THE UNIVERSAL ABELIAN COVER OF A GRAPH MANIFOLD

HELGE MØLLER PEDERSEN

Abstract

Complex surfaces singularities with rational homology sphere links play an important role in singularity theory. They include all rational and splice quotient singularities, and in particular in the latter case the universal abelian cover of the link is a key element of the theory. All such links of singularities are graph manifolds, and to a rational homology sphere graph manifold one can associate a weighted tree invariant called splice diagram. It is known that the splice diagram determines the universal abelian cover of the manifold. In this paper we give an explicit method for constructing the universal abelian cover from the splice diagram, which works for most of the graph manifolds in particular for all links of singularities.

1. Introduction

Splice quotient singularities are an important class of normal complex surface singularities with rational homology sphere links (QHS) recently discovered by Neumann and Wahl (see [NW05b] and [NW05a]). They include all rational and minimally elliptic singularities with QHS links by work of Okuma [Oku04], and all weighted homogeneous singularities with QHS links ([Neu83a]). Splice quotient singularities also play an important role in recent works of Némethi and Okuma ([NO08, NO09]). Their analytic structures are defined by the corresponding analytic structures of their universal abelian covers which in turn are given by complete intersection equations called splice diagram equations. Although these equations are fairly simple, the topology of the universal abelian cover is in general rather complicated. The aim of this paper is to give a general way to describe it.

Links of normal complex surface singularities belong to a specific class of 3-manifolds called graph manifolds, which are defined as having only Seifert fibered pieces in their JSJ-decompositions, or alternatively having no hyperbolic pieces in their geometric decompositions. If one restricts to $\mathbb{Q} H S$'s, then one has a non complete invariant of graph manifolds called splice diagrams. Splice diagrams were original introduced by Eisenbud and Neumann in [EN85] and by Siebermann in [Sie80] for integer homology sphere graph manifolds, and were then later generalized by Neumann and Wahl to QHS's in [NW02]. In [NW05a], Neumann and Wahl define the splice diagram equations when the splice diagram Γ of M satisfies, what they call the semigroup condition. The splice diagram equations define an isolated complete intersection. If M also satisfies the congruence condition, they show that there exists a splice quotient singularity whose link is M, and that the link of the isolated complete intersection is the universal abelian cover of M.

Based on the result for links of singularities in [NW05a] Neumann and Wahl conjectured that the splice diagram determines the universal abelian cover for a $\mathbb{Q H S}$ graph manifold, even when the graph manifold is not a singularity link. In [Ped10] the following theorem proved this:

Theorem 1.1 ([Ped10]; 6.3). Let M_{1} and M_{2} be two $\mathbb{Q} H S$ graph manifolds having the same splice diagram. Let $\widetilde{M}_{i} \rightarrow M_{i}$ be the universal abelian cover. Then \widetilde{M}_{1} and \widetilde{M}_{2} are homeomorphic.

2000 Mathematics Subject Classification. 57M10, 57M27.
Key words and phrases. rational homology sphere, abelian cover.

Graph manifolds are also the 3 -manifolds which are boundaries of plumbed 4-manifolds. A very common method to describe a graph manifold M is to give a plumbing diagram of a 4 manifold X, such that $M=\partial X$. Neumann gave a complete calculus for changing X but keeping M fixed in [Neu81]. In section 3 we are going to construct a plumbing diagram of the universal abelian cover.

The proof of Theorem 1.1 consists of inductively constructing the universal abelian cover from the splice diagram, and the purpose of this article is to extract from this proof an algorithm for constructing the topology of the universal abelian cover. The explicit construction given will only work under the assumption that the splice diagram has no edge weight of 0 . This assumption is always satisfied if the manifold is a singularity link.

In the proof of Theorem 1.1 one had to extend the notion of splice diagram to a class of orbifolds called graph orbifolds, and in [Pedb] the congruence condition is extended to graph orbifolds. Hence if X is a singularity defined by the splice diagram equations associated to the splice diagram Γ, one can use this algorithm to construct a dual resolution diagram, provided that there is a manifold or orbifold satisfying the congruence condition and having Γ as its splice diagram. This is for example always true if Γ only has two nodes (see [Pedb]). Neumann and Wahl conjecture that in fact the splice diagram equations always define the universal abelian cover.

In section 2 we recall the definition of splice diagrams from [Ped10], and their relation with plumbing diagrams, and we state the results needed for the algorithm. In section 3 we describe the algorithm giving the plumbing diagram of the universal abelian cover by performing it on an example, and we give further examples.

Acknowledgements: The auther was supported by the Hungarian Academy of Sciences' Lendület LDT program.

2. Splice Diagrams

A splice diagram is a weighted tree with no vertices of valence two. By the valence of a vertex we mean the number of adjacent edges. We call vertices of valence greater than two nodes. At a node one assigns a sign, and on edges adjacent to nodes one assigns a non negative integer weight.

