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ARC SPACES OF cA-TYPE SINGULARITIES

JENNIFER M. JOHNSON AND JÁNOS KOLLÁR

Let X be a complex variety or an analytic space and x ∈ X a point. A formal arc through
x is a morphism φ : SpecC[[t]] → X such that φ(0) = x. The set of formal arcs through x –

denoted by Ârc(x ∈ X) – is naturally a (non-noetherian) scheme.
A preprint of Nash, written in 1968 but only published later as [Nas95], describes an injection

– called the Nash map – from the irreducible components of Ârc(x ∈ X) to the set of so called
essential divisors. These are the divisors whose center on every resolution π : X ′ → X is an
irreducible component of π−1(x). The Nash problem asks if this map is also surjective or not.
Surjectivity fails in dimensions ≥ 3 [IK03, dF12] but holds in dimension 2 [FdBP12b].

In all dimensions, the most delicate cases are singularities whose resolutions contain many
rational curves. For example, although it is easy to describe all arcs and their deformations on Du
Val singularities of type A, the type E cases have been notoriously hard to treat [PS12, Per13].

The first aim of this note is to determine the irreducible components of the arc spaces of cA-
type singularities in all dimensions. In Section 1 we prove the following using quite elementary
arguments.

Theorem 1. Let f(z1, . . . , zn) be a holomorphic function whose multiplicity at the origin is
m ≥ 2. Let X :=

(
xy = f(z1, . . . , zn)

)
⊂ Cn+2 denote the corresponding cA-type singularity.

Assume that n ≥ 1.

(1) Ârc(0 ∈ X) has (m− 1) irreducible components Ârci(0 ∈ X) for 0 < i < m.

(2) There are dense, open subsets Ârc
◦
i (0 ∈ X) ⊂ Ârci(0 ∈ X) such that(

ψ1(t), ψ2(t), φ1(t), . . . , φn(t)
)
∈ Ârc

◦
i (0 ∈ X)

iff multψ1(t) = i, multψ2(t) = m− i and mult f
(
φ1(t), . . . , φn(t)

)
= m.

We found it much harder to compute the set of essential divisors and we have results only
if mult0 f = 2. If dimX = 3 then, after a coordinate change, we can write the equation as
(xy = z2−um). Already [Nas95] proved that these singularities have at most 2 essential divisors:
an easy one obtained by blowing-up the origin and a difficult one obtained by blowing-up the
origin twice. In Section 2 we use ideas of [dF12] to determine the cases when the second divisor
is essential. The following is obtained by combining Theorem 1 and Proposition 9.

Example 2. For the singularities Xm := (xy = z2 − um) ⊂ C4 the Nash map is not surjective
for odd m ≥ 5 but surjective for even m and for m = 3.

Thus the simplest counter example to the Nash conjecture is the singularity

(x2 + y2 + z2 + t5 = 0) ⊂ C4.

In higher dimensions our answers are less complete. We describe the situation for the divisors
obtained by the first and second blow-ups as above, but we do not control other exceptional
divisors. Using Theorem 1 and Proposition 22 we get the following partial generalization of
Example 2.
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Example 3. Let g(u1, . . . , ur) be an analytic function near the origin. Set m = mult0 g and let
gm denote the degree m homogeneous part of g. If m ≥ 4 and the Nash map is surjective for
the singularity

Xg :=
(
xy = z2 − g(u1, . . . , ur)

)
⊂ Cr+3

then gm(u1, . . . , ur) is a perfect square.

Since we do not determine all essential divisors, the cases when gm(u1, . . . , ur) is a perfect
square remain undecided.

On the one hand, this can be interpreted to mean that the Nash conjecture hopelessly fails
in dimensions ≥ 3. On the other hand, the proof leads to a reformulation of the Nash problem
and to an approach that might be feasible, at least in dimension 3; see Section 5.

In Section 4 we observe that the deformations constructed in Section 1 also lead to an enu-
meration of the irreducible components of the space of short arcs – introduced in [KN13] – for
cA-type singularities.

Question 4 (Arcs on cDV singularities). It is easy to see that Theorem 1 is equivalent to saying
that the image of every general arc on X is contained in an A-type surface section of X.

It is natural to ask if this holds for all cDV singularities. That is, let (0 ∈ X) ⊂ Cn be a
hypersurface singularity such that X∩L3 is a Du Val singularity for every general 3-dimensional
linear space (or smooth 3–fold) 0 ∈ L3 ⊂ Cn.

Let φ be a general arc on X. Is it true that there is a 3–fold L3 ⊂ Cn containing the image
of φ such that X ∩ L3 is a Du Val singularity?
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vakovsky for corrections and helpful discussions. Partial financial support to JK was provided
by the NSF under grant number DMS-07-58275 and by the Simons Foundation. Part of the
paper was written while the authors visited Stanford University.

1. Arcs on cA-type singularities

Definition 5 (cA-type singularities). In some coordinates write a hypersurface singularity as

X :=
(
f(x1, . . . , xn+1) = 0

)
⊂ Cn+1.

Assume that X is singular at the origin and let f2 denote the quadratic part of f . If mult0 f = 2
then (f2 = 0) is the tangent cone of X at the origin. We say that X has cA-type if rank f2 ≥ 2
and cA1-type if rank f2 ≥ 3. By the Morse lemma, if rank f2 = r then we can choose local
analytic or formal coordinates yi such that

f = y2
1 + · · ·+ y2

r + g(yr+1, . . . , yn+1) where mult0 g ≥ 3.

In the sequel we also use other forms of the quadratic part if that is more convenient.
Note that by adding 2 squares in new variables we get a map from hypersurface singularities

in dimension n− 2 (modulo isomorphism) to cA-type hypersurface singularities in dimension n
(modulo isomorphism). This map is one-to-one and onto; see [AGZV85, Sec.11.1]. Thus cA-type
singularities are quite complicated in large dimensions.

