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SINGULARITIES OF TANGENT VARIETIES TO CURVES AND SURFACES

GOO ISHIKAWA

Abstract. It is given the diffeomorphism classification on generic singularities of tangent
varieties to curves with arbitrary codimension in a projective space. The generic classifica-
tions are performed in terms of certain geometric structures and differential systems on flag
manifolds, via several techniques in differentiable algebra. It is provided also the generic dif-
feomorphism classification of singularities on tangent varieties to contact-integral curves in
the standard contact projective space. Moreover we give basic results on the classification of
singularities of tangent varieties to generic surfaces and Legendre surfaces.

1. Introduction

Embedded tangent spaces to a submanifold draw a variety in the ambient space, which is
called the tangent variety to the submanifold. Tangent varieties appear in various geometric
problems and applications naturally. See for instance [1][10][6]. Developable surfaces, varieties
with degenerate Gauss mapping and varieties with degenerate projective dual are obtained by
tangent varieties. Tangent varieties provide several important examples of non-isolated singu-
larities in applications of geometry. We observe relations of tangent varieties to invariant theory
and geometric theory of differential equations (see [29], also see Examples 2.7 and 9.1).

It is known, in the three dimensional Euclidean space, that the tangent variety (tangent
developable) to a generic space curve has singularities each of which is locally diffeomorphic to
the cuspidal edge or to the folded umbrella (cuspidal cross cap), as is found by Cayley and Cleave
[9]. Cuspidal edge singularities appear along ordinary points, while the folded umbrella appears
at an isolated point of zero torsion [6][35].

The classification was generalised to more degenerate cases by Mond [32][33] and Scherbak
[38][4] and applied to various geometry (see for instance [8][24]). If we consider a curve together
with its osculating framings, we are led to the classification of tangent varieties to generic oscu-
lating framed curves, possibly with singularities in themselves, in the three dimensional space.
Then the list consists of 4 singularities: cuspidal edge, folded umbrella and moreover swallowtail
andMond surface (‘cuspidal beak to beak’) [20]. However the author could not find any literature
treating the classification of singularities appearing in tangent varieties to higher codimensional
curves.

The diffeomorphism types of tangent varieties to curves are invariant under projective trans-
formations. In this paper, we consider curves in projective spaces and show the classification
results on generic singularities of tangent varieties to curves with arbitrary codimension in pro-
jective spaces.

The tangent variety can be defined for a ‘frontal’ variety. A frontal variety has the well-defined
embedded tangent space at each point, even where the variety is singular. In Cauchy problem
of single unknown function, we have wave-front sets, which are singular hypersurfaces [3]. They
are called fronts and form an important class of frontal varieties. Also higher codimensional
wave-fronts are examples of frontal varieties, which appear in, for instance, Cauchy problem of
several unknown functions, where initial submanifolds of arbitrary codimension evolve to frontal
varieties (cf. [13][26]).

http://dx.doi.org/10.5427/jsing.2012.6f
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First, in §2, we introduce the notion of frontal maps and frontal varieties, generalising that
of submanifolds and fronts (Definition 2.1). Moreover we define their tangent maps and tangent
varieties (Definition 2.2). Then we give the classification of tangent varieties to generic curves
in projective spaces (Theorem 2.6). In fact we find that the tangent variety to a generic curve
in RPN+1 has the unique singularity, the higher codimensional cuspidal edge, if N + 1 ≥ 4.

In the geometric theory of curves, however, we usually treat not just curves but we attach
an appropriate frame with curves. Thus, to solve the generic classification problem properly, we
relate the study of tangent varieties to certain kinds of differential systems on appropriate flag
manifolds in §3. Note that the method was initiated by Arnol’d and Scherbak [38]. Also note
that it is standard to use flag manifolds in the theory of space curves ([40]). We can utilise various
types of flag manifolds. In fact, in this paper, we select three kinds of flag manifolds and three
kinds of differential systems, correspondingly to the classes of curves endowed with osculating-
frames, with tangent-frames and with tangent-principal-normal-frames. Then we present the
classification results on the singularities of which generically appear for these three kinds of
classes of curves in projective spaces (Theorems 3.3, 3.4, 3.6).

In §4, the notion of types of curve-germs are recalled. Curves of finite type are frontal and
their tangent varieties are frontal. We classify the generic types of curves, and then we show a
kind of determinacy of the tangent variety for each generic type of curves.

In §5, we classify the list of types of generic curves satisfying geometric conditions. To do
this, we establish the codimension formulae giving the codimension of the set of curves, for given
type, which satisfy a given geometric integrality condition in each case. Then the transversality
theorem implies the restriction on types of generic curves.

In §6, we introduce the key notion of openings of differentiable map-germs, which has close
relations with that of frontal varieties. We collect necessary results on differentiable algebras
to solve the generic classification problems treated in this paper. Moreover, in §7, using the
method of differentiable algebra, we show the normal forms of tangent varieties appearing in the
generic classification problems we have treated in this paper. In particular the main results in
this paper, Theorems 2.6, 3.3, 3.4 and 3.6 are proved.

In §8, we treat contact-integral curves and their tangent varieties. If V is a symplectic vector
space, then the projective space P (V ) has the canonical contact structure. Then we give the
generic diffeomorphism classification of singularities on tangent varieties to ‘osculating framed
contact-integral’ curves in P (V ) (Theorems 8.5, 8.6). For this, in particular, we show that the
diffeomorphism type of Tan(γ) is unique for a curve of type (1, 3, 4, 6) in RP 4 in this paper.
Note that it is known that the diffeomorphism type of TanTan(γ) is not unique ([18]).

In §9, we treat the classification problem of singularities of tangent varieties to surfaces,
exhibiting several examples and observations. First we observe that the tangent varieties to
generic smooth surfaces are not frontal. We characterise the class of surfaces whose tangent
varieties are frontal. In particular we show that the tangent varieties to Legendre submanifolds
in the five dimensional standard contact projective space P (R6) = RP 5 are frontal, if the tangent
variety has a dense regular set. Recall that the singularity of tangent variety to a curve along
ordinary points is the cuspidal edge. Therefore the singularity of tangent variety at almost any
point on a curve is diffeomorphic to cuspidal edge, which is a generic singularity of wave front.
We study the analogous problem for tangent varieties to Legendre surfaces. Then we observe
that the situation becomes absolutely different. In fact we introduce the notion of hyperbolic
and elliptic ordinary points on Legendre surface in RP 5 and show that the transverse section of
the tangent variety to the surface, by a 3-plane, has D4-singularities (Theorem 9.5).

In the last section §10, we collect open problems related to several results obtained in this
paper.
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In this paper all manifolds and maps are assumed to be of class C∞ unless otherwise stated.

2. Frontal maps and tangent varieties.

Definition 2.1. Let N andM be manifolds of dimension n and m respectively. Suppose n ≤ m.
A mapping f : Nn →Mm is called frontal if

(i) the regular locus

Reg(f) = {x ∈ N | f : (N, x)→ (M,f(x)) is an immersion}
of f is dense in N and
(ii) there exists a C∞ mapping f̃ : N → Gr(n, TM) =

⋃
y∈M Gr(n, TyM) satisfying

f̃(x) = f∗(TxN), for x ∈ Reg(f).

Here Gr(n, TyM) is the Grassmannian of n-planes in TyM . Note that the lifting f̃ is uniquely
determined if it exists and is called the Grassmannian lifting of f .

We define a subbundle C ⊂ TGr(n, TM) by setting, for v ∈ TLGr(n, TM), L ∈ TyM ,

v ∈ CL ⇐⇒ π∗(v) ∈ L ⊂ TyM.

The differential system C is called the canonical differential system. The Grassmannian lifting f̃
is a C-integral map, that is, f̃∗(TN) ⊂ C. We describe the canonical system in the next section
(Remark 3.7) in the case M is a projective space.

If f is an immersion, then f is frontal. A wave-front hypersurface is frontal. The key observa-
tion for the classification of singularities of tangent varieties is that the tangent variety Tan(γ)
to a curve γ of finite type is frontal. The lifting Grassmannian is obtained by taking osculating
planes to the curves (See §4). If n = m, then f is frontal if the condition (i) is fulfilled, f̃(x)
being Tf(x)R

m.
If f̃ is an immersion, then the frontal mapping is called a front. In [17], we called a frontal

hypersurface (m = ` + 1), a “front hypersurface". However we would like to reserve the notion
“front" for the case that the Grassmannian lifting is an immersion, as in the Legendre singularity
theory. Note that frontal maps are studied also in [28][27][37].

Definition 2.2. Let f : (Rn, a)→ (Rm, b), n ≤ m be a frontal map-germ and

f̃ : (Rn, a)→ Gr(n, TRm) ∼= Rm ×Gr(n,Rm)

be the Grassmannian lifting of f .
A tangent frame to f means a system of vector fields v1, . . . , vn : (Rn, a) → TRm along f

such that v1(x), . . . , vn(x) form a basis of f̃(x) ⊂ Tf(x)R
m. Then the tangent map Tan(f, v) :

(R2n, (a, 0))→ (Rm, b) is defined by

Tan(f, v)(s, x) := f(x) +

n∑
i=1

sivi(x).

If we choose another tangent frame u1, . . . , un of f and define

Tan(f, u)(s, x) = f(x) +

n∑
i=1

siui(x).

Then Tan(f, u) and Tan(f, v) are right-equivalent. Therefore the tangent variety Tan(f) to a
frontal map-germ is uniquely determined as a parametrised variety.
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For a frontal map-germ f : (Rn, 0)→ RPN+1 in a projective space we define the tangent map
Tan(f) : (Rn, 0)→ RPN+1 by taking a local projective coordinate (RPN+1, f(0))→ (RN+1, 0)
(cf. §4).

Remark 2.3. In this paper we treat only tangent varieties, which are closely related to the
secant varieties. The secant variety of a submanifold S ⊂ RPn is the ruled variety obtained
by taking the union of secants connecting two distinct points on S and by taking its closure
([41][12]). See also Example 9.1. The secant variety is parametrised by the ‘secant map’ and
the tangent map is the ‘boundary’ of secant map in some sense. For the singularities of secant
maps, see [14].

Let γ : (R, 0) → RPN+1 be a germ of immersion and γ(t) = (x1(t), x2(t), . . . , xN+1(t)) be a
local representation of γ. Then γ′(t) gives the tangent frame of γ. Then the tangent variety to
γ is given by Tan(γ) : (R2, 0)→ RN+1 defined by

Tan(γ)(s, t) = γ(t) + s γ′(t) = (xi(t) + s x′i(t))1≤i≤N+1 .

Note that s is the parameter of tangent lines, while t is the parameter of the original curve γ.
If t = 0 is a singular point of γ, then the velocity vector γ′(0) = 0, and hence the above

map-germ does not give the parametrisation of the tangent variety. However if there is k > 0
such that v(t) = (1/tk)γ′(t) is a tangent frame of γ, then we set

Tan(γ)(s, t) = γ(t) + s

(
1

tk
γ′(t)

)
=

(
xi(t) + s

(
1

tk
x′i(t)

))
1≤i≤N+1

.

We take k = 0 when γ is an immersion at 0.
In the above case, γ is frontal and under a mild condition Tan(γ) is also frontal.

Theorem 2.4. Let γ : (R, 0) → RPN+1 be a curve of finite type (§4). Then γ is frontal.
Moreover the tangent map Tan(γ) : (R2, 0)→ RPN+1 of γ is frontal.

Theorem 2.4 is proved in §4.

Remark 2.5. Let γ be a curve of finite type. Then it is natural to ask what Tan(Tan(γ)) is,
because Tan(γ) is frontal. For a curve γ in RPN+1, N ≥ 2, the tangent plane to Tan(γ) along
each ruling (tangent line) is constant, that is the osculating 2-plane. Therefore Tan(Tan(γ)) is
a 3-fold, not a 4-fold, ruled by osculating 2-planes of the original curve γ ([18]).

We classify the map-germ Tan(γ) by local right-left diffeomorphism equivalence. Two map-
germs f : (N, a) → (M, b) and f ′ : (N ′, a′) → (M ′, b′) are called diffeomorphic or right- left
equivalent if there exist diffeomorphism-germs σ : (N, a) → (N ′, a′) and τ : (M, b) → (M ′, b′)
such that f ′ ◦ σ = τ ◦ f .

In the followings, I is an open interval.