Let M be a $\mathbb{Q} H S$ graph manifold. Let $M=\bigcup_{v} M_{v}$ be the JSJ-decomposition of M, that is the unique minimal decomposition of M into Seifert fibered pieces M_{v} with ∂M_{v} a union of tori. We associate a splice diagram $\Gamma(M)$ to M by the following procedure:

- Take a vertex v for each M_{v}.
- Connect two vertices v and w by an edge if $M_{v} \bigcap M_{w} \neq \emptyset$.
- Add a leaf, i.e., a valence one vertex connected by an edge, to a vertex v for each singular fiber of the Seifert fibration of M_{v}.
- To each vertex v assign the sign of the linking number of two nonsingular fibers of M_{v}. See Definition 2.1 in [Ped10] for the precise definition of these linking numbers.
- Let v be a node and e an edge adjacent to v. Then the edge weight $d_{v e}$ is determined in the following way. Cut M along the torus T corresponding to e (either a torus of the boundary of M_{v} or the boundary of a tubular neighborhood of a singular fiber) into the pieces M_{v}^{\prime} and $M_{v e}^{\prime}$, where $M_{v} \subset M_{v}^{\prime}$. Then glue a solid torus into the boundary of $M_{v e}^{\prime}$ by identifying a meridian with the image of a fiber of M_{v}, and call this new closed graph
manifold $M_{v e}$. Then

$$
d_{v e}:= \begin{cases}\left|H_{1}\left(M_{v e}\right)\right| & \text { if } H_{1}\left(M_{v e}\right) \text { is finite } \\ 0 & \text { if } H_{1}\left(M_{v e}\right) \text { is infinite }\end{cases}
$$

A common way to represent graph manifolds is by plumbing diagrams, and we will next describe how to get the splice diagram from a plumbing diagram Δ of M.

To construct the graph structure of $\Gamma(M)$ from Δ one just suppresses all vertices of valence two, i.e., replacing any configuration like

Let $A(\Delta)$ be the intersection matrix of the 4 manifold defined by Δ. The edge weights and signs are computed by the following two results.
Lemma 2.1 ([Ped10] 2.1). Let v be a node in $\Gamma(M)$ and e be an edge at that node. We get the weight $d_{v e}$ by $d_{v e}=\left|\operatorname{det}\left(-A\left(\Delta(M)_{v e}\right)\right)\right|$, where $\Delta(M)_{v e}$ is the connected component of $\Delta(M)$ after we remove e, which does not contain v.

Lemma 2.2 ([Ped10] 2.3). Let v be a node in $\Gamma(M)$. Then the sign ε at v is $\varepsilon=-\operatorname{sign}\left(a_{v v}\right)$, where $a_{v v}$ is the entry of $A(M)^{-1}$ corresponding to the node v.

In the algorithm the rational Euler number of a Seifert fibered piece of M will play an important role. If M is a closed Seifert fibered manifold, then the rational Euler number e_{M} is defined by

$$
e_{M}:=\sum_{i=0}^{n} \frac{q_{i}}{p_{i}},
$$

where $\left(p_{0}, q_{0}\right), \ldots,\left(p_{n}, q_{n}\right)$ are the unnormalized Seifert invariants (see [NR78]). Notice that we use the opposite choice of orientation when we define the invariants, this is the reason for the sign difference in our formula for e_{M} compared to the one they use. If we consider M as a plumbed manifold, then the plumbing diagram is star shaped with n strings connected to the central vertex. As explained in [NR78] one can change the Seifert invariants such that $p_{0}=1$ and $p_{i}>q_{i}>0$ for $i=1, \ldots n$. Then q_{0} is the weight at the central vertex, and p_{i} / q_{i} for $i=1, \ldots n$ is the continued fraction

$$
\left[a_{i 1}, a_{i 2}, \ldots, a_{i k_{i}}\right]=a_{i 1}-\frac{1}{a_{i 2}-\frac{1}{a_{i 3}-\ldots}}
$$

where $-a_{i 1},-a_{i 2}, \ldots,-a_{i k_{i}}$ are the weights along the i'th string of the plumbing diagram leading from the central vertex. In this case the splice diagram of M is also star shaped, it has n leaves with weights p_{1}, \ldots, p_{n}, and the sign at the node is $-\operatorname{sign}\left(e_{M}\right)$.

We need the rational Euler number $e_{M_{v}}$ of a Seifert fibered pieces M_{v} of the JSJ-decomposition of M. Since M_{v} is not closed, we need additional information to define it. We consider a simple closed curve in each boundary component of M_{v}. Each curve is the image of a fiber of the Seifert fibered piece on the other side of the corresponding torus. One glues a solid torus in each of the boundary components of M_{v}, by identifying the simple closed curve with a meridian, and takes $e_{M_{v}}$ to be the rational Euler number of this closed manifold. If M is given by a plumbing diagram Δ, then the M_{v} 's correspond to the vertices v 's with valence ≥ 3 (or vertices with non zero genus). One gets $e_{M_{v}}$ as the rational Euler number of the starshaped piece containing v, after one removes from Δ all the vertices corresponding to M_{w} 's with $w \neq v$.