We rename the coordinates and write a cA-type singularity as

X :=
(
xy = f(z1, . . . , zn)

)
⊂ Cn+2.

Thus an arc through the origin is written as

t 7→
(
ψ1(t), ψ2(t), φ1(t), . . . , φn(t)

)
,
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where ψi, φj are power series such that multψi,multφj ≥ 1 for i = 1, 2 and j = 1, . . . , n. We set
~φ(t) =

(
φ1(t), . . . , φn(t)

)
.

A deformation of ~φ(t) is given by power series
(
Φ1(t, s), . . . ,Φn(t, s)

)
. Then we compute

f
(
Φ1(t, s), . . . ,Φn(t, s)

)
∈ C[[t, s]]

and try to factor it as

Ψ1(t, s)Ψ2(t, s) = f
(
Φ1(t, s), . . . ,Φn(t, s)

)
where Ψi(t, 0) = ψi(t). Usually f

(
Φ1(t, s), . . . ,Φn(t, s)

)
is irreducible, but Newton’s method of

rotating rulers (Lemma 7 below) says that

f
(
Φ1(t, sr), . . . ,Φn(t, sr)

)
factors for some r ≥ 1.

6 (Proof of Theorem 1). If ~φ(0) = 0 then mult f
(
~φ(t)

)
≥ m. Thus, for every 0 < i < m we can

choose any ψ1(t) such that multψ1(t) = i and then set ψ2(t) = ψ1(t)−1f
(
~φ(t)

)
. This shows that

the families Ârc
◦
i (0 ∈ X) are nonempty and open in Ârc(0 ∈ X).

In order to show that their union is dense, after a linear change of coordinates we may assume
that zm1 appears in f with nonzero constant coefficient.

Set D := multt f
(
φ1(t), . . . , φn(t)

)
. Assume first that D <∞ and consider

F (t, s) := f
(
φ1(t) + st, φ2(t), . . . , φn(t)

)
=
∑
i

∂if

∂zi1

(
~φ
)
· (st)i

i!
.

We know that tm divides F (s, t) (since mult0 f = m) and (st)m appears in F with nonzero
coefficient (since zm1 appears in f with nonzero coefficient). Thus tm is the largest t-power that
divides F (s, t).

Furthermore, tD is the smallest t-power that appears in F with nonzero constant coefficient.
Thus, by Lemma 7 below, there is an r ≥ 1 such that

F (t, sr) = u(t, s)

D∏
i=1

(
t− σi(s)

)
,

where u(0, 0) 6= 0 and σi(0) = 0. Furthermore, exactly m of the σi are identically zero.
For j = 1, 2 write ψj(t) = tajvj(t) where vj(0) 6= 0. Note that a1 + a2 = D and

u(t, 0) = v1(t)v2(t).

Divide {1, . . . , D} into two disjoint subsets A1, A2 such that |Aj | = aj and they both contain
at least 1 index i such that σi(t) ≡ 0. Finally set

Ψ1(t, s) = v1(t) ·
∏
i∈A1

(
t− σi(s)

)
and Ψ2(t, s) =

u(t, s)

v1(t)
·
∏
i∈A2

(
t− σi(s)

)
.

Then (
Ψ1(t, s),Ψ2(t, s), φ1(t) + st, φ2(t), . . . , φn(t)

)
is a deformation of

(
ψ1(t), ψ2(t), φ1(t), . . . , φn(t)

)
whose general member is in the rth irreducible

component as in Theorem 1.2 iff exactly r of the {σi : i ∈ A1} are identically zero.
(This also shows that arcs with multψ1(t) ≥ m − 1 and multψ2(t) ≥ m − 1 constitute the

intersection of all of the Ârci(0 ∈ X).)
If D = ∞, that is, when f

(
φ1(t), . . . , φn(t)

)
is identically zero, we need to perform some

similar preliminary deformations first.
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First, if both ψ1(t), ψ2(t) are identically zero then we can take(
st, 0, φ1(t), φ2(t), . . . , φn(t)

)
.

Hence, up-to interchanging x and y, we may assume that d := multψ1(t) <∞. Again assuming
that zm1 appears in f with nonzero coefficient, we see that

F (t, s) := f
(
φ1(t) + std+1, φ2(t), . . . , φn(t)

)
is not identically zero and divisible by td+1. Thus F (t, s)/ψ1(t) is holomorphic and divisible by
t. Therefore (

ψ1(t),
F (t, s)

ψ1(t)
, φ1(t) + std+1, φ2(t), . . . , φn(t)

)
is a deformation of

(
ψ1(t), 0, φ1(t), φ2(t), . . . , φn(t)

)
such that

multt f
(
φ1(t) + std+1, φ2(t), . . . , φn(t)

)
<∞

for 0 < |s| � 1. �

We used Newton’s lemma on Puiseux series solutions in the following form.

Lemma 7. Let g(x, y) ∈ C[[x, y]] be a power series. Assume that m := mult0 g(x, 0) <∞. Then
there is an r ≥ 1 such that one can write g(x, zr) as

g(x, zr) = u(x, z)

m∏
i=1

(
x− σi(z)

)
where u(0, 0) 6= 0 and σi(0) = 0 for every i. The representation is unique, up-to permuting the
σi(z).

Furthermore, if g(x, y) is holomorphic on the bidisc Dx × Dy then u(x, z) and the σi(z) are

holomorphic on the smaller bidisc Dx × Dz(ε) for some 0 < ε ≤ 1. �

2. Essential divisors on cA1-type 3-fold singularities

In dimension 3, the only cA1-type singularities are Xm := (xy = z2− tm) for m ≥ 2. Already
[Nas95, p.37] proved that they have at most 2 essential divisors. We use the method of [dF12,
4.1] to determine the precise count.

Definition 8. Let X be a normal variety or analytic space and E a divisor over X. That is,
there is a birational or bimeromorphic morphisms p : X ′ → X such that E ⊂ X ′ is an exceptional
divisor. The closure of p(E) ⊂ X is called the center of E on X; it is denoted by centerX E. If
centerX E = {x}, we say that E is a divisor over (x ∈ X).