Theorem 2.6. (1) ([9]) For a generic curve γ : I → RP 3 in C∞-topology, the curve γ is of
finite type at each point in I and the tangent variety Tan(γ) to γ at each point in I is locally
diffeomorphic to the cuspidal edge or to the folded umbrella (cuspidal cross cap).

(2) Let N + 1 ≥ 4. For a generic curve γ : I → RPN+1 in C∞-topology, the curve γ is of
finite type at each point in I and the tangent variety Tan(γ) to γ at each point of I is locally
diffeomorphic to the cuspidal edge.

The genericity means the existence of an open dense subset O ⊂ C∞(I,RPN+1) such that
any γ ∈ O satisfies the consequence.
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The cuspidal edge is parametrised by the map-germ (R2, 0)→ (RN+1, 0), (N + 1 ≥ 3) defined
by

(u, x) 7→ (u, x2, x3, 0, . . . , 0).

Note that it is diffeomorphic (right-left equivalent) to the germ

(t, s) 7→ (t+ s, t2 + 2st, t3 + 3st2, . . . , tN+1 + (N + 1)stN ),

and also to
(t, s) 7→ (t+ s, t2 + 2st, t3 + 3st2, 0, . . . , 0),

A folded umbrella is parametrised by the germ (R2, 0)→ (R3, 0) defined by

(t, s) 7→ (t+ s, t2 + 2st, t4 + 4st3),

which is diffeomorphic to

(u, x) 7→ (u, x2 + ux,
1

2
x4 +

1

3
ux3).

A folded umbrella is often called a cuspidal cross cap.

Figure 1. cuspidal edge and folded umbrella.

Theorem 2.6 is proved in §7.

Example 2.7. (umbilical bracelet) Let

V N+2 = {a0x
N+1 + a1x

Ny + · · ·+ aNxy
N + aN+1y

N+1} ∼= RN+2

be the space of homogeneous polynomials of degree N +1 in two variables x, y. The polynomials
with zeros of multiplicity N +1 form a curve C in P (V ) ∼= RPN+1. The tangent variety Tan(C)
to C coincides with the set of polynomials with zeros of multiplicity ≥ N . The surface Tan(C)
has cuspidal edge singularities along C. In particular in the case N + 1 = 3, the tangent variety
Tan(C) to C is called the umbilical bracelet([35][11]). If N + 1 ≥ 4, Tan(Tan(C)) ⊂ P (V N+2)
coincides with of polynomials with with zeros of multiplicity ≥ N − 1.

Remark 2.8. The tangent surface to a curve is obtained as a union of strata of envelope
generated by the dual curve to the original curve. The generating family associated to the dual
curve is determined, up to parametrised K-equivalence in several cases. We recall the notion of
types of curves in a projective space in §4. If the type A = (a1, . . . , aN+1) of a curve in RPN+1

is one of followings

(I)N,r : (1, 2, . . . , N,N + r), (r = 0, 1, 2, . . . ),

(II)N,i : (1, 2, . . . , i, i+ 2, . . . , N + 1, N + 2), (0 ≤ i ≤ N − 1),

(III)N : (3, 4, . . . , N + 2, N + 3),

then the generating family is determined by the type of the curve [16]. In each case, a normal
form of the tangent variety can be obtained from the generating family

F (t, x) = taN+1 + x1t
aN+1−a1 + x2t

aN+1−a2 + · · ·+ xN t
aN+1−aN + xN+1 = 0,
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by solving

F = 0,
∂F

∂t
= 0, . . . ,

∂N−1F

∂tN−1
= 0,

deleting the divisor {t = 0} if necessary. For example, for the type (II)3,2 : (1, 2, 4, 5), we have
generating family

F (t, x) = t5 + x1t
4 + x2t

3 + x3t+ x4.

Then the tangent variety is obtained by solving t5 + x1t
4 + x2t

3 + x3t+ x4 = 0,
5t4 + 4x1t

3 + 3x2t
2 + x3 = 0,

20t3 + 12x1t
2 + 6x2t = 0.

In fact, from these equations, we get a map-germ (R2, 0)→ (R4, 0) by

x2 = −10

3
t2 − 2x1t, x3 = 5t4 + 2x1t

3, x4 = −8

3
t5 − x1t

4,

which is diffeomorphic to the open folded umbrella (see Theorems 3.6, 7.2).

3. Differential systems on flag manifolds.

First we recall the flag manifolds and the canonical differential systems on flag manifolds. For
the generality on differential systems, see [23].

Let V be a vector space of dimension n and 0 < n1 < n2 < · · · < n` < n. Then we define the
flag manifold

F = Fn1,n2,...,n`
(V ) :=

{
Vn1
⊂ Vn2

⊂ · · · ⊂ Vn`
⊂ V | dim(Vnj

) = nj , (1 ≤ j ≤ `)
}
.

Note that

dim(F) = n1(n− n1) + (n2 − n1)(n− n2) + · · ·+ (n` − n`−1)(n− n`).

Denote by πi : Fn1,n2,...,n`
(V )→ Gr(ni, V ) the canonical projection to the i-th member of the

flag. The canonical differential system C = Cn1,n2,...,n`
⊂ TF is defined by, for v ∈ TVF ,V ∈ F ,

v ∈ CV ⇐⇒ πi∗(v) ∈ TGr(ni, Vni+1
)(⊂ TGr(ni, V )), (1 ≤ i ≤ `− 1).

Then C is a bracket-generating (completely non-integrable) subbundle of TF with

rank(C) = n1(n2 − n1) + (n2 − n1)(n3 − n2) + · · ·+ (n` − n`−1)(n− n`).

A C∞ curve Γ : I → F from an open interval I is called a C-integral curve if Γ′(t) ∈ CΓ(t) for
any t ∈ I. A C-integral curve can be phrased as a C∞-family

c(t) = (Vn1
(t), Vn2

(t), . . . , Vn`
(t))

of flags in F such that each Vni
(t) moves along Vni+1

(t) at every moment infinitesimally.

Let V be an (N + 2)-dimensional vector space. For the study of tangent varieties to curves,
it is natural to regard the following flag manifolds

F1,2 = F1,2(V ) := {V1 ⊂ V2 ⊂ V | dim(Vi) = i},

and
F1,2,3 = F1,2,3(V ) := {V1 ⊂ V2 ⊂ V3 ⊂ V | dim(Vi) = i}.

The canonical systems T = C1,2 and N = C1,2,3 are defined as follows: For (V1, V2) ∈ F1,2,

v ∈ T(V1,V2) ⇐⇒ π1∗(v) ∈ TP (V2)(⊂ TP (V )).
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For (V1, V2, V3) ∈ F1,2,3,

w ∈ N(V1,V2,V3) ⇐⇒ π1∗(w) ∈ TP (V2)(⊂ TP (V )), π2∗(w) ∈ TGr(2, V3)(⊂ TGr(2, V )).

Then we have

Proposition 3.1. Let γ : (R, 0) → P (V N+2) ∼= RPN+1 be a C∞ curve. Suppose Reg(γ)
is dense in (R, 0). Then γ is frontal if and only if γ = π1 ◦ c for some C1,2-integral curve
c : (R, 0)→ F1,2(V ).

In fact c gives a tangent frame of γ. In this case, γ is called tangent-framed.

Proposition 3.2. Let γ : (R, 0)→ P (V N+2) ∼= RPN+1 be a frontal curve. Suppose Reg(Tan(γ))
is dense in (R2, 0). Then Tan(γ) is frontal if and only if γ = π1 ◦κ for some C1,2,3-integral curve
κ : (R, 0)→ F1,2,3(V ).

In fact, if Tan(γ) is frontal, then V1(t) = γ(t), the tangent (projective) line V2(t) to γ at t and
the tangent (projective) plane to Tan(γ) at (t, 0) form a C1,2,3-integral lifting of γ. Conversely if
c(t) = (V1(t), V2(t), V3(t)) is a C1,2,3-integral curve, then Tan(γ) has the constant tangent plane
V3(t) along each ruling, and (t, s) 7→ TV1(t)P (V3)(t) gives the Grassmannian lifting of Tan(γ).

The projection of a C1,2,3-integral curve is called a tangent-principal-nomal-framed curve.

Theorem 3.3. (1) Let N + 1 = 3. For a generic C1,2-integral curve c : I → F1,2(V 4) in C∞-
topology, the tangent variety Tan(γ) to the tangent-framed curve γ = π1 ◦ c : I → P (V 4) = RP 3

at each point is locally diffeomorphic to the cuspidal edge, the folded umbrella or the swallowtail.
(2) Let N + 1 ≥ 4. For a generic C1,2-integral curve c : I → F1,2(V N+2) in C∞-topology, the

tangent variety Tan(γ) to the tangent-framed curve γ = π1 ◦ c : I → P (V ) = RPN+1 at each
point is locally diffeomorphic to the cuspidal edge or the open swallowtail.

The swallowtail (R2, 0)→ (R3, 0) is given by

(t, s) 7→ (t2 + 2s, t3 + 3st, t4 + 4st2),

which is diffeomorphic to

(u, x) 7→ (u, x3 + ux,
3

4
x4 +

1

2
ux2).

The open swallowtail (R2, 0)→ (RN+1, 0), N + 1 ≥ 4 is given by

(t, s) 7→ (t2 + 2s, t3 + 3st, t4 + 4st2, t5 + 5st3, 0, . . . , 0),

which is diffeomorphic to

(u, x) 7→ (u, x3 + ux,
3

4
x4 +

1

2
ux2,

3

5
x5 +

1

3
ux3, 0, . . . , 0).

Theorem 3.4. (1) Let N + 1 = 3. For a generic C1,2,3-integral curve κ : I → F1,2,3(V 4)
in C∞-topology, the tangent variety Tan(γ) to the tangent-principal-normal-framed curve γ =
π1 ◦ κ : I → P (V 4) = RP 3 at each point is locally diffeomorphic to the cuspidal edge, the folded
umbrella, the Mond surface or the swallowtail.

(2) Let N + 1 ≥ 4. For a generic C1,2,3-integral curve κ : I → F1,2,3(V N+2) in C∞-topology,
the tangent variety Tan(γ) to the tangent-principal-normal-framed curve γ = π1◦κ : I → P (V ) =
RPN+1 at each point is locally diffeomorphic to the cuspidal edge, the open Mond surface or the
open swallowtail.

The Mond surface (R2, 0)→ (R3, 0) is given by

(t+ s, t3 + 3st2, t4 + 4st3),
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which is diffeomorphic to

(u, x) 7→ (u, x3 + ux2,
3

4
x4 +

2

3
ux3)).

The Mond surface is called also cuspidal beaks ([25]) or cuspidal beak to beak (‘bec à bec’).
The open Mond surface (R2, 0)→ (RN+1, 0), N + 1 ≥ 4 is given by

(t, s) 7→ (t+ s, t3 + 3st2, t4 + 4st3, t5 + 5st4, 0, . . . , 0),

(u, x) 7→ (u, x3 + ux2,
3

4
x4 +

2

3
ux3,

3

5
x5 +

1

2
ux4, 0, . . . , 0).

Now we recall on osculating-framed curves (cf. [20]). Let V be an (N + 2)-dimensional real
vector space. Consider the complete flag manifold:

F = F1,2,...,N+1(V ) := {V1 ⊂ V2 ⊂ · · ·VN+1 ⊂ V | dim(Vi) = i, 1 ≤ i ≤ N + 1}.

Then dimF = (N+1)(N+2)
2 . We denote by πi : F → Gr(i, V ) the canonical projection

πi(V1, V2, . . . , VN+1) = Vi.

The canonical system C = C1,2,...,N+1 ⊂ TF is defined by

v ∈ C(V1,...,VN+1) ⇐⇒ πi∗(v) ∈ TGr(i, Vi+1)(⊂ TGr(i, V )), (1 ≤ i ≤ N).

For a C∞ curve γ : I → P (V ) = RPN+1, if we consider Frenet-Serret frame, or the os-
culating projective moving frame, Γ = (e0(t), e1(t), . . . , eN+1(t)) : I → GL(RN+2) = GL(N +
2,R), γ(t) = [e0(t)], then, setting Vi(t) := 〈e0(t), e1(t), . . . , ei−1(t)〉R, (1 ≤ i ≤ N + 1), we
have a C-integral lifting γ̃ : I → F of γ for the projection π1 : F → P (V ), by γ̃(t) =
(V1(t), V2(t), . . . , VN+1(t)). In this case, γ is called osculating-framed. Note that the framing
of an osculating-framed curve is uniquely determined if an orientation of the curve and a metric
on P (V ) are given.