The splice diagram itself does not determine neither the rational Euler numbers nor $\left|H_{1}(M)\right|$. But $\left|H_{1}(M)\right|$ and the splice diagram do determine the rational Euler number of any of the Seifert fibered pieces of M, for this result we need the following definition. The edge determinant $D(e)$ associated to an edge e between two nodes v and w is

$$
D(e):=r_{v} r_{w}-\varepsilon_{v} \varepsilon_{w}\left(\prod_{i} n_{v i}\right)\left(\prod_{j} n_{w j}\right)
$$

where r_{v} and r_{w} are the edge weights on e, where ε_{v} and ε_{w} are the signs on the nodes and where the $n_{v i}$'s and $n_{w j}$'s are the weights adjacent to the nodes not on e.
Proposition 2.3 ([Ped10] 3.4). Let v be a node in a splice diagram decorated as in Figure 1 below, with $r_{i} \neq 0$ for $i \neq 1$, and let e_{v} be the rational Euler number of M_{v}. Then

$$
\begin{equation*}
e_{v}=-d\left(\frac{\varepsilon s_{1}}{N D_{1} \prod_{j=2}^{k} r_{k}}+\sum_{i=2}^{k} \frac{\varepsilon_{i} M_{i}}{r_{i} D_{i}}\right) \tag{1}
\end{equation*}
$$

where $d=\left|H_{1}(M)\right|, N=\prod_{j=1}^{k} n_{j}, M_{i}=\prod_{j=1}^{l_{i}} m_{i j}$, and D_{i} is the edge determinant associated to the edge between v and v_{i}.

Figure 1
Note that this does give a formula for $e_{v} /\left|H_{1}(M)\right|$ from Γ, which we will need later.
In the algorithm to construct the universal abelian cover of M from $\Gamma(M)$, a number associated to each end of an edge in $\Gamma(M)$ is going to be very important. It is the ideal generator, which is constructed in the following way. Let v and w be two vertices of $\Gamma(M)$, then we define the linking number $l_{v w}$ of v and w as the product of all edge weights adjacent to but not on the shortest path from v to w. We define $l_{v w}^{\prime}$ in the same way, except that we omit weights adjacent to v and w. If e is an edge adjacent to v, we let $\Gamma_{v e}$ be the connected component of $\Gamma(M)-e$ not containing v, and define the following ideal in \mathbb{Z}

$$
\left.I_{v e}:=\left\langle l_{v w}^{\prime}\right| w \text { a leaf in } \Gamma_{v e}\right\rangle
$$

Then we define the ideal generator $\bar{d}_{v e}$ associated to v and e to be the positive generator of $I_{v e}$.

Definition 2.4. A splice diagram Γ satisfies the ideal condition if the ideal generator $\bar{d}_{v e}$ divides the edge weight $d_{v e}$ for all nodes v and adjacent edges e.

Proposition 2.5. Let M be a $\mathbb{Q} H S$ graph manifold. Then $\Gamma(M)$ satisfies the ideal condition.
This proposition follows from the following topological description of the ideal generator in Appendix 1 of [NW05a].

Theorem 2.6. The ideal generator $\bar{d}_{v e}$ equals $\left|H_{1}\left(M / M_{v}^{\prime}\right)\right|$.
Remember we defined M_{v}^{\prime}, when we constructed $\Gamma(M)$ at the beginning of the present section.

3. Construction of the Universal Abelian Cover: An Example

In this section we explain how the proof of Theorem 1.1 [Ped10] can be used to construct the universal abelian cover \widetilde{M} of a graph manifold M from the splice diagram $\Gamma(M)$. We specify \widetilde{M} by constructing a plumbing diagram Δ for \widetilde{M}. To illustrate the construction we use the following example

There are four different manifolds which have Γ as their splice diagram, and also several non manifold graph orbifolds. By Theorem 4.1 in [Ped10] Γ is the splice diagram of a singularity link, and [Peda] gives that \widetilde{M} is a rational homology sphere. The example is also interesting, since none of the manifolds having splice diagram Γ satisfy the congruence condition of Neumann and Wahl (see [NW05a]). But there are non manifold orbifolds with splice diagram Γ which satisfy the orbifold congruence condition (see [Pedb]). Below are plumbing diagrams for the four manifolds having splice diagram Γ :

The construction of the universal abelian cover is done in two steps. First we construct a one-node splice diagram for each node in Γ, each of these one-node splice diagrams is then used to define a Seifert fibered manifold. We call these Seifert fibered manifolds the building blocks. In the second step we take a number of copies of the building blocks, and use the information given by Γ to glue them together to create the universal abelian cover.
3.1. Constructing the building blocks. The inductive procedure in the construction of the universal abelian cover consists of taking an edge e between two nodes of Γ, and making a new non connected splice diagram Γ_{e}, where e has been replaced by two leaves. So starting with the edge called e_{1} and going through this process of cutting the edges until we have cut the last edge between two nodes e_{N-1}, we get that $\Gamma_{e_{N-1}}$ is a collection of one-node splice diagrams $\Gamma_{e_{N-1}}=\left\{\mathscr{G}_{i}\right\}_{i=1}^{N}$. For each of these one-node splice diagrams \mathscr{G}_{i} one then takes a number of copies of a specific manifold M_{i}, and uses the information from the $\Gamma_{e_{j}}$'s to glue the pieces together. So the first step is to determine these manifolds $\left\{M_{i}\right\}_{i=1}^{N}$, which are the building blocks of the universal abelian cover.