We say that E is an essential divisor over X if for every resolution of singularities π : Y → X,
centerY E is an irreducible component of π−1

(
centerX E

)
. (Note that π−1 ◦ p : X ′ 99K Y is

regular on a dense subset of E, hence centerY E is defined.)
If X is an analytic space, then Y is allowed to be any analytic resolution. If X is algebraic,

one gets slightly different notions depending on whether one allows Y to be a quasi-projective
variety, an algebraic space or an analytic space; see [dF12]. We believe that for the Nash problem
it is natural to allow analytic resolutions.

Proposition 9. Set Xm := (xy = z2 − tm) ⊂ C4.

(1) If m ≥ 5 is odd, there are 2 essential divisors.
(2) If m ≥ 2 is even or m = 3, there is 1 essential divisor.

Even in dimension 3, it seems surprisingly difficult to determine the set of essential divisors.
A basic invariant is given by the discrepancy.
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Definition 10. Let X be a normal variety or analytic space. Assume for simplicity that the
canonical class KX is Cartier. (This holds for all hypersurface singularities.) Let π : Y → X be
a resolution of singularities and write

KY ∼ π∗KX +
∑

ia(Ei, X)Ei,

where the Ei are the π-exceptional divisors. The integer a(Ei, X) is called the discrepancy of
Ei. (See [KM98, Sec.2.3] for basic references and more general definitions.)

For example, let X be smooth and Z ⊂ X a smooth subvariety of codimension r. Let πZ :
BZX → X denote the blow-up and EZ ⊂ BZX the exceptional divisor. Then a(EZ , X) = r− 1
and easy induction shows that a(F,X) ≥ r for every other divisor whose center on X is Z.

We say that X is canonical (resp. terminal) of a(Ei, X) ≥ 0 (resp. a(Ei, X) > 0) for every
resolution and every exceptional divisor.

For instance, normal cA-type singularities are canonical and a cA-type singularity is terminal
iff its singular set has codimension ≥ 3; see [Rei83] for a proof that applies to all cDV singularities
or [Kol13, 1.42] for a simpler argument in the cA case.

11 (Resolving Xm). Blow up the origin to get π1 : Xm,1 := B0Xm → Xm. The exceptional
divisor is the singular quadric E1

∼= (xy − z2 = 0) ⊂ P3(x, y, z, t).
If m ∈ {2, 3} then B0X is smooth, hence the only essential divisor is E1.
For m ≥ 4 the resulting B0Xm has one singular point, visible in the chart

(x1, y1, z1, t) :=
(
x/t, y/t, z/t, t

)
where the local equation is x1y1 = z2

1−tm−2. We can thus blow up the origin again and continue.
After r := bm2 c steps we have a resolution

Πr : Xm,r → Xm,r−1 → · · · → Xm,1 → Xm.

We get r exceptional divisors Er, . . . , E1. For 1 ≤ c ≤ r the divisor Ec first appears on Xm,c.
At the unique singular point one can write the local equation as

Xm,c =
(
xcyc = z2

c − tm−2c
)

and Ec = (t = 0).

where (xc, yc, zc, t) :=
(
x/tc, y/tc, z/tc, t

)
.

We thus need to decide which of the divisors E1, . . . , Ebm2 c
are essential. It is easy to see that

E1 is essential and a direct computation (Lemma 15 below) shows that E3, . . . , Ebm2 c
are not.

(This is actually not needed in order to establish Example 2.) The hardest is to decide what
happens with E2.

Lemma 12. Notation as above. Then

(1) a(Ec, Xm) = c for every c.
(2) E1 is the only exceptional divisor whose center is the origin and whose discrepancy is 1.
(3) E1 appears on every resolution of Xm whose exceptional set is a divisor.
(4) Let p : Y 99K Xm be any (not necessarily proper) bimeromorphic map from a smooth an-

alytic space Y such that centerY E1 ⊂ Y is not empty. Then centerY E1 is an irreducible
component of the exceptional set Ex(p).

Proof. The first claim follows from the formula

Π∗r

(
dx∧dy∧dt

z

)
= t−c · dxc∧dyc∧dt

zc
.

Let F be any other exceptional divisor whose center is the origin. Then centerXr
F lies on one

of the Ec, thus a(F,X) > a(Ec, X) ≥ 1. (This also proves that Xm is terminal.)



ARC SPACES OF cA-TYPE SINGULARITIES 243

To see (3) set W1 := centerY E1 ⊂ Y . Let Fi ⊂ Y be the exceptional divisors and note that,
as in [KM98, 2.29],

a(E1, Xm) ≥
(
codimY W1 − 1

)
+
∑

i multW1
Fi · a(Fi, Xm). (12.5)

Note that a(E1, Xm) = 1 and a(Fi, Xm) ≥ 1 for every i. If W1 is not an irreducible component
of Ex(p) then W1 ⊂ Fi form some i and then both terms on the right hand side of (12.5) are
positive, a contradiction. �

13 (Small resolutions and factoriality of Xm). If m = 2a is even, then Xm has a small resolution
obtained by blowing up either (x = z − ta = 0) or (x = z + ta = 0). The resulting blow-ups
Y ±2a ⊂ C4

xyzt × P1
uv are defined by the equations

Y ±2a := rank

(
x z ± ta u

z ∓ ta y v

)
≤ 1 (13.1)

We show that Xm does not have small resolutions if m is odd. More generally, let

Xf :=
(
xy = f(z, t)

)
⊂ C4

be an isolated cA-type singularity. Write f =
∏

j fj as a product of irreducibles. The fj are

distinct since the singularity is isolated. Set Dj := (x = fj = 0). By [Kol91, 2.2.7] the local
divisor class group is

Div
(
0 ∈ Xf

)
=
(∑

jZ[Dj ]
)/∑

j [Dj ]. (13.2)

In particular, Xf is factorial iff f is irreducible.
This formula works both algebraically and analytically. If we are interested in the affine

variety Xf , then we consider factorizations of f in the polynomial ring. If we are interested
in the complex analytic germ Xf , then we consider factorizations of f in the ring of germs of
analytic functions. Thus, for example,

(xy = z2 − t2 − t3) ⊂ C4

is algebraically factorial, since z2− t2− t3 is an irreducible polynomial, but it is not analytically
factorial, since

z2 − t2 − t3 =
(
z − t

√
1 + t

)(
z + t

√
1 + t

)
.

