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A CONJECTURE ON THE ŁOJASIEWICZ EXPONENT

SZYMON BRZOSTOWSKI, TADEUSZ KRASIŃSKI AND GRZEGORZ OLEKSIK

Abstract. In this paper, we present a conjecture connecting the Łojasiewicz exponent of
an isolated nondegenerate singularity with some geometrical characteristics of the Newton
diagram associated with this singularity. We prove the conjecture for a class of surface singu-
larities.

1. Introduction

Let f = f(z1, . . . , zn) ∈ C{z1, . . . , zn} be a convergent power series defining an isolated
singularity at the origin 0 ∈ Cn. The Łojasiewicz exponent £0(f) of f is by definition the
smallest θ > 0 such that there exist a neighbourhood U of 0 ∈ Cn and a constant c > 0 such
that

|∇f(z)| ≥ c |z|θ for all z ∈ U,

where ∇f = (f ′z1 , . . . , f
′
zn). It is an important discrete invariant of isolated singularities: it is a

rational number [L-JT], it is a biholomorphic invariant, £0(f) + 1 is equal to the maximal polar
invariant of f [T], it is attained on analytic paths centered at 0 [L-JT], [£0(f)] + 1 is C0-degree
of sufficiency of f [ChL, T]. In spite of its importance £0(f) is not well known (in contrast to the
Milnor number) even among experts in singularity theory. An interesting mathematical problem
is to give formulas for £0(f) (in terms of another invariants of f) or an algorithm to compute it.
Almost all is known on £0(f) for the plane curve singularities (n = 2) (see [CK1, CK2, K, GKP]).
For n ≥ 3 there are only estimations of £0(f) [P1, P2]. A standard technique in singularity
theory is the method of Newton diagrams, developed by the Moscow School (Kouchnirenko,
Varchenko, Khovansky and others). In the paper we propose a conjecture that the Łojasiewicz
exponent of a nondegenerate singularity could be read off from its Newton diagram. It is true
in the case n = 2 (Lenarcik [L]). For general n only estimations of £0(f) in terms of Newton
diagrams (see [A, B, BE, F, O1, O2]) are known. On the other hand a counter-example to it
would disprove the Teissier conjecture that £0(f) is a topological invariant of f.

For n = 2 Lenarcik computes £0(f) from the Newton diagram of f by removing from it some
exceptional segments. The main difficulty with the extension of his method to n dimensions is
to define exceptional faces appropriately. The third-named author proposed a definition in [O2]
which we claim to be the right one. Using this definition we prove our conjecture for surface
(n = 3) nondegenerate singularities that have only one unexceptional face. We also give a
formula for the Łojasiewicz exponent of semi-weighted homogeneous surface singularities.
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2. Preliminaries

Let us recall that if (w1, . . . , wn) is a sequence of n rational positive numbers (called weights)
then a polynomial f ∈ C[z1, . . . , zn] is called weighted homogeneous of type (w1, . . . , wn) if it is
a linear combination of monomials zα1

1 . . . zαn
n with α1/w1 + . . .+ αn/wn = 1.

A nonzero holomorphic function f : (Cn, 0) −→ (C, 0) defined in some open neighbourhood
of 0 ∈ Cn is a singularity if f(0) = 0 and ∇f(0) = 0. A singularity f is an isolated singularity if
it has an isolated critical point at the origin i.e. ∇f(z) 6= 0 for z 6= 0 near 0. Let

∑
ν∈Nn aνz

ν

be the Taylor expansion of f at 0. We define Γ+(f) := conv{ν + Rn+ : aν 6= 0} ⊂ Rn and call it
the Newton diagram of f . Let u ∈ Rn+ \ {0}. Put l(u,Γ+(f)) := inf{< u, v >: v ∈ Γ+(f)} and
∆(u,Γ+(f)) := {v ∈ Γ+(f) :< u, v >= l(u,Γ+(f))}. We say that S ⊂ Rn is a face of Γ+(f), if
S = ∆(u,Γ+(f)) for some u ∈ Rn+ \ {0}. The vector u is called a primitive vector of S. It is easy
to see that S is a closed and convex set and S ⊂ Fr(Γ+(f)), where Fr(A) denotes the boundary of
A. One can prove that a face S ⊂ Γ+(f) is compact if and only if all coordinates of its primitive
vector u are positive. We call the family of all compact faces of Γ+(f) the Newton boundary
of f and denote it by Γ(f). We denote by Γk(f) the set of all compact k-dimensional faces
of Γ(f), k = 0, . . . , n − 1. For every compact face S ∈ Γ(f) we define weighted homogeneous
polynomial fS :=

∑
ν∈S aνz

ν . A singularity f is nondegenerate on the face S ∈ Γ(f) if the
system of equations (fS)′z1 = . . . = (fS)′zn = 0 has no solution in (C∗)n, where C∗ = C \ {0}.
A singularity f is nondegenerate in the Kouchnirenko sense (shortly nondegenerate) if it is
nondegenerate on each face of Γ(f). A singularity f is semi-weighted homogeneous if there exists
a face S of Γ(f) such that fS is an isolated singularity.