First let us describe the $\Gamma_{e_{j}}$'s. Each time we cut an edge e between the nodes w_{1} and w_{2} in Γ, we divide every edge weight $d_{v e^{\prime}}$ such that w_{1} or w_{2} is in $\Gamma_{v e^{\prime}}$, by the ideal generator $\bar{d}_{w_{i} e}$ of the edge weight $d_{w_{i} e}$, where v is not in $\Gamma_{w_{i} e}$. In our example we only have two edge weights, which have to be divided when we cut along the central edge e namely $d_{v_{1} e}=23$ and $d_{v_{2} e}=15$, and $\bar{d}_{v_{1} e}=1$ and $\bar{d}_{v_{2} e}=3$. So the two one-node splice diagrams \mathscr{G}_{1} and \mathscr{G}_{2} are

$$
\mathscr{G}_{1}=\operatorname{coc}_{18}^{v_{1} 23}(1,1) \quad \mathscr{G}_{2}=\underbrace{(1,3)}_{0}
$$

The pair added to the new leaves, which will be used to describe the gluings, is defined as follows: the first number specifies the order the sequence of cuttings this is, and the second number is the ideal generator associated to the weight before cutting.

Next we want to find the building block M_{i} associated to each of the \mathscr{G}_{i} 's. To do this we have to separate the \mathscr{G}_{i} 's into two types. The first type consists of the \mathscr{G}_{i} 's that do not have an edge weight of 0 , and the second type consists of the \mathscr{G}_{i} 's that have an edge weight of 0 . At most one weight adjacent to a node can be 0 , since if there were two edge weights of 0 adjacent to a node the edge determinant of any edge with the edge weight 0 would be 0 . Then by using The Edge Determinant Equation (Corollary 3.3 of [Ped10]) the Seifert fibration can be extended over the torus corresponding to the edge, hence we would not have cut along this torus in the JSJ-decomposition of M.

In the first case we use the following theorem
Theorem 3.1. Let M be a $\mathbb{Q} H S$ orbifold S^{1}-fibration over a orbifold surface with Seifert invariants $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)$. Then the universal abelian cover of M is the link of the Brieskorn complete intersection $\Sigma\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

The way one constructs the manifolds after cutting an edge may result in graph orbifolds instead of just graph manifolds as explained in the proof of 6.3 in [Ped10]. Hence we need this theorem for orbifold S^{1}-fibrations. Neumann proves this theorem for Seifert fibered manifolds in [Neu83a] and [Neu83b], but the proof given in [Neu83b] also works in the general case of an orbifold S^{1}-fibration. These theorems assume that the rational Euler number e_{M} is positive, but if $e_{M}<0$ one just composes with an orientation reversing map. Notice that $\alpha_{1}, \ldots, \alpha_{n}$ are exactly the edge weights of $\Gamma(M)$. The value of the $\operatorname{sign} \varepsilon$ at the node does not matter, since reversing the orientation of a Seifert fibered manifold only changes the β_{i} 's not the α_{i} 's, and hence only changes the splice diagrams by replacing ε with $-\varepsilon$.

So in our example M_{1} is the link of $\Sigma(3,18,23)$, and M_{2} is the link of $\Sigma(2,3,5)$.
Next we use the description of the Seifert invariants of $\Sigma\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ given by Neumann and Raymond in [NR78] to get plumbing diagrams for the M_{i} 's.

Theorem 3.2. Let M be the link of the Brieskorn complete intersection $\Sigma\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. A plumbing diagram for M is given by

The values of g and of the t_{i} 's are given by

$$
\begin{align*}
t_{i} & =\frac{\prod_{j \neq i}\left(\alpha_{j}\right)}{\operatorname{lcm}_{j \neq i}\left(\alpha_{j}\right)} \tag{2}\\
g & =\frac{1}{2}\left(2+\frac{(n-2) \prod_{i} \alpha_{i}}{\operatorname{lcm}_{i}\left(\alpha_{i}\right)}-\sum_{i=1}^{n} t_{i}\right) \tag{3}
\end{align*}
$$

One calculates numbers p_{1}, \ldots, p_{n} as

$$
\begin{equation*}
p_{i}=\frac{\operatorname{lcm}_{j}\left(\alpha_{j}\right)}{\operatorname{lcm}_{j \neq i}\left(\alpha_{j}\right)}, \tag{4}
\end{equation*}
$$

and finds numbers q_{1}, \ldots, q_{n} as the smallest no negative solutions to the equations

$$
\begin{equation*}
\frac{\operatorname{lcm}_{j}\left(\alpha_{j}\right)}{\alpha_{i}} q_{i} \equiv-1\left(\quad \bmod p_{i}\right) \tag{5}
\end{equation*}
$$