Thus if m is odd then Xm is factorial (both algebraically and analytically) and it does not
have small resolutions; see Lemma 17 below for stronger results.

Lemma 14. If m is even then there is a divisorial resolution whose sole exceptional divisor is
birational to E1. Thus the only essential divisor is E1.

Proof. The m = 2 case was noted in Paragraph 11, hence we may assume that m = 2a ≥ 4.
There are 2 ways to obtain such resolutions. First, we can blow up the exceptional curve in

either of the Y ±2a as in (13.1).
Alternatively, we first blow up the origin to get B0Xm which has one singular point with local

equation x1y1 = z2
1 − t2a−2

1 and then blow up

D+ := (x1 = z1 + ta−1
1 = 0)

or

D− := (x1 = z1 − ta−1
1 = 0).

�

Lemma 15. [Nas95, p.37] The divisors E3, . . . , Er are not essential.
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Proof. If m is even, this follows from Lemma 14, but for the proof below the parity of m does
not matter.

If 2b ≥ a ≥ 0 and m ≥ a then (u, v, w, t) 7→ (ut, vta+1, wtb+1, t) = (x, y, z, t) defines a
birational map

g(a, b,m) : Zabm := (uv = w2t2b−a − tm−2−a)→ Xm.

Note that Ex
(
g(a, b,m)

)
= (t = 0) is mapped to the origin and Zabm is smooth along the v-axis,

save at the origin.
If 1 ≤ c ≤ m/2 then (xc, yc, zc, t) 7→ (xct

c, yct
c, zct

c, t) = (x, y, z, t) defines a birational map

h(c,m) : Xm,c := (xcyc = z2
c − tm−2c

)
→ Xm.

By composing we get a birational map g(a, b,m)−1 ◦ h(c,m) : Yc 99K Zabm given by

(xc, yc, zc, t) 7→ (xct
c−1, yct

c−a−1, zct
c−b−1, t) = (u, v, w, t)

which is a morphism if c ≥ a+ 1, b+ 1. If c = a+ 1 and c > b+ 1 then we have

(xc, yc, zc, t) 7→ (xct
c−1, yc, zct

c−b−1, t) = (u, v, w, t)

which maps Ec to the v-axis.
If c ≥ 3 then by setting a = c− 1, b = c− 2 we get a birational morphism

p(c,m) := g(c, c−1,m)−1 ◦ h(c,m)

given by

(xc, yc, zc, t) 7→ (xct
c, yc, zct, t) = (u, v, w, t).

Note that

p(c,m) : Yc = (xcyc = z2
c − tm−2c

)
→ (uv = w2tc−2 − tm−c

)
= Zc,c−1,m

maps Ec onto the v-axis. Thus Ec is not essential for c ≥ 3. �

Lemma 16. If m ≥ 5 is odd then E2 is essential.

Proof. We follow the arguments in [dF12, 4.1]. Let p : Y → Xm be any resolution and
set Z := centerY E2 ⊂ Y . Since Xm is factorial (here we use that m is odd), Ex(p) has pure
dimension 2 by Lemma 17.2.

Assume to the contrary that Z is not a divisor. Using that a(E2, Xm) = 2, (12.5) implies
that Z is a curve, there is a unique exceptional divisor F ⊂ Y that contains Z, F is smooth at
general points of Z and a(F,Xm) = 1.

If p(F ) is a curve then Z is an irreducible component of p−1(0). The remaining case is when
p(F ) = 0, thus F = E1 by Lemma 12.2.

Since t vanishes along E2 with multiplicity 1, it also vanishes along Z with multiplicity 1.
Since p∗x, p∗y, p∗z, p∗t all vanish along E1, the rational functions p∗(x/t), p∗(y/t), p∗(z/t) are
regular generically along Z. Thus p1 := π−1

1 ◦ p : Y 99K Xm,1 is a morphism generically along
Z. Note that our E2 is what we would call E1 if we started with Xm,1. Applying Lemma 12.4
to p1 : Y 99K Xm,1 we see that Z is an irreducible component of Ex(p1). Since m is odd, Xm,1

is analytically factorial by Paragraph 13, hence Z is a divisor by Lemma 17.2 below. This is a
contradiction. �

Lemma 17. Let X,Y be normal varieties or analytic spaces and g : Y → X a birational or
bimeromorphic morphism. Then the exceptional set Ex(g) has pure codimension 1 in Y in the
following cases.

(1) Y is an algebraic variety and X is Q-factorial.
(2) dimY = 3 and X is analytically locally Q-factorial.
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Proof. The algebraic case is well known; see for instance the method of [Sha74, Sec.II.4.4].
If dimY = 3 and Ex(g) does not have pure codimension 1 then it has a 1-dimensional

irreducible component C ⊂ Y . After replacing X by a suitable neighborhood of g(C) ∈ X we
may assume that there is a divisor DY ⊂ Y such that Ex(g)∩DY is a single point of C and g|DY

is proper. Thus DX := g(DY ) is a divisor on X. If mDX is Cartier then so is g∗(mDX) hence its
support has pure codimension 1 in Y . On the other hand, Supp

(
g∗(mDX)

)
= Ex(g) ∪DY does

not have pure codimension 1. (Note that there are many possible choices for DY ; the resulting
DX determine an algebraic equivalence class of divisors.) �

Somewhat surprisingly, the analog of Lemma 17.2 fails in dimension 4.