Theorem 3.5. ([20]) Let N + 1 = 3. For a generic C-integral curve c : I → F(V 4) in C∞-
topology, the tangent variety Tan(γ) to the osculating-framed curve γ = π1 ◦ c : I → P (V 4) =
RP 3 at each point of I is locally diffeomorphic to the cuspidal edge, the folded umbrella, the
swallowtail or to the Mond surface (Figure 2).

Figure 2. cuspidal edge, folded umbrella, swallowtail and Mond surface in R3.

In this paper we treat higher codimensional cases, and we show the following

Theorem 3.6. Let N + 1 ≥ 4. For a generic C-integral curve c : I → F in C∞-topology, the
tangent variety to the osculating-framed curve γ = π1 ◦ c : I → P (V N+2) = RPN+1 at each
point is locally diffeomorphic to the cuspidal edge, the open folded umbrella (cuspidal non-cross
cap), the open swallowtail or to the open Mond surface (Figure 3).
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The open folded umbrella (R2, 0)→ (RN+1, 0), N ≥ 3 is given by

(t, s) 7→ (t+ s, t2 + 2st, t4 + 4st3, t5 + 5st4, 0, . . . , 0),

which is diffeomorphic to

(u, x) 7→ (u, x2 + ux,
1

2
x4 +

1

3
ux3,

2

5
x5 +

1

4
ux4, 0, . . . , 0).

Figure 3. cuspidal edge, open folded umbrella, open swallowtail and open
Mond surface in R4.

Our main results, Theorems 3.3, 3.4, 3.6 are proved in §7.

Lastly in this section, we describe the canonical system C = C1,2,...,k+1 on F1,2,...,k+1(V N+2).
Let V1 = (V11, V21, . . . , Vk+1,1) ∈ F1,2,...,k+1(V N+2). Fix a flag V N+2 ⊃ WN+1 ⊃ WN ⊃
WN−k+1 such that WN−i+1 ∩ Vi+1 1 = {0}, i = 0, 1, . . . , k. Take the open neighbourhood U of
V1 defined by

U :=
{

(V1, V2, . . . , Vk+1) ∈ F1,2,...,k+1(V N+2) | WN−i+1 ∩ Vi+1 = {0}, i = 0, 1, . . . , k} .
Take non-zero vectors e0 ∈ V11, e1 ∈ V21 ∩WN+1, e2 ∈ V31 ∩WN , . . . , ek ∈ Vk+1 1 ∩WN−k+2.
Adding a basis (ek+1, . . . , eN+1) of WN−k+1, we get a basis (e0, e1, e2, . . . , ek, ek+1, . . . , eN+1) of
V . Then, for each V = (V1, V2, . . . , Vk+1), Vi has a basis v0, v1, . . . , vi−1 (a ‘moving frame’) of
the form

vi = ei +

N+1∑
j=i+1

x i
j ej , 0 ≤ i ≤ k.

Then the condition that a curve in F1,2,...,k+1(V N+2) C-integral is equivalent to that the com-
ponents of the curve satisfies the conditions

(vi−1)′ =

N+1∑
j=i

(x i−1
j )′ej ∈ 〈v0, v1, . . . , vi〉E1 , 1 ≤ i ≤ k.

Thus we see that the differential system C = C1,2,...,k+1 is defined by

dx i−1
j − x i

j dx
i−1
i = 0, (1 ≤ i ≤ k, i+ 1 ≤ j ≤ N + 1),

for the system of local coordinates
(
x i
j

)
0≤i≤k,i+1≤j≤N+1

of F1,2,...,k+1(V N+2).

Remark 3.7. For a (N+2)-dimensional vector space V , the Grassmannian bundle Gr(n, TP (V N+2))
over P (V N+2) is identified with the flag manifold F1,n+1(V N+2),

F1,n+1(V N+2) = {V1 ⊂ Vn+1 ⊂ V N+2 | dim(V1) = 1,dim(Vn+1) = n+ 1}.

Remark that the Grassmannian liftings of frontal maps Nn → P (V N+2) are C-integral of the
canonical system C = C1,n+1.
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The canonical system C1,n+1 on F1,n+1(V N+2) is locally given by

dx 0
i+1 −

n∑
j=1

x j
i+1dx

0
j = 0, (n ≤ i ≤ N),

for a system of local coordinates x 0
i+1, (0 ≤ i ≤ N), x j

i+1, (1 ≤ j ≤ n, n ≤ i ≤ N). The projection
π1 : Gr(n, TP (V N+2))→ P (V N+2) is represented by (x 0

1 , . . . , x
0
N+1). If we write xi = x 0

i (1 ≤
i ≤ n), yk = x 0

n+k (1 ≤ k ≤ N − n+ 1) and p i
k = x i

n+k (1 ≤ k ≤ N − n+ 1, 1 ≤ i ≤ n), then we
have

dyk −
n∑
i=1

p i
k dxi = 0, 1 ≤ k ≤ N − n+ 1.

Therefore the condition that a map F : Ln → Gr(n, TP (V N+2)) is C-integral is expressed by

d(yk ◦ F )−
n∑
i=1

(p i
k ◦ F ) d(xi ◦ F ) = 0, 1 ≤ k ≤ N − n+ 1.

4. Type of a curve in a space with flat projective structure.

Let M be an m-dimensional C∞ manifold. A flat projective structure on M is given by
an atlas {(Uα, ϕα)} where M =

⋃
α Uα, ϕα : Uα → ϕα(Uα) ⊂ Rm, and transition functions

ϕβ◦ϕ−1
α : ϕα(Uα∩Uβ)→ ϕβ(Uα∩Uβ) are fractional linear with a common denominator. Then an

admissible chart is called a system of projective local coordinates. The projective space P (V m+1)
for a vector space V m+1 has the canonical flat projective structure. Also Grassmannians and
Lagrange Grassmannians have flat projective structures (cf. [22]).

Let γ : I →M be a C∞-curve in a manifoldM with a flat projective structure. Take a system
of projective local coordinates (x1, x2, . . . , xm) centred at γ(t0) and the local affine representation
(R, t0)→ (Rm, 0),

γ(t) = T (x1(t), x2(t), . . . , xm(t))

of γ. Consider the (m× k)-matrix

Wk(t) :=
(
γ′(t0), γ′′(t0), · · · , γ(k)(t0)

)
for any integer k ≥ 1 and k =∞. Note that the rank of Wk(t0) is independent of the choice on
representations for γ.

Definition 4.1. We call γ of finite type at t = t0 ∈ I if the (m×∞)-matrix

W∞(t0) =
(
γ′(t0), γ′′(t0), · · · , γ(k)(t0), · · · · · ·

)
is of rank m. Define, for 1 ≤ i ≤ m, ai := min {k | rankWk(t0) = i} . Then we have a sequence
of natural numbers 1 ≤ a1 < a2 < · · · < am, and we call γ of type (a1, a2, . . . , am) at t = t0 ∈ I.

If (a1, a2, . . . , am) = (1, 2, . . . ,m), then t = t0 is called an ordinary point of γ.

It is easy to see

Lemma 4.2. A curve-germ γ : (R, 0) → M in a manifold M with a flat projective structure,
is of type (a1, a2, . . . , am) at 0 if and only if there exists a system of projective local coordinates
(x1, x2, . . . , xm) centred at γ(0) such that

x1(t) = ta1 + o(ta1), x2(t) = ta2 + o(ta2), . . . , xm(t) = tam + o(tam).
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Lemma 4.3. Let γ : (R, 0)→ P (RN+2) = RPN+1 be a curve and γ̃ : (R, 0)→ RN+2 \ {0} be
a lifting of γ. Set W̃r(t) = (γ̃(t), γ̃′(t), · · · , γ̃(r)(t)). Then γ is of type A = (a1, a2, . . . , aN+1) if
and only if ai = min{r | rank W̃r(t0) = i+ 1}, 1 ≤ i ≤ N + 1.

Moreover we see

Lemma 4.4. Let γ : (R, 0) → P (RN+2) = RPN+1 a curve of finite type. There is unique
C1,2,3,...,N+1-integral C∞ lifting Γ : (R, 0) → F1,2,3,...,N+1(RN+2) of γ. Moreover by the pro-
jection of Γ, we have C1,2,3-integral lifting κ : (R, 0) → F1,2,3(RN+1) and C1,2-integral lifting
c : (R, 0)→ F1,2(RN+1) of γ.

Proof : The first half is proved in [20] (Lemma 6.1). We take the lifting γ̃ : (R, 0)→ RN+2 \ {0}
defined by

γ̃(t) = T (1, ta1 + o(ta1), ta2 + o(ta2), . . . , taN+1 + o(taN+1)) .

of γ. Consider the (N + 2)× (N + 2)-matrix

A(t) =

(
γ̃(t),

1

a1!
γ̃(a1)(t), · · · , 1

aN+1!
γ̃(aN+1)(t)

)
.

Let Vi(t) be the linear subspace of RN+2 generated by the first i- columns of A(t). Then
Γ : (R, 0) → F1,2,3,...,N+1(RN+2) is uniquely determined by Γ(t) = (V1(t), V2(t), . . . , VN+1(t)).
The lower triangle components of A(t) give the local representation of Γ, therefore Γ is C∞.
Moreover κ(t) = (V1(t), V2(t), V3(t)) and c(t) = (V1(t), V2(t)). �

Proof of Theorem 2.4 : Theorem 2.4 follows from Lemma 4.4 and Proposition 3.2. Here we give
concretely the Grassmannian lifting of Tan(γ) in term of Wronskian.

Lemma 4.5. Let γ : (R, 0)→ RPN+1 be a curve-germ of type (a1, a2, . . . , aN+1) and

γ(t) = (x1(t), x2(t), . . . , xN+1(t))

be a local affine representation of γ. Then the tangent variety to γ is parametrised by

f(s, t) = Tan(γ)(s, t) := γ(t) + s
1

α(t)
γ′(t) =

(
xi(t) + s

1

α(t)
x′i(t)

)
1≤i≤N+1

,

where α(t) = ta1−1. We set fi(s, t) = xi(t) +
s

α(t)
x′i(t). Then we have

Wi2

W12
df1 +

W1i

W12
df2.

Here

Wij(t) =

∣∣∣∣ x′i(t) x′j(t)
x′′i (t) x′′j (t)

∣∣∣∣ .
Proof : We have

dfi(s, t) =
x′i(t)

α(t)
ds+

(
x′i(t) + s

(
x′i(t)

α(t)

)′)
dt.

Then we have ∣∣∣∣∣ x′1 x′2

x′1 + s
(
x′
1

α

)′
x′2 + s

(
x′
2

α

)′ ∣∣∣∣∣ =
s

α
W12.
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Therefore we have, for 3 ≤ i ≤ n+ 1,

dfi =
α

sW12
(df1, df2)

 x′2 + s
(
x′
2

α

)′
−x′2

−x′1 − s
(
x′
1

α

)′
x′1

( x′i

x′i + s
(
x′
i

α

)′ )

=
Wi2

W12
df1 +

W1i

W12
df2.

�

Remark 4.6. Note that
Wi2

W12
and

W1i

W12
are C∞ functions on t of order ai−a1, ai−a2 respectively.

The above formula gives the Grassmannian lifting f̃ : (R2, 0)→ Gr(2, TRN+1) of f = Tan(γ).

Remark 4.7. If we set g : (R2, 0) → (R2, 0), g(s, t) = (f1(s, t), f2(s, t)). Then we have that
f3, . . . , fn+1 ∈ Rg and that f is an opening of g in the sense of §6.

5. Codimension formulae and the genericity.

We consider the jet space Jr(I,RPN+1). Let A = (a1, a2, . . . , aN , aN+1) be a strictly in-
creasing sequence of positive integers. For r > aN+1, we define

Σ(A) = {jrγ(t0) | t0 ∈ I, γ : (I, t0)→ RPN+1 is of type A at t0}.

Theorem 5.1. ([38]) Σ(A) is a semi-algebraic submanifold of codimension
∑N+1
i=1 (ai− i) in the

jet space Jr(I,RPN+1).