The $a_{i j}$'s are given by the continued fraction $p_{i} / q_{i}=\left[a_{i 1}, \ldots, a_{i k_{i}}\right]$. If $p_{i}=1$ then the string of valence two vertices is empty. Finally b is given by

$$
\begin{equation*}
b=\frac{\prod_{i} \alpha_{i}+\operatorname{lcm}_{k}\left(\alpha_{k}\right) \sum_{i} q_{i} \prod_{j \neq i} \alpha_{j}}{\left(\operatorname{lcm}_{k} \alpha_{k}\right)^{2}} \tag{6}
\end{equation*}
$$

Before we use this theorem to make a plumbing diagram Δ_{i} for M_{i}, notice that we have to remove some solid tori from M_{i} to make the gluing, so we need to record this data in Δ_{i}. Some leaves in \mathscr{G}_{i} have a pair of integers attached. These leaves correspond to the tori in M we cut along when we created \mathscr{G}_{i}. Since M_{i} is the universal abelian cover of any graph orbifold having splice diagram \mathscr{G}_{i}, several fibers sit above the singular fiber corresponding to these leaves. We have to remove a neighborhood of each of these fibers. So if α_{j} is an edge weight in \mathscr{G}_{i} to a leaf with a pair attached, the t_{j} fibers above the leaf correspond to all the strings with the weights $-a_{j 1}, \ldots,-a_{j n_{j}}$. So in the plumbing diagram for M_{i} we replace these strings by arrows, and add a triple which consists of the pair attached to the leaf and $p_{j} / q_{j}=\left[a_{j 1}, \ldots, a_{j k_{j}}\right]$ to each of the arrows. If the fibers sitting above are non singular, i.e., the set $\left\{a_{j i}\right\}$ is empty, we still add t_{j} arrows and triples, and in this case the third number is $1 / 0$.

Using this on our example we get the following plumbing diagrams

Notice that the weight of the node is only well define for a closed manifold, so when we remove the solid torus corresponding to an arrow we lose that information. The weight of the nodes are then gotten trough the gluing process in the next section.

The second case, i.e., when there is an edge weight of 0 , is not as easy. The proof of Theorem 6.3 in [Ped10] gives an explicit construction as a gluing of 3 -spheres along S^{2} boundaries in this case. But it might not be a Seifert fibered manifold, and I have at the present no simple way to find a plumbing diagram for the building blocks in this case. Hence the explicit algorithm does not work in this case.
3.2. Gluing the building blocks. The only thing that remains to construct the universal abelian cover is to glue together the building blocks M_{i}. This will be done by using the plumbing diagrams Δ_{i} to create a plumbing diagram Δ for \widetilde{M}.

We start by taking two of the Δ_{i} 's and create a plumbing diagram G_{1}. Then we take another of the Δ_{i} 's and glue this to G_{1} to create G_{2}. We continue this process until all the Δ_{i} 's have been used, and then $\Delta=G_{N-1}$ where G_{N-1} is the last created plumbing diagram.

Now the order we glue the Δ_{i} 's together in is important. This is why we added a triple to the arrows. We start by taking Δ_{i} which has at least one arrow having the triple $\left(N-1, d_{i}, r_{i}\right)$, where $N-1$ is the highest value for the first number in any triple. We next take Δ_{j} such that at least one arrow has the triple $\left(N-1, d_{j}, r_{j}\right)$. By the method we constructed the Δ_{i} 's, there are exactly two graphs Δ_{i} and Δ_{j} satisfying respectively these conditions. Then we take d_{i} copies of Δ_{i} and d_{j} copies of Δ_{j}. We create an intermediate \widetilde{G}_{1} by removing the arrows with triple ($N-1, d_{i}, r_{i}$) (respectively $\left(N-1, d_{j}, r_{j}\right)$) on the Δ_{i} 's (respectively Δ_{j} 's), and by replacing these with dashed lines between copies of Δ_{i} and Δ_{j}, such that a copy of Δ_{i} is only connected to a copy of Δ_{j} once. We also replace the weights at the nodes in the Δ_{i} piece by an unknown variable b_{i} and in the Δ_{j} piece by an unknown variable b_{j}. This will create a connected weighted graph \widetilde{G}_{1}, with no arrows which have first number in the triple equal to $N-1$.

Let us see how this is done in our example. We only have two Δ_{i} 's, so we start by gluing Δ_{1} to Δ_{2}. The triples are $(1,1,23 / 14)$ and $(1,3,5 / 4)$. So we start by taking one copy of Δ_{1} and three copies of Δ_{2}, replacing each of the arrows in the copy of Δ_{1} with a dashed line to one of the copies of Δ_{2} replacing its arrow, and replace the weights at the nodes. We get

The next step to create G_{1} is to replace the dashed lines by a string of valence two vertices and find the weights at the nodes. We have to compute the number of vertices along the string and their Euler numbers. First by symmetry all the strings will be the same, so we only have to calculate one of them. Likewise the weights at the nodes are the same at the corresponding ends of the identified strings.