Example 18. Let W ⊂ P4 be a smooth quintic 3–fold and C ⊂W a line whose normal bundle
is O(−1) +O(−1). Let X ⊂ C5 denote the cone over W with vertex 0; it is analytically locally
factorial by [Gro68, XI.3.14].

The exceptional divisor of the blow-up B0X → X can be identified with W ; let C ⊂ B0X be
our line. Its normal bundle is O(−1) +O(−1) +O(−1).

Blow up the line C to obtain BCB0X → B0X. Its exceptional divisor is E ∼= P1 × P2. One
can contract E in the other direction to obtain g : Y → X.

By construction, Ex(g) is the union of P2 and of a 3-fold obtained from W by flopping the
line C. The two components intersect along a line.

This completes our analysis of 3–dimensional cA1-type singularities. Our study of the higher
dimensional cases relies on a deeper understanding of the proof of Lemma 17.2 for

Xc :=
(
xy = z2 − ctm

)
,

where c 6= 0.
The reader may wish to jump to Section 3 and return to this point once formula (22.3) shows

why the question answered in Proposition 19 is of interest.
Let gc : Yc → Xc be a proper birational or bimeromorphic morphism and Ec ⊂ Ex(gc) a

1-dimensional irreducible component.
The proof of Lemma 17.2 associates to Ec an algebraic equivalence class of non-Cartier divisors

on Xc. Thus m has to be even by Paragraph 13.
If m = 2a is even then the divisor class group is Div(Xc) ∼= Z. The two possible generators

correspond to (x = z −
√
cta = 0) and (x = z +

√
cta = 0). Starting with Ec we constructed a

divisor Dc ⊂ Xc which is a nontrivial element of Div(Xc). Thus [Dc] is a positive multiple of
either (x = z −

√
cta = 0) or (x = z +

√
cta = 0). Hence, to Ec ⊂ Yc we can associate a choice

of
√
c.

This may not be very interesting for a fixed value of c (since many other choices are involved)
but it turns out to be quite useful when c varies.

Proposition 19. Let g(u1, . . . , ur, v) be a holomorphic function for ui ∈ C and |v| < ε such
that g(u1, . . . , ur, 0) is not identically zero. For m ≥ 4 set

X :=
(
xy = z2 − vmg(u1, . . . , ur, v)

)
⊂ Cr+4.

Let π : Y → X be a birational or bimeromorphic morphism. Assume that there is an irreducible
component Z ⊂ Ex(π) that dominates (x = y = z = v = 0) ⊂ X, has codimension ≥ 2 in Y and
such that π|Z : Z → (x = y = z = v = 0) has connected fibers.

Then m is even and g(u1, . . . , ur, 0) is a perfect square.

Proof. For general c = (c1, . . . , cr) ∈ Cr the repeated hyperplane section

X(c) :=
(
xy = z2 − vmg(c, v)

)
⊂ C4
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has an isolated singularity at the origin and we get a proper birational or bimeromorphic mor-
phism π(c) : Y (c)→ X(c) where Y (c) ⊂ Y is the preimage of X(c).

Furthermore, Z(c) := Z ∩Y (c) is an irreducible component of Ex
(
π(c)

)
and has codimension

≥ 2 in Y (c).
Thus, as we noted above, m = 2a is even and our construction gives a function

(c1, . . . , cr) 7→ a choice of
√
g(c1, . . . , cr, 0).

It is clear that this function is continuous on a Zariski open set U ⊂ Cr. Therefore g(u1, . . . , ur, 0)
is a perfect square. �

Remark 20. Conversely, assume that m is even and g(u1, . . . , ur, 0) = h2(u1, . . . , ur) is a square.
Write the equation of X as

xy = z2 − vm
(
h2(u1, . . . , ur) + vR(u1, . . . , ur, v)

)
Over the open set X0 ⊂ X where h 6= 0, change coordinates to w := h−2v. (Equivalently, blow
up (v = h = 0) twice.) Then

D :=
(
x = z − wm/2hm+1

√
1 + wR(u1, . . . , ur, h2w)

)
is a globally well defined analytic divisor. Blowing it up gives a bimeromorphic morphism
XD → X whose exceptional set over X0 has codimension 2.

It seems that even if X is algebraic, usually XD is not an algebraic variety.

3. Essential divisors on cA1-type singularities

In higher dimensions cA1-type singularities are more complicated and their resolutions are
much harder to understand. There is no simple complete answer as in dimension 3.

In the previous Section, the key part was to understand the exceptional divisors that corre-
spond to the first 2 blow-ups. These are the 2 divisors that we understand in higher dimensions
as well.

21 (Defining E1 and E2). In order to fix notation, write the equation as

X :=
(
xy = z2 − g(u1, . . . , ur)

)
⊂ Cr+3. (21.1)

Set m := mult0 g and let gs(u1, . . . , ur) denote the homogeneous degree s part of g. In a typical
local chart the 1st blow-up σ1 : X1 := B0X → X is given by

x1y1 = z2
1 −

(
u′r
)−2

g(u′1u
′
r, . . . , u

′
r−1u

′
r, u
′
r) (21.2)

where x = x1u
′
r, y = y1u

′
r, z = z1u

′
r, u1 = u′1u

′
r, . . . , ur−1 = u′r−1u

′
r and ur = u′r. The excep-

tional divisor is the rank 3 quadric

E1 :=
(
x1y1 − z2

1 = 0
)
⊂ Pr+2. (21.3)

Note also that(
u′r
)−2

g(u′1u
′
r, . . . , u

′
r−1u

′
r, u
′
r) =

=
(
u′r
)m−2

(
gm(u′1, . . . , u

′
r−1, 1) + u′rgm+1(u′1, . . . , u

′
r−1, 1) + · · ·

)
.