Proof : Let Jr(1, N + 1) be the fibre of the projection π : Jr(I,RPN+1) → I ×RPN+1. Then
Jr(1, N + 1) is identified with the space R(N+1)r of (N + 1) × r-matrices. Then there exists
an affine subspace Λ ⊂ R(N+1)r such that Σ(A) is an image of the polynomial embedding
GL(N + 1,R) × Λ → R(N+1)r defined by (A,W ) 7→ AW for A ∈ GL(N + 1,R),W ∈ Λ.
Therefore Σ(A) is a semi- algebraic manifold.

The codimension of the set consisting of jets with rank(Wa1−1) = 0 is equal to (N + 1)(a1 −
1). The codimension of the set consisting of jets with rank(Wa1−1) = 0, rank(Wa1) = 1 and
rank(Wa2−1) = 1 is equal to (N+1)(a1−1)+N(a2−a1−1). Thus we have that the codimension
of Σ(A) is calculated as

(N + 1)(a1 − 1) +N(a2 − a1 − 1) + (N − 1)(a3 − a2 − 1) + · · ·+ (aN+1 − aN − 1),

which is equal to
∑N+1
i=1 (ai − i). �

Corollary 5.2. For a generic curve γ : I → RPN+1, and for any t0 ∈ I, the type of γ at t0 is
equal to

(1, 2, 3, . . . , N,N + 1) or (1, 2, 3, . . . , N,N + 2).

Proof : By the transversality theorem, there exists an open dense subset O ⊂ C∞(I,RPN+1)
in C∞-topology such that for any γ ∈ O and for any t0 ∈ I, the type A of γ at t0 satisfies∑N+1
i=1 (ai − i) ≤ 1. Then we have ai = i, 1 ≤ i ≤ N and aN+1 = N + 1 or aN+1 = N + 2, and

thus we have the required result. �
To treat osculating-framed curves, we consider the jet space of C-integral curves, C = C1,2,...,N+1,

JrC(I,F) ⊂ Jr(I,F). Define

ΣC(A) := {jrΓ(t0) | Γ : (R, t0)→ F is C-integral, π1 ◦ Γ is of type A}
in JrC(I,F) for sufficiently large r.
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Theorem 5.3. ([20]) JrC(I,F) is a submanifold of Jr(I,F) and the codimension of ΣC(A) in
JrC(I,F) is equal to aN+1 − (N + 1).

Remark 5.4. Since any curve of finite type lifts to an C-integral curve, ΣC(A) is not empty for
any A.

By the transversality theorem for C-integral curves, we have the following result:

Theorem 5.5. For a generic C-integral curve Γ : I → F1,2,...,N+1(V N+2), the type A of π1 ◦ Γ
at any point of I is given by one of the following:

A = (1, 2, 3, . . . , N,N + 1), (1, 2, . . . , i, i+ 2, . . . , N + 1, N + 2), (i = 0, . . . , N).

Proof : By Theorem 5.3, for a genetic Γ, the type of π1 ◦ Γ at a point in I satisfies that aN+1 −
(N + 1) ≤ 1, namely that aN+1 ≤ N + 2. Then we have the list of types. �

In general, we consider the canonical system C = C1,2,...,k+1 on F = F1,2,...,k+1(V N+2), we
consider the jet space of C-integral curves, JrC(I,F) ⊂ Jr(I,F). Define

ΣC(A) := {jrc(t0) | c : (R, t0)→ F is C-integral, π1 ◦ c is of type A}
in JrC(I,F) for sufficiently large r.

Theorem 5.6. JrC(I,F) is a submanifold of Jr(I,F) and the codimension of ΣC(A) in JrC(I,F)
is equal to

N+1∑
i=k

(ai − i)− (N − k + 1)(ak − k).

Note that, if k = N , the formula is reduced to aN+1 − (N + 1) (Theorem 5.3).

Proof of Theorem 5.6: Recall that C = C1,2,...,k+1 is defined by

dx i−1
j − x i

j dx
i−1
i = 0, (1 ≤ i ≤ k, i+ 1 ≤ j ≤ N + 1)

for the system of local coordinates
(
x i
j

)
0≤i≤k,i+1≤j≤N+1

of F1,2,...,k+1(V N+2) (§3). Then a C-
integral curve Γ : I → F is obtained just form x i−1

i -components, 1 ≤ i ≤ k, and x k
j -components,

by integration. Then we see, at each point t0 ∈ I, ord(x 0
j =

∑j
`=1 ord(x j−1

j ). We have that the
type of Γ at t0 is equal to A = (a1, . . . , aN+1) if and only if

ord(x 0
1 ) = a1, ord(x 1

2 ) = a2 − a1, . . . , ord(x k−1
k ) = ak − ak−1,

and the type of the curve (x k
k+1, . . . , x

k
N+1) : (I, t0)→ RN−k is of type (ak+1−ak, . . . , aN+1−ak).

Thus the codimension of ΣC(A) is calculated as

(a1−1)+(a2−a1−1)+· · ·+(ak−ak−1−1)+

N+1∑
k+1

(aj − ak − (j − k)) =

N+1∑
i=k

(ai−i)−(N−k+1)(ak−k).

�

Remark 5.7. Let π : F1,2,...,k,k+1 → F1,2,...,k be the canonical projection defined by

π(V1, V2, . . . , Vk, Vk+1) = (V1, V2, . . . , Vk).

Then the π-fibres are projective subspaces of the flag manifold F1,2,...,k+1. In the above proof,
the functions x k

k+1, . . . , x
k
N+1 form a system of local projective coordinates of the π-fibre.
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By the transversality theorem for C-integral curves, we have the following results:

Theorem 5.8. For a generic C1,2-integral curve c, the type A of the tangent-framed curve π1 ◦ c
at any point of I is given by one of the following:

(1, 2, 3, . . . , N,N + 1), (1, 2, 3, . . . , N,N + 2), (2, 3, 4, . . . , N + 1, N + 2).

Proof : By Theorem 5.6, for a genetic c, the type of π1 ◦c at a point in I satisfies that
∑N+1
i=1 (ai−

i) − N(a1 − 1) ≤ 1, namely that
∑N+1
i=1 (ai − i) ≤ N(a1 − 1) + 1. Then (N + 1)(a1 − 1) ≤∑N+1

i=1 (ai−i) ≤ N(a1−1)+1. Therefore a1 ≤ 2 and, if a1 = 2, thenA = (2, 3, 4, . . . , N+1, N+2).
If a1 = 1, then

∑N+1
i=1 (ai − i) ≤ 1. Therefore we have the result. �

Theorem 5.9. For a generic C1,2,3-integral curve κ, the type A of the tangent-principal-normal-
framed curve π1 ◦ κ at any point of I is given by one of the following:

(1, 2, 3, . . . , N,N + 1), (1, 2, 3, . . . , N,N + 2), (1, 3, 4, . . . , N + 1, N + 2), (2, 3, 4, . . . , N + 1, N + 2).

Proof : By Theorem 5.6, for a genetic c, the type of π1 ◦c at a point in I satisfies that
∑N+1
i=2 (ai−

i) − (N − 1)(a2 − 2) ≤ 1, namely that
∑N+1
i=2 (ai − i) ≤ (N − 1)(a2 − 2) + 1. Then N(a2 −

2) ≤
∑N+1
i=2 (ai − i) ≤ (N − 1)(a2 − 2) + 1, and we have a2 ≤ 3. If a2 = 3, then A =

(1, 3, 4, . . . , N + 1, N + 2) or (2, 3, 4, . . . , N + 1, N + 2). If a2 = 2, then A = (1, 2, 3, . . . , N,N + 1)
or (1, 2, 3, . . . , N,N + 2). �

Remark 5.10. We observe that, in all lists of the generic classifications of types, there are just
three possibilities of the leading two digits: (1, 2), (1, 3) and (2, 3). These cases correspond to
the cases where the projection of the tangent variety to the osculating plane is diffeomorphic to
the map-germ (R2, 0)→ (R2, 0), the fold singularities (x, u) 7→ (x2, u), ‘beak to beak’ (x, u) 7→
(x3 + ux2, u) and Whitney’s cusp map (x, u) 7→ (x3 + ux, u) respectively.

6. Opening procedure of differentiable map-germs.

To describe singularities of frontal mappings, we introduce the notion of “openings" of map-
pings.

The tangent variety to a curve in RPN+1 projects locally to the tangent variety to a space
curve in the osculating 3-space, and to a plane curve in the osculating 2- plane. Then the tangent
variety in RPN+1 can be regarded as an “opening" of a tangent variety to a space curve and
to a plane curve. For example, the open swallowtail, which is an opening of the swallowtail,
appears in many context. It appears as a singular Lagrangian variety [2], and as a singular
solution to certain partial differential equation [13]. The open folded umbrella appears as a
‘frontal-symplectic singularity’ ([21]).

Figure 4. Opening of swallowtail.
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We denote by Ea the R-algebra of C∞ function-germs on (Rn, a) with the maximal ideal ma.
If a is the origin, then we use En,mn instead of Ea,ma respectively.

Definition 6.1. ([15][19]) Let f : (Rn, a)→ (Rm, b) be a C∞ map-germ with n ≤ m. We define
the Jacobi module of f :

Jf = {
m∑
j=1

pj dfj | aj ∈ Ea, (1 ≤ j ≤ m) } ⊂ Ω1
a,

in the space Ω1
a of 1-form germs on (Rn, a). Further we define the ramification module Rf by

Rf := {h ∈ Ea | dh ∈ Jf}.

Note that Jf is just the first order component of the graded differential ideal J •f in Ω•a
generated by df1, . . . , dfm. Then the singular locus is given by Σf = {x ∈ (Rn, a) | rankJf (x) <
n}. Also we consider the Kernel field Ker(f∗ : TRn → TRm), of f near a. Then we see that,
for another map-germ f ′ : (Rn, a) → (Rm′

, b′) with Jf ′ = Jf , n ≤ m′, we have Σf ′ = Σf and
Ker(f ′∗) = Ker(f∗).

Related notion was introduced in [34].

Lemma 6.2. Let f : (Rn, a)→ (Rm, b) be a C∞ map-germ.
(1) f∗Eb ⊂ Rf ⊂ Ea and Rf is an Eb-module via f∗.
(2) For another map-germ f ′ : (Rn, a)→ (Rm′

, b′), Jf ′ = Jf if and only if Rf ′ = Rf .
(3) If τ : (Rm, b) → (Rm, b′) is a diffeomorphism-germ, then Rτ◦f = Rf . If σ : (Rn, a′) →

(Rn, a) is a diffeomorphism-germ, then Rf◦σ = σ∗(Rf ).

Proof : (1) follows from that, if h ∈ Rf and dh =
∑m
j=1 pjdfj , then we have

d{(k ◦ f)h} =

m∑
j=1

{(k ◦ f)pj + h (∂k/∂yj)} dfj .

(2) It is clear that Jf ′ = Jf implies Rf ′ = Rf . Conversely suppose Rf ′ = Rf . Then any
component f ′j of f ′ belongs to Rf ′ = Rf , hence dfj ∈ Jf . Therefore Jf ′ ⊂ Jf . By the symmetry
we have Jf ′ = Jf .

(3) follows from that Jτ◦f = Jf and Jf◦σ = σ∗(Jf ). �

Definition 6.3. Let f : (Rn, a)→ (Rm, b), n ≤ m be a C∞ map-germ. Given h1, . . . , hr ∈ Rf ,
the map-germ F : (Rn, a)→ Rm ×Rr = Rm+r defined by

f = (f1, . . . , fm, h1, . . . , hr)

is called an opening of f , while f is called a closing of F .
An opening F = (f, h1, . . . , hr) of f is called a versal opening (resp. mini-versal opening) of

f , if 1, h1, . . . , hr form a (minimal) system of generators of Rf as an Eb-module via f∗.

Note that an opening of an opening of f is an opening of f .

Here we summarise known results on the ramification module. A map-germ f : (Rn, a) →
(Rm, b) is called finite if dimR Ea/(f∗mb)Ea <∞.

Proposition 6.4. (Theorem 1.3 of [17], Corollary 2.4 of [19]) If f : (Rn, a)→ (Rm, b) is finite
and of corank at most one. Then we have

(1) Rf is a finite Eb-module. Therefore there exists a versal opening of f .
(2) 1, h1, . . . , hr ∈ Rf generate Rf as Eb-module if and only if they generate the vector space

Rf/f∗(mb)Rf over R.
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Remark 6.5. By Proposition 6.4, we see that 1, h1, . . . , hr ∈ Rf form a minimal system of
generators of Rf as Eb-module if and only if they form a basis of R-vector space Rf/f∗(mb)Rf .