Now $G_{1} \bigcup\left(\bigcup_{l \neq i, j} \Delta_{l}\right)$ is a plumbing diagram for the non-connected manifold which is the universal abelian cover of any non-connected manifold with splice diagram $\Gamma_{e_{N-2}}$. Hence it is $\Gamma_{e_{N-2}}$ we need to use, when we make the calculations in the following.

Choose nodes v_{i} and v_{j} of \widetilde{G}_{1}, which are attached to each other by a dashed line such that v_{k} comes from a Δ_{k} piece. First we find the fiber intersection number p, which is also the numerator of the two continued fractions associated to the string. Now $p=f_{i} \cdot f_{j}$ where f_{k} is a fibre in the boundary of M_{k}. These fibres are gotten as connected components of the preimage of fibres \tilde{f}_{k} of a graph orbifold \widetilde{M} with splice diagram $\Gamma(\widetilde{M})=\Gamma_{e_{N-2}}$. This implies that $\pi^{-1}\left(\tilde{f}_{i}\right) \cdot \pi^{-1}\left(\tilde{f}_{j}\right)=d\left(\tilde{f}_{i} \cdot \tilde{f}_{l}\right)$ where $d=\left|H_{1}^{\text {orb }}(\widetilde{M})\right|$. The intersection number $\tilde{f}_{i} \cdot \tilde{f}_{j}=|D| / d$ by The Edge Determinant Equation (Corollary 3.3 of [Ped10]), where D is the edge determinant of the corresponding edge in $\Gamma_{e_{N-2}}$. Hence $n_{i} n_{j} p=|D|$ where n_{k} is the number of connected pieces of $\pi^{-1}\left(f_{k}\right)$. We have that $n_{k}=\operatorname{deg}\left(\left.\pi\right|_{M_{k}}\right) / \operatorname{deg}\left(\left.\pi\right|_{f_{k}}\right)$. Now $\operatorname{deg}\left(\left.\pi\right|_{M_{k}}\right)=d / d_{k}$ where d_{k} is given by the triple attached to the arrow in Δ_{k}, and $\operatorname{deg}\left(\left.\pi\right|_{f_{k}}\right)$ is calculated in the end of the proof of Theorem 6.3 in [Ped10] to be d / λ_{k}. Here $\lambda_{k}=\prod m_{j} / \operatorname{lcm}\left(m_{1} / \bar{d}_{1}, \ldots, m_{l} / \bar{d}_{l}\right)$, where the m_{j} 's are the edge weights adjacent to the node corresponding to v_{k} in $\Gamma_{e_{N-2}}$, and the \bar{d}_{j} 's are the ideal generators associated to the edges. Putting this together we get the following formula for calculating p :

$$
p=\frac{d_{i} d_{j}}{\lambda_{i} \lambda_{j}}|D|
$$

In our example $\Gamma_{e_{N-2}}=\Gamma$, so $|D|=21$ and $\lambda_{1}=\lambda_{2}=3$ and we get that $p=7$.
To find the complete string and the b_{k} 's we use that there are two different ways to calculate the rational Euler number of the Seifert fibered piece corresponding to a node in G_{1}. One using G_{1} and one given by the splice diagram by a formula derived at the end of the proof of Theorem 6.3 in [Ped10].

From G_{1} the rational Euler number $e_{v_{k}}$ is given by $b_{k}+\sum_{e} q_{e} / p_{e}$, where the sum is taken over all edges adjacent to v_{k} (including the dashed lines), and (p_{e}, q_{e}) is the Seifert pair associated to the string starting with the edge e. Now there are four types of different edges attached to v_{i}, and we need to see how to get $\left(p_{e}, q_{e}\right)$ from each type of the edge. We will first explain how to get $\left(p_{e}, q_{e}\right)$ for an edge e if e is not a dashed line. Then use this to give an equation relating $e_{v_{k}}$ to b_{k} and the Seifert pair associated to the dashed lines, notice that all the dashed lines have the same Seifert pair $\left(p, q_{k}\right)$. We will then calculate $e_{v_{k}}$ in another way, and use this to get the q_{k} 's and the b_{k} 's.

If e is on a string that ends at a valence one vertex then we get $\left(p_{e}, q_{e}\right)$ from the continued fraction associated to the string, i.e., $p_{e} / q_{e}=\left[a_{e 1}, \ldots, a_{e k_{e}}\right]$.

If e is on a string that leads to a node (when one makes G_{1} these do not exist, but they can be there when we are going to make G_{2}). We again get the Seifert pair from the continued fraction, this time from the string between v_{k} and the other node.