(21.4)

From this we see that, for m ≥ 4, the blow-up X1 is singular along the closure of the linear space

L := (x1 = y1 = z1 = u′r = 0), (21.5)

X1 has terminal singularities and a general 3-fold section has equation

x1y1 = z2
1 −

(
u′r
)m−2

(
gm(c1, . . . , cr−1, 1) + u′rgm+1(c1, . . . , cr−1, 1) + · · ·

)
.
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Blowing up the closure of L we obtain X2 with exceptional divisor E2. As in Lemma 12 we
compute that

(6) a(E1, X) = r,
(7) a(E2, X) = r + 1,
(8) a(F,X) ≥ r + 1 for every other exceptional divisor whose center on X is the origin and
(9) the pull-backs of the ui vanish along E1, E2 with multiplicity 1.

The key computation is the following.

Proposition 22. Notation as above and assume that m ≥ 4.

(1) E1 is an essential divisor.
(2) E2 is an essential divisor iff gm(u1, . . . , ur) is not a perfect square.

Proof. By (21.6) and (21.8), E1 has the smallest discrepancy among all divisors over X whose
center on X is the origin. Thus E1 is essential by Proposition 24.

If E2 is non-essential then there is a resolution π : Y → X and an irreducible component
W ⊂ Suppπ−1(0) such that Z := centerY E2 (W . By (21.9), the π∗ui vanish at a general point
of Z with multiplicity 1. Since the π∗ui vanish along W , this implies that Suppπ−1(0) is smooth
at a general point of Z. In particular, W is the only irreducible component of Suppπ−1(0) that
contains Z and W is smooth at general points of Z. Therefore the blow-up BWY is smooth over
the generic point of Z. So, if we replace Y by a suitable desingularization of BWY , we get a
situation as before where, in addition, W is a divisor.

The π∗ui are local equations of W at general points of Z and π∗x, π∗y, π∗z all vanish along
W . Thus the rational functions

π∗(x/ur), π∗(y/ur), π∗(z/ur), π∗(u1/ur), . . . , π∗(ur−1/ur),

are all regular at general points of Z. Hence the birational map σ−1
1 ◦ π : Y → B0X = X1 is a

morphism at general points of Z. Furthermore, σ−1
1 ◦ π maps W birationally to E1 ⊂ X1 and it

is not a local isomorphism along Z since Y is smooth but X1 is singular along the center L of
E2. Thus Z is an irreducible component of Ex

(
σ−1

1 ◦ π
)
. Since E2 → L has connected fibers, all

the assumptions of Proposition 19 are satisfied by the equation of the blow-up

x1y1 = z2
1 −

(
u′r
)m−2

(
gm(u′1, . . . , u

′
r−1, 1) + u′rgm+1(u′1, . . . , u

′
r−1, 1) + · · ·

)
. (22.3)

Thus m is even and gm(u′1, . . . , u
′
r−1, 1) is a perfect square. Since it is a dehomogenization of

gm(u1, . . . , ur−1, ur), the latter is also a perfect square.
The converse follows from Remark 20. �

Definition 23. For (x ∈ X) let min-discrep(x ∈ X) be the infimum of the discrepancies a(E,X)
where E runs through all divisors over X such that centerX E = {x}. (It is easy to see that
either min-discrep(x ∈ X) ≥ −1 and the infimum is a minimum or min-discrep(x ∈ X) = −∞;
cf. [KM98, 2.31]. We do not need these facts.)

Proposition 24. Let (x ∈ X) be a canonical singularity and E a divisor over X such that
centerX E = {x} and a(E,X) < 1 + min-discrep(x ∈ X). Then E is essential.

Proof. Let F be any non-essential divisor over X whose center on X is the origin. Thus
there is a resolution π : Y → X and an irreducible component W ⊂ Suppπ−1(x) such that
Z := centerY F ( W . Let EW be the divisor obtained by blowing up W ⊂ Y . As we noted in
Definition 10,

a(EW , Y ) = codimY W − 1 and a(F, Y ) ≥ codimY Z − 1 ≥ codimY W. (24.1)
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Write KY = π∗KX +DY where DY is effective since X is canonical and note that

a(EW , X) = a(EW , Y ) + multW DY and a(F,X) ≥ a(F, Y ) + multZ DY . (24.2)

Since multZ DY ≥ multW DY , we conclude that

a(F,X) ≥ 1 + a(EW , X) ≥ 1 + min-discrep(x ∈ X). (24.3)

Thus any divisor E with a(E,X) < 1 + min-discrep(x ∈ X) is essential. �

4. Short arcs

Let D ⊂ C denote the open unit disk and D ⊂ C its closure. The open (resp. closed) disc of
radius ε is denoted by D(ε) (resp. D(ε)). If several variables are involved, we use a subscript to
indicate the name of the coordinate.

25 (Short arcs). [KN13] Let X be an analytic space and p ∈ X a point. A short arc on (p ∈ X)
is a holomorphic map φ(t) : Dt → X such that Suppφ−1(p) = {0}.

The space of all short arcs is denoted by ShArc(p ∈ X). It has a natural topology and most
likely also a complex structure that, at least for isolated singularities, locally can be written as
the product of a finite dimensional complex space and of a complex Banach space; see [KN13,
Sec.11] for details.

A deformation of short arcs is a holomorphic map Φ(t, s) : Dt × Ds → X such that

Φ(t, s0) : Dt → X

is a short arc for every s0 ∈ Ds. Equivalently, if Supp Φ−1(p) = {0} × Ds.
In general the space of short arcs has more connected components than the space of formal

arcs. As a simple example, consider arcs on (xy = zm) ⊂ C3. For 0 < i < m the deformations

(t, s) 7→
(
ti(t+ s)m−i, tm−i(t+ s)i, t(t+ s)

)
(25.1)

show that the arc (tm, tm, t2) is in the closure of the families Ârc
◦
i (0 ∈ X), provided we work in

the space of formal arcs. However, (25.1) is not a deformation of short arcs and (tm, tm, t2) is a
typical member of a new connected component of ShArc

(
0 ∈ (xy = zm)

)
.