Let k ≥ 0,m ≥ 0. To present the normal forms of Morin map, consider variables t, λ =
(λ1, . . . , λk−1), µ = (µij)1≤i≤m,1≤j≤k and polynomials

F (t, λ) = tk+1 +

k−1∑
i=1

λjt
j , Gi(t, µ) =

k∑
j=1

µijt
j , (1 ≤ i ≤ m).

Let f : (Rk+km, 0)→ (Rm+k+km, 0) be a Morin map defined by

f(t, λ, µ) := (F (t, λ), G(t, µ), λ, µ),

for the above polynomials F and G.
For ` ≥ 0, we denote by F(`), Gi(`) the polynomials

F(`)(t, λ) =

∫ t

0

s`F (s, λ)ds, Gi (`)(t, µ) =

∫ t

0

s`Gi(s, µ)ds.

Then we have:

Proposition 6.6. (Theorem 3 of [15]) The ramification module Rf of the Morin map f is
minimally generated over f∗Em+k+km by the 1 + k + (k − 1)m elements

1, F(1), . . . , F(k), G1 (1), . . . , G1 (k−1), . . . , Gm (1), . . . , Gm (k−1).

The map-germ F : (Rk+mk, 0)→ (Rm+k+km ×Rk+(k−1)m, 0) = (R2(k+km), 0) defined by

F =
(
f, F(1), . . . , F(k), G1 (1), . . . , G1 (k−1), . . . , Gm (1), . . . , Gm (k−1)

)
is a versal opening of f .

Remark 6.7. It is shown in [15] moreover that F is an isotropic map for a symplectic structure
on R2(k+km).

Proposition 6.8. (cf. Proposition 1.6 of [17], Lemma 2.4 of [18]) Let f : (Rn, a) → (Rm, b)
be a C∞ map-germ and F : (Rn+`, (a, 0)) → (Rm+`, (b, 0)) be an unfolding of f : F (x, u) =
(F1(x, u), u) and F1(x, 0) = f(x). Let i : (Rn, a)→ (Rn+`, (a, 0)) be the inclusion, i(x) = (x, 0).
Then we have:

(1) i∗RF ⊂ Rf .
(2) If f is of corank ≤ 1 with n ≤ m, then i∗RF = Rf . If 1, H1, . . . ,Hr generate RF via F ∗,

then 1, i∗H1, . . . , i
∗Hr generate Rf via f∗.

(3) Let ` be a positive integer and F = (F1(t, u), u) : (Rn, 0) → (Rn, 0) an unfolding of f :
(R, 0) → (R, 0), f(t) = F1(t, 0) = t`. Suppose H1, . . . ,Hr ∈ RF ∩ mn. Then 1, H1, . . . ,Hr gen-
erate RF via F ∗ if and only i∗H1, . . . , i

∗Hr generate m`+1
1 /m2`

1 . In particular F1(1), . . . , F1(`−1)

form a system of generators of RF via F ∗ over En.

Proof : (1) is clear. (2) Let H ∈ RF . Then dH ∈ JF . Hence d(i∗H) = i∗(dH) ∈ i∗JF ⊂
Jf . Therefore i∗H ∈ Rf . Let f be of corank at most one. Suppose h ∈ Rf . Then dh =∑m
j=1 ajdfj for some aj ∈ Ea. There exist Aj , Bk ∈ E(a,0) such that i∗Aj = aj and the 1-

form
∑m
j=1Ajd(F1)j +

∑`
k=1Bkdλk is closed (cf. Lemma 2.5 of [19]). Then there exists an

H ∈ E(a,0) such that dH =
∑m
j=1Ajd(F1)j +

∑`
k=1Bkdλk ∈ JF and d(i∗H) = i∗(dH) = dh.

Then there exists c ∈ R such that h = i∗H + c = i∗(H + c), and H + c ∈ RF . Therefore
h ∈ i∗RF . Since i∗ is a homomorphism over j∗ : E(b,0) → Eb, where j : (Rm, 0) → (Rm+`, 0) is
the inclusion j(y) = (y, 0), we have the consequence. (3) It is easy to show thatRf = R+m`1. By
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Proposition 6.4 (2), 1, H1, . . . ,Hr generate RF as En-module via F ∗ if and only if they generate
RF /F ∗(mn)RF over R. Since

RF /F ∗(mn)RF ∼= (R + m`1)/(f∗m1)(R + m`1) ∼= m`+1
1 /m2`

1

we have the consequence. �

Proposition 6.9. Let f : (Rn, a)→ (Rm, b), n ≤ m be a C∞ map-germ.
(1) For any versal opening F : (Rn, a)→ (Rm+r, F (a)) of f and for any opening G : (Rn, a)→
(Rm+s, G(a)), there exists an affine bundle map Ψ : (Rm+r, F (a))→ (Rm+s, G(a)) over (Rm, f(a))
such that G = Ψ ◦ F .
(2) For any mini-versal openings F : (Rn, a)→ (Rm+r, F (a)) and F ′ : (Rn, a)→ (Rm+r, F ′(a))
of f , there exists an affine bundle isomorphism Φ : (Rm+r, F (a))→ (Rm+r, F ′(a)) over (Rm, f(a))
such that F ′ = Ψ ◦ F . In particular, the diffeomorphism class of mini-versal opening of f is
unique.
(3) Any versal openings F ′′ : (Rn, a) → (Rm+s, F ′′(a)) of f is diffeomorphic to (F, 0) for a
mini-versal opening of f .

Proof : (1) Let F = (f, h1, . . . , hr) and G = (f, k1, . . . , ks). Since kj ∈ Rf , there exist

c 0
j , c

1
j , . . . , c

r
j ∈ Eb

such that kj = c 0
j ◦ f + (c 1

j ◦ f)h1 + · · ·+ (c rj ◦ f)hr. Then it suffices to set

Ψ(y, z) = (y, (c 0
j (y) + c 1

j (y)z1 + · · ·+ c rj (y)zr)1≤j≤s).

(2) By (1) there exists an affine bundle map Ψ with F ′ = Ψ ◦ F . From the minimality, we have
that the matrix (c ij (b)) is regular. (See Remark 6.5). Therefore Ψ is a diffeomorphism-germ.
(3) Let F = Ψ ◦ F ′′ for some affine bundle map Ψ. Then the matrix (c ij (b)) is of rank r.
Therefore F ′′ is diffeomorphic to (F, k1, . . . , ks−r) for some kj ∈ Rf . Write each kj = Kj ◦F for
some Kj ∈ EF (a). Then we set Ξ(y, z, w) = (y, z, w −K ◦ F ). Then Ξ is a local diffeomorphism
on Rm+r+(s−r) and Ξ ◦ (F, k1, . . . , ks−r) = (F, 0). �

7. Normal forms of tangent surfaces.

According to a geometric restriction expressed in differential system, we have imposed on
curves in projective spaces a system of differential equations (§3). The genericity, in such a
restricted class of curves, naturally implies a restriction on types of curves (§5). Then we use
the following results to solve the classification problem. For the concrete expression of normal
forms, see §3.

Theorem 7.1. (1) In RP 3, the tangent variety of a curve of type (1, 2, 3) (resp. (1, 2, 4), (2, 3, 4),
(1, 3, 4)) is locally diffeomorphic to the cuspidal edge (the folded umbrella, the swallowtail, the
Mond surface) in R3.

(2) (Higher codimensional case.) In RPN+1, N + 1 ≥ 4,
(i) the tangent variety of a curve of type (1, 2, 3, a4, . . . , aN+1) is locally diffeomorphic to the

cuspidal edge (R2, 0)→ (R3, 0) composed with the inclusion to (RN+1, 0).
(ii) the tangent variety of a curve of type (1, 3, 4, 5, a5, . . . , aN+1) is locally diffeomorphic to

the open Mond surface (R2, 0)→ (R4, 0) composed with the inclusion to (RN+1, 0).
(iii) the tangent variety of a curve of type (2, 3, 4, 5, a5, . . . , aN+1) is locally diffeomorphic to

the open swallowtail (R2, 0)→ (R4, 0) composed with the inclusion to (RN+1, 0).

Proof : (1) is proved in Theorem 1 (n = 2) in [18]. (2) In each case, the idea is to show that the
tangent map-germ Tan(γ) is diffeomorphic to a mini-versal opening of an appropriate map-germ:

(i) the fold map-germ (R2, 0)→ (R2, 0).
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(ii) the Mond surface (R2, 0)→ (R3, 0).
(iii) the swallowtail (R2, 0)→ (R3, 0).
Then, by Proposition 6.9, the diffeomorphism class of the tangent map-germ is unique and

we get the required results.
Let γ : (R, 0)→ RPN+1 be a curve-germ of type (a1, a2, . . . , aN+1),

γ(t) = (x1(t), x2(t), . . . , xN+1(t))

a local affine representation of γ as in Lemma 4.2, and

f(s, t) = (f1(s, t), f2(s, t), . . . , fN+1(s, t)) =

(
xi(t) + s

1

α(t)
x′i(t)

)
1≤i≤N+1

,

the parametrisation of the tangent variety to γ, where α(t) = ta1−1. We may suppose x1(t) = ta1 .
We define g′ : (R2, 0)→ (R2, 0) by g′ = (f1, f2). Then, by Lemma 4.5 and Remark 4.7, we see

that f3, . . . , fN+1 ∈ Rg′ . Note that f1(s, t) = x1(t)+a1s is a regular function. We regard f1(s, t)
as an unfolding parameter u. Then there exist diffeomorphism-germ σ : (R2, 0) → (R2, 0) and
τ : (R2, 0) → (R2, 0) such that σ is of form σ(u, t) = (σ1(u), tσ2(u, t)) and g = τ ◦ g′ ◦ σ is
equal to (i) (u, t) 7→ (u, t2 + ut), (ii) (u, t) 7→ (u, t3 + ut2), (iii) (u, t) 7→ (u, t3 + ut). Then
f3 ◦ σ, . . . , fN+1 ◦ σ belongs Rg = Rg′◦σ. Then, by Lemma 6.8, (i) F = (f1 ◦ σ, f2 ◦ σ, f3 ◦ σ),
(ii)(iii) F = (f1 ◦ σ, f2 ◦ σ, f3 ◦ σ, f4 ◦ σ), are versal opening of g respectively. Note that in cases
(ii) and (iii), F is a versal opening of also Mond surface and swallowtail respectively. Then, by
Proposition 6.8 (3), we have that f ◦σ is diffeomorphic to (i) (u, t2 +ut, 2

3 t
3 + 1

2ut
2, 0, . . . , 0), (ii)

(u, t3 + ut2, 3
4 t

4 + 2
3ut

3, 3
5 t

5 + 1
2ut

4, 0, . . . , 0), (iii) (u, t3 + ut2, 3
4 t

4 + 1
2ut

2, 3
5 t

5 + 1
3ut

3, 0, . . . , 0), as
required. �

Theorem 7.2. The tangent variety of a curve of type (1, 2, 4, 5, a5, . . . , aN+1) is locally diffeo-
morphic to the open folded umbrella (R2, 0)→ (R4, 0) composed with the inclusion to (RN+1, 0).

Proof : We argue as in Theorem 7.1. However in this case (f1 ◦ σ, f2 ◦ σ, f3 ◦ σ, f4 ◦ σ) is not a
versal opening of g = (u, t2 + ut). (In fact the open folded umbrella is not a versal opening of
the folded umbrella (R2, 0)→ (R3, 0). )

To show Theorem 7.2, we define

R(2)
g :=

{
h ∈ t2E2 | dh ∈ t2Jg

}
.

Then fi ◦ σ ∈ R(2)
g , (i ≥ 3). We see that f3 ◦ σ, f4 ◦ σ generate R(2)

g over g∗E2. In fact
h1, . . . , hr generate R(2)

g as E2-module if and only if i∗h1, . . . , i
∗hr generate m4

1/m
6
1 over R.