If e is an arrow, we get $\left(p_{e}, q_{e}\right)$ from the triple $\left(n_{e}, d_{e}, r_{e}\right)$ attached to the arrow as $p_{e} / q_{e}=r_{e}$.
We can now write the equation relating $e_{v_{k}}, b_{k}$ and $\left(p, q_{k}\right)$.

$$
\begin{equation*}
e_{v_{k}}=d_{k}^{\prime} \frac{q_{k}}{p}-b_{k}+\sum_{e} \frac{q_{e}}{p_{e}} \tag{7}
\end{equation*}
$$

where the sum is taken over all edges at v_{k} except the dashed lines, and d_{k}^{\prime} is the number of dashed lines at v_{k}. Notice that if $v_{k}=v_{i}$ is a node sitting in a Δ_{i} piece, then $d_{k}^{\prime}=d_{j}$.

Returning to our example, if we use the leftmost node as v_{1}, the equation becomes

$$
e_{v_{1}}=3 \frac{q_{1}}{7}-b_{1}+\frac{1}{6}
$$

For one of the rightmost nodes the equation becomes

$$
e_{v_{2}}=\frac{q_{1}}{7}-b_{2}+\frac{1}{2}+\frac{2}{3}=\frac{q_{2}}{7}-b_{1}+\frac{7}{6}
$$

From the end of the proof of Theorem 6.3 in [Ped10] one gets that if v_{k} sits in a Δ_{k} piece,

$$
\begin{equation*}
e_{v_{k}}=\frac{\lambda_{k}^{2}}{\bar{D}} \tilde{e}_{v_{k}} / d \tag{8}
\end{equation*}
$$

Remember we defined λ_{k} and d when we calculated p in the beginning of this section, and $\bar{D}=\prod_{l} \bar{d}_{l}$ where the \bar{d}_{l} 's are the ideal generators of all the edges adjacent to v_{k} in $\Gamma_{e_{N-2}}$. Notice that there is a mistake in the formula in [Ped10], there one only divides by d_{k} and not \bar{D}. It does not change the result of that article, but it is important when one wants to actually calculate $e_{v_{k}}$ as we do. Now neither $\tilde{e}_{v_{k}}$ nor d are determined by $\Gamma_{e_{N-2}}$, but proposition 2.3 gives a formula for $\tilde{e}_{v_{k}} / d$ only using $\Gamma_{e_{N-2}}$ (the proposition also works for graph orbifolds).

In our example we find that $\lambda_{1}=\lambda_{2}=3, \tilde{e}_{v_{1}} / d=-5 / 378$ and $\tilde{e}_{v_{2}} / d=-23 / 126$, so $e_{v_{1}}=-5 / 42$ and $e_{v_{2}}=-23 / 42$.

Now one finds an equation relating b_{k} and q_{k} by combining the equations (7) and (8). Since b_{k} is an integer this equation gives us an congruence equation $\bmod p$ involving q_{k} as the only unknown. This equation involving q_{k} might not determine $q_{k}(\bmod p)$, since it is possible that q_{k} is multiplied by a divisor of p. But the equation involving q_{i} and the equation involving q_{j} together with the equation $q_{i} q_{j} \equiv-1(\bmod p)$ enable us to find q_{i} and $q_{j}(\bmod p)$, and since we know $0 \leq q_{i}, q_{j}<p$ we can determine q_{i} and q_{j}.

In our example the equations relating b_{1} and q_{1} becomes

$$
b_{1}=3 \frac{q_{1}}{7}+\frac{1}{6}+\frac{5}{42}=3 \frac{q_{1}}{7}+\frac{2}{7}
$$

and the equations relating b_{2} and q_{2} is

$$
b_{2}=\frac{q_{2}}{7}+\frac{7}{6}+\frac{23}{42}=\frac{q_{2}}{7}+\frac{12}{7}
$$

We get that $q_{1}=4$ and $q_{2}=2$. Remember that p / q_{1} is the continued fraction associated to the string replacing the dashed lines when seen from v_{1}. We find b_{k} by putting q_{k} back into the equation we just used. In our example this gives that $b_{1}=2$ and $b_{2}=2$.

Replacing all the dashed lines with the strings corresponding to the continued fractions and adding the b_{i} 's one gets G_{1} from \widetilde{G}_{1}. In our example we get the following plumbing diagram:

If $\Gamma_{e_{N-2}} \neq \Gamma$, then one adds G_{1} to the collection of Δ_{i} 's not used, and one repeats the process by taking the two plumbing diagrams of this collection having arrows whose triples start with $N-2$. One continues this process until all the Δ_{i} 's have been used, and the final G_{N-1} is then a plumbing diagram for the universal abelian cover \widetilde{M} of M.

We will finish by performing the algorithm on a couple of other examples. We will leave the details of the calculation to the readers.

