninjp = |D| where nk is the number of connected
pieces of π−1(fk). We have that nk = deg(π|Mk

)/ deg(π|fk). Now deg(π|Mk
) = d/dk where dk

is given by the triple attached to the arrow in ∆k, and deg(π|fk) is calculated in the end of the
proof of Theorem 6.3 in [Ped10] to be d/λk. Here λk =

∏
mj/ lcm(m1/d1, . . . ,ml/dl), where the

mj ’s are the edge weights adjacent to the node corresponding to vk in ΓeN−2
, and the dj ’s are

the ideal generators associated to the edges. Putting this together we get the following formula
for calculating p:

p =
didj
λiλj

|D|

In our example ΓeN−2
= Γ, so |D| = 21 and λ1 = λ2 = 3 and we get that p = 7.

To find the complete string and the bk’s we use that there are two different ways to calculate
the rational Euler number of the Seifert fibered piece corresponding to a node in G1. One using
G1 and one given by the splice diagram by a formula derived at the end of the proof of Theorem
6.3 in [Ped10].

From G1 the rational Euler number evk is given by bk +
∑

e qe/pe, where the sum is taken over
all edges adjacent to vk (including the dashed lines), and (pe, qe) is the Seifert pair associated to
the string starting with the edge e. Now there are four types of different edges attached to vi,
and we need to see how to get (pe, qe) from each type of the edge. We will first explain how to
get (pe, qe) for an edge e if e is not a dashed line. Then use this to give an equation relating evk

to bk and the Seifert pair associated to the dashed lines, notice that all the dashed lines have
the same Seifert pair (p, qk). We will then calculate evk in another way, and use this to get the
qk’s and the bk’s.

If e is on a string that ends at a valence one vertex then we get (pe, qe) from the continued
fraction associated to the string, i.e., pe/qe = [ae1, . . . , aeke ].

If e is on a string that leads to a node (when one makes G1 these do not exist, but they can be
there when we are going to make G2). We again get the Seifert pair from the continued fraction,
this time from the string between vk and the other node.

If e is an arrow, we get (pe, qe) from the triple (ne, de, re) attached to the arrow as pe/qe = re.
We can now write the equation relating evk , bk and (p, qk).

evk = d′k
qk
p
− bk +

∑
e

qe
pe
,(7)
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where the sum is taken over all edges at vk except the dashed lines, and d′k is the number of
dashed lines at vk. Notice that if vk = vi is a node sitting in a ∆i piece, then d′k = dj .

Returning to our example, if we use the leftmost node as v1, the equation becomes

ev1
= 3

q1
7
− b1 +

1

6
.

For one of the rightmost nodes the equation becomes

ev2 =
q1
7
− b2 +

1

2
+

2

3
=
q2
7
− b1 +

7

6
.

From the end of the proof of Theorem 6.3 in [Ped10] one gets that if vk sits in a ∆k piece,

evk =
λ2k
D
ẽvk/d.(8)

Remember we defined λk and d when we calculated p in the beginning of this section, and
D =

∏
l dl where the dl’s are the ideal generators of all the edges adjacent to vk in ΓeN−2

. Notice
that there is a mistake in the formula in [Ped10], there one only divides by dk and not D. It does
not change the result of that article, but it is important when one wants to actually calculate evk
as we do. Now neither ẽvk nor d are determined by ΓeN−2

, but proposition 2.3 gives a formula
for ẽvk/d only using ΓeN−2

(the proposition also works for graph orbifolds).
In our example we find that λ1 = λ2 = 3, ẽv1/d = −5/378 and ẽv2/d = −23/126, so

ev1 = −5/42 and ev2 = −23/42.
Now one finds an equation relating bk and qk by combining the equations (7) and (8). Since

bk is an integer this equation gives us an congruence equation mod p involving qk as the only
unknown. This equation involving qk might not determine qk( mod p), since it is possible that
qk is multiplied by a divisor of p. But the equation involving qi and the equation involving qj
together with the equation qiqj ≡ −1( mod p) enable us to find qi and qj ( mod p), and since
we know 0 ≤ qi, qj < p we can determine qi and qj .

In our example the equations relating b1 and q1 becomes

b1 = 3
q1
7

+
1

6
+

5

42
= 3

q1
7

+
2

7
,

and the equations relating b2 and q2 is

b2 =
q2
7

+
7

6
+

23

42
=
q2
7

+
12

7
.

We get that q1 = 4 and q2 = 2. Remember that p/q1 is the continued fraction associated to
the string replacing the dashed lines when seen from v1. We find bk by putting qk back into the
equation we just used. In our example this gives that b1 = 2 and b2 = 2.
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Replacing all the dashed lines with the strings corresponding to the continued fractions and
adding the bi’s one gets G1 from G̃1. In our example we get the following plumbing diagram:

−2
◦

−2

◦
−2
◦

−2
◦

−4
◦

−2
◦ −2

◦
G1 =

−6
◦

−2
◦

−2
◦

−4
◦

−2
◦ −2

◦−2
◦

−2
◦

−4
◦

−2
◦

−2
◦

−2
◦

−2

◦
.

If ΓeN−2
6= Γ, then one adds G1 to the collection of ∆i’s not used, and one repeats the process

by taking the two plumbing diagrams of this collection having arrows whose triples start with
N − 2. One continues this process until all the ∆i’s have been used, and the final GN−1 is then
a plumbing diagram for the universal abelian cover M̃ of M .

We will finish by performing the algorithm on a couple of other examples. We will leave the
details of the calculation to the readers.