(See Lemma 2.4 of [18]). Also h1 = 1
2 t

4 + 1
3ut

3, h2 = 2
5 t

5 + 1
4ut

4 generate R(2)
g . We write

fi ◦σ = (ai ◦g)h1 +(bi ◦g)h2, (i ≥ 3), for some ai, bi ∈ E2. We define Ψ : (RN+1, 0)→ (RN+1, 0)
by

Ψ(x) = (x1, x2, a3(x1, x2)x3 + b3(x1, x2)x4, a4(x1, x2)x3 + b4(x1, x2)x4,
xi − ai(x1, x2)x3 + bi(x1, x2)x4(5 ≥ i)).

Then Ψ is a diffeomorphism-germ and Ψ ◦ f ◦ σ = (g, h1, h2, 0). Thus we have that f ◦ σ is
diffeomorphic to (g, h1, h2, 0) = (u, t2 + ut, 1

2 t
4 + 1

3ut
3, 2

5 t
5 + 1

4ut
4, 0, . . . , 0) as required. �

Proofs of the classification theorems. Theorems 2.6, 3.3, 3.4, 3.6 follow from Theorems 5.8, 5.9,
5.5 and Theorems 7.1, 7.2.

We are led, in our generic classifications in a geometric setting, to find the following result,
which we use in §8.
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Theorem 7.3. The tangent variety of a curve of type (1, 3, 4, 6, a5, . . . , aN+1) in RPN+1, N+1 ≥
4, has unique diffeomorphism class.

We may call it the ‘unfurled Mond surface’, distinguished with the open Mond surface. The
normal form (R2, 0)→ (RN+1, 0) of the unfurled Mond surface is given by

(s, t) 7→
(
t+ s, t3 + 3st2, t4 + 4st3, t6 + 6st5, 0, . . . , 0

)
,

which is diffeomorphic to

(x, u) 7→
(
u, t3 + ut2,

3

4
t4 +

2

3
ut3,

1

2
t6 +

2

5
ut5, 0, . . . , 0

)
.

To show Theorem 7.3, we prepare the following:

Lemma 7.4. (cf. Lemma 2.4 of [18]) Let g : (R2, 0) → (R2, 0) be the map-germ defined by
g(t, u) = (u, t3 + ut2). We set

R(3)
g :=

{
h ∈ t3E2 | dh ∈ t3Jg

}
.

and set T = t3 + ut2, Ti = 3
i+3 t

i+3 + 2
i+2ut

i+2, (i = 1, 2, 3, . . . ). Then we have (1) R(3)
g =

Rg ∩ t5E2. (2) R(3)
g is a finite E2-module via g∗ : E2 → E2 generated by T3, TT1, T

2
1 . (3) Let

ι : (R, 0) → (R2, 0), ι(t) = (t, 0). Then h1, . . . , h` ∈ R(3)
g generate R(3)

g as E2-module via g∗ if
and only if ι∗h1, . . . , ι

∗h` generate t6E1/t9E1 over R. (Note that T1 6∈ R(3)
g .)

Proof : (1) First note that R(3)
g =

{
h ∈ t3E2

∣∣∣∣ ∂h∂t ∈ t3 ∂T∂t E2
}
. Let h ∈ R(3)

g . Then
∂h

∂t
∈ t4E2

and h ∈ t3E2. Therefore h ∈ Rg ∩ t5E2. Conversely let h ∈ Rg ∩ t5E2. Then
∂h

∂t
= t3

∂T

∂t
K for

some K ∈ E2. Since h(0, 0) = 0, we have
∂h

∂u
∈ t5E2. Therefore dh ∈ t3Jg and h ∈ R(3)

g . Thus
we have the equality.

(2) Let h ∈ R(3)
g . Then h = a ◦ g + b ◦ gT1 + c ◦ gT2, for some a, b, c ∈ E2. Since h ∈ t5E2,

h = ã◦gT 3 + b̃◦gTT1 + c̃◦gTT2, for some ã, b̃, c̃ ∈ E2. Note that T 3, TT1, TT2 ∈ R(3)
g . Moreover

we have directly

T 3 =
32

15
uT 2

1 + 2TT3 +
14

3
T4, TT2 =

16

15
T 2

1 +
7

3
uT4, T4 =

4

7
TT1 −

20

21
uT3.

Therefore we have

TT2 = −20

9
u2T3 +

4

3
uTT1 +

16

15
T 2

1 , T
3 =

(
2T − 40

9
u3

)
T3 +

8

3
u2TT1 +

32

15
uT 2

1 .

(3) ι∗ : E2 → E1 induces ι∗ : R(3)
g → t6E1, which is clearly surjective. Moreover we have

(ι∗)−1(t9E1) = g∗m2R(3)
g . Therefore ι∗ induces an isomorphism R(3)

g /g∗m2R(3)
g
∼= t6E1/t9E1

as R-vector spaces. By (2) and by Malgrange-Mather’s preparation theorem [5], we have the
required result. �

Proof of Theorem 7.3: We give the proof for the case N + 1 = 4. In general case we can argue
similarly.

Let γ : (R, 0) → RP 4 be a curve of type (1, 3, 4, 6). The tangent map-germ Tan(γ) is an
opening of a Mond surface. However it is not versal. So we need a specialised idea to show the
determinacy result in this situation. Let

γ(t) = (t, t3 + ϕ(t), t4 + ψ(t), t6 + ρ(t)),
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with ϕ ∈ m4
1, ψ ∈ m5

1, ρ ∈ m7
1. Then f = Tan(γ) is given by

f(s, t) =
(
t+ s, t3 + 3st2 + Φ(t), t4 + 4st3 + Ψ(t), t6 + 6st5 +R(t)

)
,

where Φ(s, t) = ϕ(t) + sϕ′(t),Ψ(s, t) = ψ(t) + sψ′(t), R(s, t) = ρ(t) + sρ′(t). We set u = t + s.
Then

f(u, t) =
(
u, −2t3 + 3ut2 + Φ̃(t), −3t4 + 4ut3 + Ψ̃(t), −5t6 + 6ut5 + R̃(t)

)
,

where Φ(s, t) = ϕ(t) + (u − t)ϕ′(t),Ψ(s, t) = ψ(t) + (u − t)ψ′(t), R(s, t) = ρ(t) + (u − t)ρ′(t).
From the determinacy of tangent varieties to curves of type (1, 3, 4) in R3 ([33], [16]), we have
that there exist diffeomorphism-germ σ : (R2, 0) → (R2, 0) of form σ(u, t) = (σ1(u), tσ2(u, t))
and a diffeomorphism-germ τ : (R4, 0)→ (R4, 0) such that

f ◦ σ(u, t) = (u, T (u, t), T1(u, t), T3(u, t) + S3(u, t)) ,

with
T = t3 + ut2, T1 =

3

4
t4 +

2

3
ut3, T3 =

1

2
t6 +

2

5
ut5,

S3 ∈ R(3)
g , g = (u, t3 + ut2), ι∗S3 ∈ m7

1. Then we have, by Lemma 7.4,

S3 = A3 ◦ g T3 +B3 ◦ g TT1 + C3 ◦ g T 2
1 ,

for some A3, B3, C3 ∈ E2 with A3(0, 0) = 0. Define Ξ : (R4, 0)→ (R4, 0) by

Ξ(x1, x2, x3, x4) =
(
x1, x2, x3 +A1(x1, x2)x4 +B1(x1, x2)x2x3 + C1(x1, x2)x2

3,

x4 +A3(x1, x2)x4 +B3(x1, x2)x2x3 + C3(x1, x2)x2
3

)
.

Then the Jacobi matrix of Ξ is the unit matrix, so Ξ is a diffeomorphism-germ and

Ξ−1 ◦ f ◦ σ =

(
u, t3 + ut2,

3

4
t4 +

2

3
ut3,

1

2
t6 +

2

5
ut5
)
.

�

8. Singularities on tangent varieties to osculating framed contact- integral
curves.

We give results on the classification of singularities of tangent varieties to contact-integral
curves (resp. osculating framed contact-integral curves) in a contact projective space.

Let V be a symplectic vector space of dimension 2n+ 2. Consider the isotropic flag manifold:

FLag = FLag(V ) := {V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ Vn+1 ⊂ V | Vn+1 is Lagrangian}.
Note that FLag is a finite quotient of U(n + 1),dim(FLag) = (n + 1)2 and that FLag(V ) is
embedded into F(V ) = F1,2,...,n+1,...,2n+1(V ) by taking symplectic orthogonals:

(V1, V2, . . . , Vn, Vn+1) 7→ (V1, V2, . . . , Vn, Vn+1, V
s
n , . . . , V

s
2 , V

s
1 ),

Define a differential system E ⊂ TFLag by

v ∈ E(V1,...,Vn+1) ⇐⇒ πi∗(v) ∈ T Gr(i, Vi+1)(⊂ T IGr(i, V )), (1 ≤ i ≤ n).

where IGr means the isotropic Grassmannian, πi : FLag → IGr(i, V ) is the canonical projection.
Then rank(E) = n+ 1 and E is bracket generating.

If n = 1, then we have dimFLag = 4 and E is an Engel structure on FLag ([22]).
An E-integral curve c : I → FLag is a C∞ family

(V1(t), V2(t), . . . , Vn(t), Vn+1(t))

of isotropic flags in the symplectic vector space V such that Vi(t) moves momentarily in Vi+1(t).
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Remark 8.1. The projective space P (V 2n+2) ∼= RP 2n+1 has the canonical contact structure
D ⊂ T (P (V )) : For V1 ∈ P (V ) and for v ∈ TV1P (V ), we define

v ∈ DV1 ⇐⇒ π1∗(v) ∈ T (P (V s1 ))(⊂ T (P (V ))).

If c : I → FLag(V ) is an E-integral curve, then γ = π1 ◦ c : I → P (V ) is a D-integral curve.

We consider the space JrE(I,FLag(R2n+2) of E-integral jets in
Jr(I,FLag(R2n+2)) and set

ΣE(A) := {jrΓ(t0) | t0 ∈ I,Γ : (R, t0)→ FLag(R2n+2) is E-integral, π1 ◦ Γ is of type A}.
Then we have the codimension formula for osculating framed contact-integral curves.

Theorem 8.2. The set of E-integral curves c : I → FLag(R2n+2) such that the osculating-framed
contact-integral curve π1 ◦ c : I → P (V 2n+2) is of type A = (a1, a2, . . . , a2n+1) is not empty if
and only if

an+j = an+1 + an − an+1−j , (2 ≤ j ≤ n+ 1),

and then its codimension in the jet space of E-integral curves is given by an+1 − (n+ 1).

Proof : To show Theorem 8.2, first we give systems of projective coordinates on FLag(V ). For
the case n = 1, refer the paper [22].

We fix a flag V0 = (V10, V20, . . . , Vn+1 0) ∈ FLag(V ). Then we take the open set U ⊂ FLag(V )
defined by

U := {(V1, V2, . . . , Vn+1) ∈ FLag(V ) | V1 ∩ V s10 = {0}, V2 ∩ V s20 = {0}, . . . , Vn+1 ∩ V sn+1 0 = {0}
}
.

Take V1 = (V11, V21, . . . , Vn+1 1) ∈ U . Then we have the decomposition V = Vn+1 1⊕Vn+1 0 into
Lagrangian subspaces, and the decomposition

Vn+1 1 = V11 ⊕ (V21 ∩ V s10)⊕ (V31 ∩ V s20)⊕ · · · ⊕ (Vn+1 1 ∩ V sn 0),

Vn+1 0 = V10 ⊕ (V20 ∩ V s11)⊕ (V30 ∩ V s21)⊕ · · · ⊕ (Vn+1 0 ∩ V sn 1),

of each Lagrangian subspace into one-dimensional subspaces. Take non-zero vectors e0 ∈ V11,
ei ∈ Vi+1 1 ∩ V si 0, (1 ≤ i ≤ n), f0 ∈ V10 and fi ∈ Vi+1 0 ∩ V si 1, (1 ≤ i ≤ n), to get a symplectic
basis (e0, e1, . . . , en; f0, f1, . . . , fn) of V .