By contrast, adding one more variable kills this component. For example, starting with the
arc (tm, tm, t2, 0) on (xy = zm) ⊂ C4, we have deformations of short arcs

(t, s) 7→
(
ti(t+ s)m−i, tm−i(t+ s)i, t(t+ s), ts

)
. (25.2)

This example turns out to be typical and it is quite easy to modify the deformations in the
proof of Theorem 1 to yield the following.

Theorem 26. Let X = (xy = f(z1, . . . , zn) ⊂ Cn+2 be a cA-type singularity. Assume that
n ≥ 2 and m := mult0 f ≥ 2.

Then ShArc(0 ∈ X) has (m− 1) irreducible components as in Theorem 1.2.

It is not always clear if a deformation Φ(t, s) is short or not. There is, however, one case when
this is easy, at least over a smaller disc Ds(ε) ⊂ Ds.

Lemma 27. Let Φ(t, s) =
(
Φ1(t, s), . . . ,Φr(t, s)

)
be a deformation of arcs on X ⊂ Cr. Assume

that Φ(t, 0) is short and Φi(t, s) is independent of s and not identically zero for some i. Then
Φ(t, s0) : Dt → X is short for |s0| � 1.
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Proof. By assumption Φ(∗, s0)−1(p) ⊂ Φi(∗, s0)−1(p) = Φi(∗, 0)−1(p) for every s0 ∈ Ds, thus
there is a finite subset Z = Φi(∗, 0)−1(p) ⊂ Dt such that

Φ−1(0) ⊂ Z × Ds and Φ−1(0) ∩ (s = 0) = {(0, 0)}.

Since Φ−1(0) is closed, this implies that

Φ−1(0) ∩
(
Dt × Ds(ε)

)
⊂ {0} × Ds(ε) for 0 < ε� 1. �

28 (Proof of Theorem 26). At the very beginning of the proof of Theorem 1, after a linear
change of coordinates we may assume that zm1 appears in f with nonzero coefficient and φ2 is
not identically zero. Then the construction gives a deformation of short arcs by Lemma 27.

The deformations at the end of the proof were written to yield short arcs. �

5. A revised version of the Nash problem

As we saw, the Nash map is not surjective in dimensions ≥ 3. In this section we develop a
revised version of the notion of essential divisors. This leads to a smaller target for the Nash
map, so surjectivity should become more likely. Our proposed variant of the Nash problem at
least accounts for all known counter examples.

We start with a reformulation of the original definition of essential divisors.

29. Let Y be a complex variety and Z ⊂ Y a closed subset. Let Ârc(Z ⊂ Y ) denote the scheme
of formal arcs φ : SpecC[[t]]→ Y such that φ(0) ∈ Z.

An easy but key observation is the following.

29.1. If Y is smooth, then the irreducible components of Ârc(Z ⊂ Y ) are in a natural one–
to–one correspondence with the irreducible components of Z.

We say that a divisor E over Y is essential for Z ⊂ Y if E is obtained by blowing up one of
the irreducible components of Z. (For each irreducible component Zi ⊂ Z, the blow-up BZY
contains a unique divisor that dominates Zi.)

The definition of essential divisors can now be reformulated as follows.

29.2. Let (x ∈ X) be a singularity. A divisor E is essential for (x ∈ X) if E is essential for(
Suppπ−1(x) ⊂ Y

)
for every resolution π : Y → X.

In order to refine the Nash problem, we need to understand singular spaces for which the
analog of (29.1) still holds.

Definition 30 (Sideways deformations). Let X be a variety (or an analytic space) and

φ : SpecC[[t]]→ X

a formal arc such that φ(0) ∈ SingX. A sideways deformation of φ is a morphism

Φ : SpecC[[t, s]]→ X

such that

Φ∗ISing X ⊃ (t, s)m for some m ≥ 1,

where ISing X ⊂ OX is the ideal sheaf defining SingX.
If Φ comes from a convergent arc Φan : Dt×Ds → X then this is equivalent to assuming that

for every 0 6= |s0| � 1 the nearby arc Φan(t, s0) maps Dt(ε) to X \ SingX for some 0 < ε ≤ 1.

We say that (x ∈ X) is arc-wise Nash-trivial if every general arc in Ârc(x ∈ X) has a

sideways deformation. (By [FdBP12a], this implies that every arc in Ârc(x ∈ X) has a sideways
deformation.)
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Comment 31. If (x ∈ X) is an isolated singularity with a small resolution π : X ′ → X then
every arc has a sideways deformation. We can lift the arc to X ′ and there move it away from
the π-exceptional set. This is not very interesting and the notion of essential divisors captures
this phenomenon.

To exclude these cases, we are mainly interested in arc-wise Nash-trivial singularities that
do not have small modifications. If arc-wise Nash-trivial singularities are log terminal then
assuming analytic Q-factoriality captures this restriction, but in general one needs to be careful
of the difference between analytic Q-factoriality and having no small modifications.

Also, in the few examples of which we know, general arcs of every irreducible component of

Ârc(x ∈ X) have sideways deformations. If there are singularities where sideways deformations
exist only for some of the irreducible components, the following outline needs to be suitably
modified.

The main observation is that, for the purposes of the Nash problem, Q-factorial arc-wise
Nash-trivial singularities should be considered as good as smooth points. The first evidence is
the following straightforward analog of (29.1).

Lemma 32. Let Y be a complex space with isolated, arc-wise Nash-trivial singularities. Let
Z ⊂ Y a closed subset that is the support of an effective Cartier divisor. Then the irreducible

components of Ârc(Z ⊂ Y ) are in a natural one–to–one correspondence with the irreducible
components of Z. �

If Z has lower dimensional irreducible components, the situation seems more complicated,
but, at least in dimension 3, the following seems to be the right generalization of (29.1).