Example 3.3. Let M be the manifold defined by the following plumbing diagram:

Its splice diagram is:

$$
\Gamma=\underbrace{2}_{0} e_{0}^{v_{1}} 44 \quad \underbrace{2}_{0}
$$

If we first cut along the edge called e_{1}, we get:

$$
\Gamma_{e_{1}}=\underbrace{v_{1}}_{0}
$$

and cutting along e_{2} gives us:

Next one determines the 3 building blocks and gets the following plumbing diagrams:

One first glues one copy of Δ_{2} to two copies of Δ_{3}, and gets after calculating the strings and weights at nodes:

Then gluing two copies of Δ_{1} to G_{1} and calculating the strings and weights at nodes gives the following plumbing diagram for the universal abelian cover:

Example 3.4. Let M be the graph manifold with the following plumbing diagram:

Its splice diagram is:
$\Gamma=$

Cutting the edge gives us the one-node splice diagrams:

$$
\Gamma_{1}=
$$

and the building blocks become

$$
\Delta_{1}=\xrightarrow[(1,3,9 / 7)]{\stackrel{(1,3,9 / 7)}{(1,3,9 / 7)}} \stackrel{(1,3,9 / 7)}{\sim} \Delta_{2}=\stackrel{(1,5,10 / 9)}{\stackrel{(1,5,10 / 9)}{<}}
$$

So to create the plumbing diagram G of the universal abelian cover, we glue 3 copies of Δ_{1} to 5 copies of Δ_{2}, we calculate the string and the weights at nodes, and get

[1] ,
where all the dashed lines represent strings identical to the string at the top. Notice that the graph is not a planar graph. So any intersections between the strings represented by the dashed lines do not represent intersections in G, just crossings arising from a planar projection of G, which is what we see here.
Example 3.5. Let M be defined by the following plumbing diagram

Its splice diagram is:

Since both ideal generators are 1, the one-node splice diagrams Γ_{1} and Γ_{2} have the same weights as Γ, and the pairs added to the new leaves are $(1,1)$ for both. The building blocks become:

If we use Theorem 3.2 to find the values at the node of the closed Seifert fibered manifolds we got the building blocks from, we will get that at the node in Δ_{1} the Euler number is -1 and at the node in Δ_{2} the Euler number is -2 . Gluing a copy of Δ_{1} to a copy of Δ_{2} and finding the remaining Euler numbers gives us the following plumbing diagram for the universal abelian cover of M :

Notice that the Euler number of the rightmost node in the universal abelian cover is -11 , which is very different of the -2 that was the Euler number of the building block.

References

[EN85] David Eisenbud and Walter Neumann. Three-dimensional link theory and invariants of plane curve singularities, volume 110 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1985.
[Neu81] Walter D. Neumann. A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves. Trans. Amer. Math. Soc., 268(2):299-344, 1981. DOI: 10.1090/S0002-9947-1981-0632532-8.
[Neu83a] Walter D. Neumann. Abelian covers of quasihomogeneous surface singularities. In Singularities, Part 2 (Arcata, Calif., 1981), volume 40 of Proc. Sympos. Pure Math., pages 233-243. Amer. Math. Soc., Providence, RI, 1983.
[Neu83b] Walter D. Neumann. Geometry of quasihomogeneous surface singularities. In Singularities, Part 2 (Arcata, Calif., 1981), volume 40 of Proc. Sympos. Pure Math., pages 245-258. Amer. Math. Soc., Providence, RI, 1983.
[NO08] András Némethi and Tomohiro Okuma. The Seiberg-Witten invariant conjecture for splice-quotients. J. Lond. Math. Soc. (2), 78(1):143-154, 2008.
[NO09] András Némethi and Tomohiro Okuma. On the Casson invariant conjecture of Neumann-Wahl. J. Algebraic Geom., 18(1):135-149, 2009. DOI: 10.1090/S1056-3911-08-00493-1.
[NR78] Walter D. Neumann and Frank Raymond. Seifert manifolds, plumbing, μ-invariant and orientation reversing maps. In Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977), volume 664 of Lecture Notes in Math., pages 163-196. Springer, Berlin, 1978.
[NW02] Walter D. Neumann and Jonathan Wahl. Universal abelian covers of surface singularities. In Trends in singularities, Trends Math., pages 181-190. Birkhäuser, Basel, 2002.
[NW05a] Walter D. Neumann and Jonathan Wahl. Complete intersection singularities of splice type as universal abelian covers. Geom. Topol., 9:699-755, 2005. DOI: 10.2140/gt.2005.9.699.
[NW05b] Walter D. Neumann and Jonathan Wahl. Complex surface singularities with integral homology sphere links. Geom. Topol., 9:757-811, 2005. DOI: 10.2140/gt.2005.9.757.
[Oku04] Tomohiro Okuma. Universal abelian covers of rational surface singularities. J. London Math. Soc. (2), 70(2):307-324, 2004.
[Peda] Helge Møller Pedersen. Rational homology sphere as universal abelian covers. ar χ iv: 1011.0285 v 1.
[Pedb] Helge Møller Pedersen. Splice diagram singularities and the universal abelian cover of graph orbifolds. ar χ iv: 1011.0890.
[Ped10] Helge Møller Pedersen. Splice diagram determining singularity links and universal abelian covers. Geom. Dedicata, 150:75-104, 2010.
[Sie80] Laurent Siebenmann. On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3spheres. In Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), volume 788 of Lecture Notes in Math., pages 172-222. Springer, Berlin, 1980.

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, 13-15 Reáltanoda u. 1053 Budapest, Hungary

E-mail address: helge@renyi.hu