Then, for each V = (V1, V2, . . . , Vn+1) ∈ UV0 , Vn+1 has a basis (v0, v1, . . . , vn) uniquely
expressed as

vi = ei +

n∑
j=0

x i
j fj , (0 ≤ i ≤ n),

for some (x i
j )0≤i,j≤n. Since Vn+1 is a Lagrangian subspace of V , we have that x i

j = x j
i , 0 ≤

i, j ≤ n. Then there exist uniquely λ k
i , (1 ≤ k ≤ i ≤ n), such that

wk = vk−1 +

n∑
i=k

λ k
i vi, (1 ≤ k ≤ n+ 1),

form a basis of Vn+1 such that Vk = 〈w1, . . . , wk〉R , (1 ≤ k ≤ n+ 1). Then actually we have

wk = ek−1 +

n∑
i=k

λ k
i ei +

n∑
j=0

(
x k−1
j +

n∑
i=k

λ k
i x

i
j

)
fj , (1 ≤ k ≤ n+ 1).

Thus, givenV0,V1 ∈ FLag(V ), we have a chart U → R(n+1)2 of FLag(V ), given by the symmetric
matrix (x i

j )0≤i,j≤n and λ k
i , (1 ≤ k ≤ i ≤ n). From another choice of V0,V1 ∈ FLag(V ), we

have another chart with fractional linear transition functions.
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The projection π1 : FLag(V )→ P (V ) is expressed by

(
x i
j , λ

k
i

)
7→

[
1 : λ 1

1 : · · · : λ n
1 : x 0

0 +

n∑
i=1

λ 1
i x

i
0 : · · · : x 0

n +

n∑
i=1

λ 1
i x

i
n

]
.

We set X k
j := x k

j +

n∑
i=k+1

λ k+1
i x i

j , (0 ≤ j ≤ n, 0 ≤ k ≤ n). Then the differential system E is

locally given by {
dλ k

i − λ
k+1
i dλ k

k = 0, 1 ≤ k ≤ n, k + 1 ≤ i ≤ n,

dX k−1
j −X k

j dλ
k
k = 0, 1 ≤ k ≤ n, 0 ≤ j ≤ n.

We see that each E-integral curve Γ is obtained from the components λ k
k , 1 ≤ k ≤ n, and the

x n
n -component, by iterative integrations.
The type (a1, a2, . . . , an, an+1, an+2, . . . , a2n+1) of γ = π1 ◦ Γ is expressed in terms of

uk := ord(λ k
k ), 1 ≤ k ≤ n, v := ord(x n

n )

by
ai = u1 + u2 + · · ·+ ui, (1 ≤ i ≤ n)

an+1 = u1 + u2 + · · ·+ un + v,
an+1+j = u1 + u2 + · · ·+ 2un−j+1 + · · ·+ 2un + v, (1 ≤ j ≤ n),

Let A = (a1, . . . , an, an+1, an+2, . . . , a2n, a2n+1) be a strictly increasing sequence of positive
integers. Then The above system of equations has an integer solution (u1, . . . , un, v) if and only
if an+1+i − an+i = an − an−i. If the non-empty condition is fulfilled, then the codimension of
the set

Σ(A) = {jrΓ(t0) | Γ : (I, t0)→ FLag(V ) is E-integral, type(π1 ◦ Γ) = A}
in JrE(I,FLag(V )) is calculated by

a1 − 1 + (a2 − a1 − 1) + · · ·+ (an+1 − an − 1) = an+1 − (n+ 1).

�

By Theorem 8.2 and by the transversality theorem for E-integral curves, we have the following
result: We separate cases into three groups from the classification viewpoint of singularities.

Theorem 8.3. ([22]) Let 2n + 1 = 3. For a generic E-integral curve c : I → FLag(R4) in
C∞-topology, the type A of π1 ◦ c at any point t ∈ I is given by

A = (1, 2, 3), (1, 3, 4), (2, 3, 5).

The tangent varieties to the osculating-framed Legendre curve γ = π1 ◦ c : I → P (V ) ∼= RP 3

is locally diffeomorphic to the cuspidal edge, to the Mond surface or to the generic folded pleat
(Figure 5).

Remark 8.4. In the above Theorem 8.3, the type of the curve γ is restricted to (1, 2, 3), (1, 3, 4)
or (2, 3, 5). The local diffeomorphism class of the tangent variety Tan(γ) is determined if
type(γ) = (1, 2, 3) or (1, 3, 4), but it is not determined if type(γ) = (2, 3, 5) and there are
exactly two diffeomorphism classes, generic one and non-generic one.

Note that we have obtained in [22] also the generic classification of singularities of tangent
varieties to π2 ◦ c : I → LG(V ) in Lagrangian Grassmannian.

In the higher codimensional case, we have:
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Figure 5. cuspidal edge, Mond surface and generic folded pleat in R3.

Theorem 8.5. Let 2n + 1 ≥ 7. For a generic E-integral curve c : I → FLag(R2n+2) in C∞-
topology, the type of osculating-framed contact-integral curve γ = π1 ◦ c : I → P (V ) ∼= RP 2n+1

at each point of I is given by one of
A = (1, 2, 3, 4, . . . , n, n+ 1, n+ 2, . . . , 2n+ 1),

(1, 2, 3, 4, . . . , n, n+ 2, n+ 3, . . . , 2n+ 2),
· · · · · · · · ·

(1, 2, 4, 5, . . . , n+ 1, n+ 2, n+ 3, . . . , 2n+ 2),
(1, 3, 4, 5, . . . , n+ 1, n+ 2, n+ 3, . . . , 2n+ 2),
(2, 3, 4, 5, . . . , n+ 1, n+ 2, n+ 3, . . . , 2n+ 2).

Moreover the tangent variety Tan(γ) to the osculating-framed contact- integral curve γ is locally
diffeomorphic to the cuspidal edge, the open folded umbrella, the open Mond surface, or to the
open swallowtail.

We should be careful in the low codimensional case:

Theorem 8.6. Let 2n+1 = 5. For a generic E-integral curve c : I → FLag(R6) in C∞-topology,
the type of osculating-framed contact-integral curve γ = π1 ◦ c : I → P (V ) ∼= RP 5 at each point
of I is given by one of

(1, 2, 3, 4, 5), (1, 2, 4, 5, 6), (1, 3, 4, 6, 7), (2, 3, 4, 5, 7).

Moreover the tangent variety Tan(γ) to the osculating-framed contact- integral curve γ is locally
diffeomorphic to the cuspidal edge, the open folded umbrella, the unfurled Mond surface, or to
the open swallowtail.

Proofs of Theorems 8.5, 8.6: By the transversality theorem, we reduce the list in each case
from Theorem 8.2. In each case, we have the uniqueness of the diffeomorphism class of tangent
varieties by Theorem 7.1, except for the case A = (1, 3, 4, 6, 7). For the case A = (1, 3, 4, 6, 7),
we use Theorem 7.3. �

It is natural to consider the generic classification of tangent varieties to contact-integral curves
I → P (V ) = RP 2n+1. Here, we give just the result on non-framed three dimensional case
(n = 1):

Proposition 8.7. For a generic contact-integral curve γ : I → P (V 4) ∼= RP 3, and for any
t0 ∈ I, the type of γ at t0 is equal to (1, 2, 3) or to (1, 3, 4) and the tangent variety Tan(γ) of γ
is locally diffeomorphic to the cuspidal edge or to the Mond surface.

Proof : Take the local coordinates λ, µ, ν of P (V ) such that the contact structure is given by
dµ = νdλ − λdν. We express γ(t) = (λ(t), µ(t), ν(t)). Since γ is contact-integral, we have that
µ′(t) = ν(t)λ′(t)− λ(t)ν′(t). Therefore µ′′(t) = ν(t)λ′′(t)− λ(t)ν′′(t) and

µ′′′(t) = ν′(t)λ′′(t) + ν(t)λ′′′(t)− λ′(t)ν′′(t)− λ(t)ν′′′(t).
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Tan(S) 2X R

Figure 6. Tangent variety of Veronese surface.

Then

det

 λ′ µ′ ν′

λ′′ µ′′ ν′′

λ′′′ µ′′′ ν′′′

 = (λ′ν′′ − λ′′ν′)2.

Therefore, if type(λ(t), ν(t)) = (1, 2), then type(γ(t)) = (1, 2, 3). Moreover we have

µ′′′′ = 2ν′λ′′′ + νλ′′′′ − 2λ′ν′′′ − λν′′′′.
Then

rank


λ′ µ′ ν′

λ′′ µ′′ ν′′

λ′′′ µ′′′ ν′′′

λ′′′′ µ′′′′ ν′′′′

 = rank


λ′ ν′ 0
λ′′ ν′′ 0
λ′′′ ν′′′ λ′ν′′ − λ′′ν′
λ′′′′ ν′′′′ λ′ν′′′ − λ′′′ν′

 .

Therefore the rank of the above matrix is 3 at t if and only if λ′ν′′−λ′′ν′ 6= 0 or λ′ν′′′−λ′′′ν′ 6=
0 at t. By the transversality theorem, we have that, for a generic γ and for any t0 ∈ I,
(a) λ′(t0)ν′′(t0) − λ′′(t0)ν′(t0) 6= 0 or (b) λ′(t0)ν′′(t0) − λ′′(t0)ν′(t0) = 0 and λ′(t0)ν′′′(t0) −
λ′′′(t0)ν′(t0) 6= 0. In case (a), type(γ) = (1, 2, 3) at t0. In case (b), type(γ) = (1, 3, 4) at t0.
Then, by Theorem 7.1(1), we have the required result. �

9. Singularities of tangent varieties to surfaces.

First we observe that the tangent varieties to a generic smooth surface are not frontal.

Example 9.1. Let V =

A =

 a11 a12 a13

a12 a22 a23

a13 a23 a33

 ∣∣∣∣∣∣ 3× 3, symmetric

,

the vector space of quadratic forms of variables x, y, z. Then dim(V ) = 6. Let S = P ({rank(A) =
1}) ⊂ P (V ) ∼= RP 5 be the Veronese surface. Then we see that the tangent variety consists of
the projection of the locus of semi- indefinite matrices of rank 2 and S. Note that the secant
variety Sec(S), the closure of the union of secants connecting any pair of points on S, consists
of the projection of the locus of matrices of rank ≤ 2 :

Tan(S) = S ∪ P ({rank(A) = 2, semi-indefinite})
( Sec(S) = P ({rank(A) ≤ 2}) ( P (V ).

See Figure 6. The tangent variety Tan(S) is not frontal. Note that, even if S is algebraic,
Tan(S) is semi-algebraic in general over the real numbers. For a generic surface S ∈ RP 5,
tangent varieties Tan(S) are perturbed into a non-frontal hypersurface.

Therefore the tangent variety Tan(S) to a generic surface S ⊂ RP 5 is never frontal.

Let V be a (N + 3)-dimensional vector space. Let us consider a flag manifold

F = F1,3(V ) := {V1 ⊂ V3 ⊂ V } ∼= Gr(2, T (P (V ))),
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F1,3(V ) = 3N+2, with local coordinates x1, x2, y1, . . . , yN , p1, . . . , pN , q1, . . . , qN . The canonical
differential system T = C = C1,3 is given by dyi = pidx1 + qidx2, (1 ≤ i ≤ N). A frontal map-
germ f : (R2, 0)→ P (V ) = RPN+2 lifts to a C1,3-integral map-germs, therefore f is an opening
of g = (x1 ◦ f, x2 ◦ f) : (R2, 0)→ R2 with the dense set of regular points.

Thus it is possible to study the singularities of tangent varieties to frontal surfaces as the
singularity theory on C1,3-integral mappings. The general studies from this viewpoint are left to
a forthcoming paper.

Now, let us consider another type of flag manifold: F1,3,5(V ) = {V1 ⊂ V3 ⊂ V5 ⊂ V }. and the
canonical system N = C1,3,5 ⊂ T (F1,3,5(V )) defined by

v ∈ C1,3,5(V1,V3,V5) ⇐⇒ πi∗(v) ∈ T (Gr(i, Vi+2))(⊂ T (Gr(i,R6)), i = 1, 3.

If N = 3, then dim(F1,3,5(R6)) = 13 and rank(C1,3,5) = 8. In fact, N is given by
dx 0

3 = x 1
3 dx

0
1 + x 2

3 dx
0

2

dx 0
4 = x 1

4 dx
0

1 + x 2
4 dx

0
2

dx 0
5 = x 1

5 dx
0

1 + x 2
5 dx

0
2

dx 1
5 = x 3

5 dx
1

3 + x 4
5 dx

1
4

dx 2
5 = x 3

5 dx
2

3 + x 4
5 dx

2
4

for a system of projective local coordinates

x 0
1 , x

0
2 , x

0
3 , x

0
4 , x

0
5 , x

1
3 , x

1
4 , x

1
5 , x

2
3 , x

2
4 , x

2
5 , x

3
5 , x

4
5

of F1,3,5(V 6).