Conjecture 33. Let Y be a 3–dimensional complex space with isolated, Q-factorial, arc-wise
Nash-trivial singularities. Let Z ⊂ Y be a closed subset. Then the irreducible components of

Ârc(Z ⊂ Y ) are in a natural one–to–one correspondence with the union of the following two
sets.

(1) Irreducible components of Z.

(2) Irreducible components of Ârc(p ∈ Y ), where p ∈ Y is any singular point such that p ∈ Z
and dimp Z ≤ 1.

Definition 34. With the above assumptions, a divisor over Y is essential for Z ⊂ Y if it

corresponds to one of the irreducible components of Ârc(Z ⊂ Y ), as enumerated in Conjecture
33.1–2.

Definition 35. Let (x ∈ X) be a 3–dimensional, normal singularity. A divisor E over X is called
very essential for (x ∈ X) if E is essential for

(
Suppπ−1(x) ⊂ Y

)
for every proper bimeromorphic

morphism π : Y → X where Y has only isolated, Q-factorial, arc-wise Nash-trivial singularities.
(As in Definition 8, it is better to allow Y to be an analytic space.)

It is easy to see that the Nash map is an injection from the irreducible components of

Ârc(x ∈ X) into the set of very essential divisors. One can hope that there are no other obstruc-
tions.

Problem 36 (Revised Nash problem). Is the Nash map surjective onto the set of very essential
divisors for normal 3-fold singularities?

As a first step, one should consider the following.

Problem 37. In dimension 3, classify all Q-factorial, arc-wise Nash-trivial singularities.
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Hopefully they are all terminal and a complete enumeration is possible. The papers [Hay05a,
Hay05b] contain several results about partial resolutions of terminal singularities.

We treat two easy cases next. A positive solution of Question 4 would imply that all isolated,
3-dimensional cDV singularities are arc-wise Nash-trivial.

Theorem 38. Let (0 ∈ X) be a cA-type singularity such that dim SingX ≤ dimX − 3. Then

all arcs in Ârc
◦
i (0 ∈ X) (as in Theorem 1.2) have sideways deformations.

Proof. We use the notation of the proof of Theorem 1.
Since mult f

(
φ1(t), . . . , φn(t)

)
= m, we see that multφj(t) = 1 for at least one index j. We

may assume that j = 1 and φ1(t) = t. Thus, after the coordinate change zi 7→ zi − φi(z1) for
i = 2, . . . , n and an additional general linear coordinate change among the z2, . . . , zn we may
assume that

(1) φ1(t) = t,
(2) φj(t) ≡ 0 for j > 1,
(3)

(
xy = g(z1, z2)

)
⊂ C4 has an isolated singularity at the origin and g(z1, z2) is divisible

neither by z1 nor by z2 where g(z1, z2) = f(z1, z2, 0, . . . , 0).

By Lemma 7 there is an r ≥ 1 such that

g(t, sr) = u(t, s)

m∏
i=1

(
t− σi(s)

)
.

Since g(z1, z2) is not divisible by z1, none of the σi are identically zero. Since g(t, s) has an
isolated critical point at the origin and is not divisible by s, g(t, sr) also has an isolated critical
point at the origin. Thus all the σi(s) are distinct.

As before, for j = 1, 2 write ψj(t) = tajvj(t) where vj(0) 6= 0. Note that a1 + a2 = m and
u(t, 0) = v1(t)v2(t).

Divide {1, . . . ,m} into two disjoint subsets A1, A2 such that |Aj | = aj . Finally set

Ψ1(t, s) = v1(t) ·
∏
i∈A1

(
t− σi(s)

)
and Ψ2(t, s) =

u(t, s)

v1(t)
·
∏
i∈A2

(
t− σi(s)

)
.

Then (
Ψ1(t, s),Ψ2(t, s), t, sr, 0, . . . , 0

)
is a sideways deformation of

(
ψ1(t), ψ2(t), t, 0, . . . , 0

)
. �

The opposite happens for quotient singularities.

Proposition 39. Let (0 ∈ X) := Cn/G be an isolated quotient singularity. Then arcs with a

sideways deformation are nowhere dense in Ârc(0 ∈ X).

Proof. Let Φ : SpecC[[t, s]]→ X be a sideways deformation of an arc φ(t) = Φ(t, 0). By the

purity of branch loci, Φ lifts to an arc Φ̃ : SpecC[[t, s]]→ Cn. In particular, φ : SpecC[[t]]→ X

lifts to φ̃ : SpecC[[t]]→ Cn.
By [KN13], such arcs constitute a connected component of ShArc(0 ∈ X). We claim, however,

that these arcs do not cover a whole irreducible component of Ârc(0 ∈ X).
It is enough to show the latter on some intermediate cover of X. The simplest is to use

(0 ∈ Y ) := Cn/C where C ⊂ G is any cyclic subgroup.
Set r := |C|, fix a generator g ∈ C and diagonalize its action as

(x1, . . . , xn) 7→
(
εa1x1, . . . , ε

anxn
)
,
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where ε is a primitive rth root of unity. Thus Y is the toric variety corresponding to the free
abelian group N = Zn + Z

(
a1/r, . . . , an/r

)
and the ∆ =

(
Q≥0

)n
. The Nash conjecture is true

for toric singularities and by [IK03, Sec.3] the essential divisors are all toric and correspond to
interior vectors of N ∩∆ that can not be written as the sum of an interior vector of N ∩∆ and
of a nonzero vector of N ∩∆. In our case, all such vectors are of the form

(
ca1/r, . . . , can/r

)
for

c = 1, . . . , r − 1 where cai denotes remainder mod r.
Arcs that lift to Cn correspond to the vector (1, . . . , 1), which is not minimal. In fact

(1, . . . , 1) =
(
a1/r, . . . , an/r

)
+
(
(r − 1)a1/r, . . . , (r − 1)an/r

)
. �
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