Example 3.3. Let M be the manifold defined by the following plumbing diagram:
−2
◦−2

◦
−2
◦−2

◦
−4
◦

−2
◦−2

◦
−2
◦−2

◦
−2

◦
−2
◦ −2

◦ −2
◦ .

Its splice diagram is:

◦
◦ ◦

Γ =
v1
◦

2

3

44 5

e1

v2

◦
2

2

7 36

e2

v3

◦
2

5◦ ◦
◦ .

If we first cut along the edge called e1, we get:

◦
◦ ◦

Γe1 =
v1
◦

2

3

22 (1,2)
◦

(1,1)
◦

v2
◦5
2

2

7 36

e2

v3

◦
2

5◦ ◦
◦ ,
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and cutting along e2 gives us:

◦
◦ ◦

Γe2 =
v1
◦

2

3

22 (1,2)
◦

(1,1)
◦

v2
◦5
2

2

7 (2,1)
◦

(2,2)
◦

v3

◦18
2

5◦ ◦
◦

Γ1 Γ2 Γ3 .

Next one determines the 3 building blocks and gets the following plumbing diagrams:

−2
◦

−3
◦−2

◦
−2
◦−b1◦

(1,2,11/7)// −b2◦

(1,1,5/1)
jj

(1,1,5/1)

uu

(2,1,7/2)
55

(2,1,7/2)

**

−b3◦
(2,2,9/7)oo

−2
◦

−2
◦−2

◦
−3
◦

∆1 ∆2 ∆3 .

One first glues one copy of ∆2 to two copies of ∆3, and gets after calculating the strings and
weights at nodes:

−3
◦−2

◦−2
◦−2

◦
−2
◦−2

◦
−3
◦−5

◦
G1 =

−b2◦

(1,1,5/1)
gg

(1,1,5/1)

ww −5
◦ −2

◦
−3
◦−2

◦
−2
◦−2

◦ −2
◦ −3

◦ .

Then gluing two copies of ∆1 to G1 and calculating the strings and weights at nodes gives the
following plumbing diagram for the universal abelian cover:

−3
◦−2

◦
−2
◦−2

◦
−2
◦−2

◦
−2
◦

−2
◦−2

◦
−2
◦

−2
◦

−3
◦−2

◦
−7
◦

−5
◦

G =
−1
◦−2

◦
−7
◦

−5
◦−2

◦
−2
◦

−2
◦

−3
◦−2

◦
−2
◦

−2
◦−2

◦
−2
◦−2

◦
−2
◦ −3

◦ .
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Example 3.4. Let M be the graph manifold with the following plumbing diagram:
−3
◦

−2
◦−2

◦
−2
◦−3

◦
−3
◦

−2
◦

−2
◦−2

◦
−3
◦−2

◦−2
◦−2

◦ .
Its splice diagram is:

◦ ◦
Γ =

v1
◦

5

5

27 150
v2
◦

3

3◦ ◦ .
Cutting the edge gives us the one-node splice diagrams:

◦ ◦
Γ1 =

v0
◦

5

5

9 (1,3)
◦, Γ2 =

(1,5)
◦ 30

v1
◦

3

3◦ ◦ ,
and the building blocks become

∆1 =
−b1◦

(1,3,9/7):: (1,3,9/7)22
(1,3,9/7)//

(1,3,9/7)
,,

(1,3,9/7)
$$

∆2 =

[1]

−b2◦

(1,5,10/9)
hh

(1,5,10/9)

vv

(1,5,10/9)oo

.

So to create the plumbing diagram G of the universal abelian cover, we glue 3 copies of ∆1 to 5
copies of ∆2, we calculate the string and the weights at nodes, and get

−4
◦

−2
◦

−2
◦

−2
◦

−2
◦

−2
◦

−2
◦

−2
◦

−2
◦

−4
◦

−2
◦

−2
◦

−2
◦

[1]

−3
◦

[1]

−3
◦

−4
◦

[1]

−3
◦

[1]

−3
◦

−4
◦

[1]

−3
◦

,

where all the dashed lines represent strings identical to the string at the top. Notice that the
graph is not a planar graph. So any intersections between the strings represented by the dashed
lines do not represent intersections in G, just crossings arising from a planar projection of G,
which is what we see here.

Example 3.5. Let M be defined by the following plumbing diagram
−5
◦

−3
◦−1

◦
−4
◦−2

◦
−4
◦ −2

◦ .
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Its splice diagram is:

◦ ◦
Γ =

v1
◦

5

2

71 3
v2
◦

3

7◦ ◦ .
Since both ideal generators are 1, the one-node splice diagrams Γ1 and Γ2 have the same weights
as Γ, and the pairs added to the new leaves are (1, 1) for both. The building blocks become:

−2
◦

−2
◦−3

◦
−4
◦

∆1 =
−b1◦

(1,1,71/7)// ∆2 =
−b2◦

(1,1,1/0)oo −4◦
−2
◦−2

◦ −4◦ −2
◦ .

If we use Theorem 3.2 to find the values at the node of the closed Seifert fibered manifolds we
got the building blocks from, we will get that at the node in ∆1 the Euler number is −1 and
at the node in ∆2 the Euler number is −2. Gluing a copy of ∆1 to a copy of ∆2 and finding
the remaining Euler numbers gives us the following plumbing diagram for the universal abelian
cover of M :

−2
◦

−2
◦−3

◦
−4
◦−1

◦
−11
◦ −4◦

−2
◦−2

◦ −4◦ −2
◦ .

Notice that the Euler number of the rightmost node in the universal abelian cover is −11, which
is very different of the −2 that was the Euler number of the building block.
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