Proposition 9.2. Let f : (R2, 0)→ P (V N+3) be a frontal map-germ. Suppose that the regular
locus of the tangent map Tan(f) : (R4, 0)→ P (V ) is dense. Then Tan(f) is frontal if and only
if f is the projection of a C1,3,5-integral map by π1 : F1,3,5(V )→ P (V ).

Proof : Suppose Tan(f) is frontal and g : (R4, 0) → Gr(4, T (P (V ))) = F1,5(V ) is the Grass-
mannian lifting of Tan(f). Then g|R2×0 lifts a C1,3,5-integral map F : (R2, 0) → F1,3,5(V )
and π1 ◦ F = f . Conversely if π1 ◦ F = f for a C1,3,5-integral map F , then Tan(f) lifts to
G : (R4, 0)→ F1,3,5(V ) by G(s1, s2, t1, t2) = F (0, 0, t1, t2). �

Let V 6 be a symplectic vector space. Let us consider the canonical contact structure on
P (V ) = RP 5. Let S ⊂ RP 5 be a Legendre surface. Then S lifts to a C1,3,5-integral surface.
Therefore, by Theorem 9.2, we have:

Corollary 9.3. Let i : (R2, 0) → RP 5 be a Legendre immersion-germ. Suppose the regular
locus Reg(Tan(i)) of the tangent variety is dense in (R2, 0). Then the tangent variety Tan(i) :
(R2, 0)→ RP 5 is a frontal.

Definition 9.4. A point p of a Legendre surface S in RP 5 is called an ordinary point if there
exists a local projective-contact coordinates x1, x2, x3, x4, x5 and a C∞ local coordinates (u, v)
of S centred p such that locally S is given by

x1 = u,
x2 = v,
x3 = 1

2au
2 + buv + 1

2cv
2 + higher order terms,

x4 = 1
2bu

2 + cuv + 1
2ev

2 + higher order terms,

x5 = −( 1
6au

3 + 1
2bu

2v + 1
2cuv

2 + 1
6ev

3) + higher order terms,

with
D = {dx5 − x1dx3 − x2dx4 + x3dx1 + x4dx2 = 0},
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and

rank
(
a b c
b c e

)
= 2.

An ordinary point p is called hyperbolic (resp. elliptic, parabolic), if moreover

H := 4(ac− b2)(be− c2)− (ae− bc)2

is negative (resp. positive, zero).

Note that the set of hyperbolic (resp. elliptic) ordinary points is an open subset in S. Then
we have the following fundamental result:

Theorem 9.5. The tangent variety Tan(S) to a Legendre surface S in RP 5 at a hyperbolic
ordinary point (resp. an elliptic ordinary point) is locally diffeomorphic to (D+

4 -singularity in
R3)×R2 (resp. (D−4 -singularity in R3)×R2) in R5.

Tan(S) 2X R2X R

Figure 7. Tangent varieties along hyperbolic and elliptic ordinary points on a
surface in RP 5.

In [36], a simple criterion on D4 has been found by Saji. The D±4 -singularity in R3 is given
by the map-germ (R2, 0)→ (R3, 0)

(u, v) 7→ (uv, u2 ± 3v2, u2v ± v3).

Theorem 9.6. ([36]) Let f : (R2, 0) → (R3, 0) be a front and (f, ν) : (R2, 0) → R3 × S2 a
Legendre lift of f . Then f is diffeomorphic to D+

4 (resp. D−4 ) if and only if f is of rank zero at
0 and the Hessian determinant of

λ(u, v) := det

(
∂f

∂u
(u, v),

∂f

∂v
(u, v), ν(u, v)

)
at (0, 0) is negative (resp. positive).

Note that D4-singularity is not a generic singularity of wave-fronts in R3, but is a generic
singularity of wave-fronts in R4. The criterion for D4-singularities in R4 is also given in [36].
Moreover we remark that Saji’s criterion is valid also for the case with parameters and it char-
acterises the trivial deformation of D4-singularity. In fact the same line of proof in [36] works as
well for the case with parameters:

Theorem 9.7. Let F = (ft)t∈(Rr,0) : (R2×Rr, 0)→ (R3, 0) be a family of fronts and (F,N) =

(ft, νt) : (R2 ×Rr, 0) → R3 × S2 a family of Legendre lifts of F . Then F is diffeomorphic to
the trivial deformation of D+

4 (resp. D−4 ) if and only if ft is of rank zero at 0 and the Hessian
determinant of

λ(u, v, t) := det

(
∂ft
∂u

(u, v),
∂ft
∂v

(u, v), νt(u, v)

)
with respect to (u, v) at (0, 0, t) is negative (resp. positive), for any t ∈ (Rr, 0).
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Proof of Theorem 9.5: Let x1 = u, x2 = v,
x3 = 1

2au
2 + buv + 1

2cv
2 + ϕ(u, v),

x4 = 1
2bu

2 + cuv + 1
2ev

2 + ψ(u, v),

x5 = −( 1
6au

3 + 1
2bu

2v + 1
2cuv

2 + 1
6ev

3) + ρ(u, v),

ord(ϕ) ≥ 3, ord(ψ) ≥ 3, and

ρu = uϕu + vψu − ϕ, ρu = uϕu + vψu − ψ.
As an integrability condition, we have that ϕv = ψu. The tangent map of S is given by x1 =
u+ s, x2 = v + t,

x3 = 1
2au

2 + buv + 1
2cv

2 + ϕ+ s (au+ bv + ϕu) + t (bu+ cv + ϕv) ,

x4 = 1
2bu

2 + cuv + 1
2ev

2 + ψ + s (bu+ cv + ψu) + t (cu+ ev + ψv) ,

x5 = −( 1
6au

3 + 1
2bu

2v + 1
2cuv

2 + 1
6ev

3) + ρ
+s
(
− 1

2au
2 − buv − 1

2cv
2 + ρu

)
+ t
(
− 1

2bu
2 − cuv − 1

2ev
2 + ρv

)
.

Take the transversal slice s = −u, t = −v. Then we have map-germ g : (R2, 0)→ (R3, 0),

g1(u, v) = − 1
2au

2 − buv − 1
2cv

2 + ϕ− uϕu − vϕv,
g2(u, v) = − 1

2bu
2 − cuv − 1

2ev
2 + ψ − uψu − vψv,

g3(u, v) = 1
3au

3 + bu2v + cuv2 + 1
3ev

3 + ρ− uρu − vρv.
We show that g is diffeomorphic to D4-singularity, by using Saji’s criterion (Theorem 9.6).

First, we have dg3 = −udg1−vdg2. Therefore g is a front and we can take ν = 1√
u2+v2+1

(u, v, 1).
Second, we see f is of rank zero. Third,

λ(u, v) = det(gu, gv, ν) = det

 g1u g1v u
g2u g2v v

0 0
√
u2 + v2 + 1


=
√
u2 + v2 + 1 (g1ug2v − g1vg2u)

The 2-jet of h := g1ug2v − g1vg2u at 0 is given by

j2h(0) = (ac− b2)u2 + (ae− bc)uv + (be− c2)v2 (mod. m3
2).

Therefore we have that the Hessian determinant of λ at 0 is given by

H = det

(
2(ac− b2) ae− bc
ae− bc 2(be− c2)

)
By Theorem 9.6, we see that g is diffeomorphic to D±4 if and only if ∓H > 0. Moreover, we can
show similarly that, regarding S as the parameter space, the tangent map-germ is diffeomorphic
to the trivial unfolding of D4- singularity with two parameters, by using Theorem 9.7. Hence
we have Theorem 9.5. �

10. Tangent maps to frontal maps and open problems.

Let V be a (N + 2n)-dimensional vector space with positive natural numbers N,n. Consider
the flag manifolds:

F1,n+1,2n+1 = F1,n+1,2n+1(V ) := {V1 ⊂ Vn+1 ⊂ V2n+1 ⊂ V },
with the canonical differential system C1,n+1,2n+1, and

F1,n+1 = F1,n+1(V ) := {V1 ⊂ Vn+1 ⊂ V },
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with the canonical differential system C1,n+1. Note that F1,n+1 is identified with the Grassman-
nian bundle Gr(n, T (P (V ))). Consider the canonical projections

F1,n+1,2n+1
Π−→ F1,n+1

π−→ F1 = P (V ) = RPN+2n−1.

Similarly to the proof of Proposition 9.2, we have

Proposition 10.1. Let f : (Rn, 0) → RPN+2n−1 be a frontal map-germ. Suppose the regular
locus Reg(Tan(f)) of the tangent map Tan(f) : (R2n, 0) → RPN+2n−1 is dense in (R2n, 0).
Then Tan(f) is frontal if and only if the Grassmannian lift f̃ : (Rn, 0)→ F1,n+1 of f for π, lifts
to a C1,n+1,2n+1-integral lift f : (Rn, 0)→ F1,n+1,2n+1 for Π.

It is natural to proceed to consider the tangent varieties to Legendre submanifolds.
Let V be a (2n+ 2)-dimensional symplectic vector space. Consider the Lagrange (isotropic)

flag manifold:

FLag = FLag(V ) := {V1 ⊂ Vn+1 ⊂ V | Vn+1 is Lagrange.},
with the canonical differential system E ⊂ TFLag. In general we have

Corollary 10.2. Let g : (Rn, 0) → FLag be E-integral and Tan(π1 ◦ g) : (R2n, 0) → P (V ) the
tangent map-germ of π1 ◦g : (Rn, 0)→ P (V ). Suppose that Reg(Tan(π1 ◦g)) is dense in (Rn, 0).
Then Tan(π1 ◦ g) is frontal.

Proof : Note that FLag is embedded in F1,n+1,2n+1 by (V1, Vn+1) 7→ (V1, Vn+1, V
s
1 ), where V s1

is the symplectic skew-orthogonal to V1, and E is the restriction of C1,n+1,2n+1. Therefore
Proposition 10.2 follows from Proposition 10.1.

Here we give alternative direct proof. Since f is Legendre, f = (λ, µ, ν) satisfies dµ =∑n
i=1 (νidλi − λidνi). The tangent map-germ Tan(f) = (Λ,M,N) is given by Λ

M
N

 =

 λ
µ
ν

+

n∑
j=1

sj

 ∂λ/∂uj
∂µ/∂uj
∂ν/∂uj

 .

Then we have

dM = dµ+

n∑
j=1

sjd (∂µ/∂uj) +
∑n
j=1 (∂µ/∂uj) dsj

= dµ+
n∑
i=1

n∑
j=1

sj (νid (∂λi/∂uj)− λid (∂νi/∂uj))

+
n∑
i=1

n∑
j=1

(νi (∂λi/∂uj)− λi (∂νi/∂uj)) dsj

=

n∑
i=1

(νidΛi − λidNi) .

Thus M ∈ R(Λ,N) and Tan(f) is frontal. �
Then Corollary 10.2 implies

Corollary 10.3. Let f : (Rn, 0) → P (V ) = RP 2n+1 be a germ of Legendre immersion and
Tan(f) : (R2n, 0) → P (V ) the tangent map-germ of f . Suppose that Reg(Tan(f)) is dense in
(Rn, 0). Then Tan(f) is frontal.

We conclude the paper by posing open generic classification problems, which remain to be
solved first:
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Problem 1: Classify the singularities of tangent varieties to generic contact-integral curves in
P (V 2n+2) ∼= RP 2n+1 for a symplectic vector space V of dimension 2n+2, under diffeomorphisms
and contactomorphisms.
Problem 2: Classify the singularities of tangent varieties to generic surfaces in RP 5. It would
be natural to relate singularities of tangent variety to the method of height function or hight
family (cf. [39][31]).
Problem 3: Classify the singularities of tangent varieties to generic frontal surfaces (projections
of generic C1,3-integral surfaces in F1,3(R6)) in RP 5.
Problem 4: Classify the singularities of tangent varieties to projections in RP 5 of generic C1,3,5-
integral surfaces in F1,3,5(R6).
Problem 5: Classify the singularities of tangent varieties to Legendre surfaces in RP 5 along
parabolic ordinary points. Moreover classify the singularities of tangent varieties of generic
Legendre surfaces in RP 5. (See §9.)
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