Let i ∈ {1, . . . , n}, n ≥ 2. We say that S ∈ Γn−1(f) ⊂ Rn is an exceptional face for f with
respect to the axis OXi if one of its vertices is at distance 1 to the axis OXi and the remaining
vertices define (n−2)-dimensional face which lies in one of the coordinate hyperplanes including
the axis OXi.

Example 2.1. Let f(z1, z2, z3) = z1z
4
3+z2

2z
6
3+z4

2z3+z6
1 . It is easy to check that Γ2(f) = {S1, S2},

where S1 = conv{(0, 4, 1), (0, 2, 6), (1, 0, 4)} is an exceptional face for f with respect to OX3 and
S2 = conv{(0, 4, 1), (1, 0, 4), (6, 0, 0)} is not an exceptional face. Let us notice that fS2

is an
isolated singularity, so f is a semi-weighted homogeneous singularity.

A face S ∈ Γn−1(f) is an exceptional face for f if there exists i ∈ {1, . . . , n} such that S is
an exceptional face for f with respect to the axis OXi. Denote by Ef the set of all exceptional
faces for f. We call a face S ∈ Γn−1(f) unexceptional for f if S 6∈ Ef .

A singularity f is convenient (resp. nearly convenient) if its Newton diagram has nonempty
intersection with every coordinate axis (resp. its distance to every coordinate axis doesn’t exceed
1).

For every (n− 1)-dimensional compact face S ∈ Γ(f) we shall denote by x1(S), . . . , xn(S) the
coordinates of intersection of the hyperplane determined by the face S with the coordinate axes
OX1, . . . , OXn. We put m(S) := max{x1(S), x2(S), . . . , xn(S)}. It is easy to see that

(1) xi(S) =
l(u,Γ+(f))

ui
, i = 1, . . . , n,

where u is a primitive vector of S.

3. Main results

An interesting problem concerning the Łojasiewicz exponent is to compute £0(f) for nonde-
generate isolated singularities f in terms of the Newton diagram Γ+(f). In this paper we propose
the following conjecture.
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Conjecture. Let f : (Cn, 0) −→ (C, 0) be an isolated nondegenerate singularity. If Γn−1(f) \
Ef 6= ∅, then

(2) £0(f) = max
S∈Γn−1(f)\Ef

m(S)− 1.

There are some results that confirm our conjecture:

• Lenarcik [L] improved a bound for £0(f) obtained by Lichtin [Lt] and proved formula
(2) for n = 2.

• The third-named author proved in [O2] the inequality

(3) £0(f) ≤ max
S∈Γn−1(f)\Ef

m(S)− 1

for n = 3.
• For weighted homogeneous singularities the Conjecture is true [KOP].
• Fukui [F] proved a weaker bound for £0(f) for any n ≥ 2. His result was improved in

[O1, O2]. Abderrahmane [A] gave another result of this type.
The main result of this note is the proof of the Conjecture in the case of nondegenerate surface

singularities with one unexceptional face.

Theorem 3.1. Let f :
(
C3, 0

)
−→ (C, 0) be an isolated nondegenerate singularity such that

#(Γ2(f) \ Ef ) = 1. Then
£0(f) = m(S)− 1,

where S is the unique unexceptional face for f .

Example 3.2. The isolated singularity in Example 2.1 satisfies the assumptions of the above
theorem. We easily check that £0(f) = m(S2)− 1 = 5.

The proof of Theorem 3.1 is based on the following formula for the Łojasiewicz exponent of
a semi-weighted homogeneous singularity.

Theorem 3.3. Let f :
(
C3, 0

)
−→ (C, 0) be a semi-weighted homogeneous singularity. Then

£0(f) = £0(fS),

where S is a face of Γ(f) such that fS is an isolated singularity.

To calculate £0(fS) one can use the main result of [KOP].

Remark 3.4. Theorem 3.3 is also true for n = 2 (one can prove it using Cor. 4 in [KOP]). It
is an open question if £0(fS) = £0(f) for n > 3.

4. Proofs of the main results

First we prove an auxiliary inequality (see Cor. 4.8 in [BE] for another proof) for any dimen-
sion.

Proposition 4.1. Let f : (Cn, 0) −→ (C, 0) be a semi-weighted homogeneous singularity and let
S ∈ Γ(f) be a face such that fS is an isolated singularity. Then

(4) £0(fS) ≤ £0(f).

Proof. Let v = (v1, . . . , vn) be a primitive vector of S such that vi ∈ N+. We expand f in the
form

f = f [d] + f [d+1] + . . . , f [d] 6= 0,
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where f [i] are weighted homogeneous polynomials of type (v1, . . . , vn), degv f
[i] = i, i = d, d +

1, . . . . Of course f [d] = fS . Take the following family of singularities

ft := f(z1t
v1 , . . . , znt

vn)/td, t ∈ C \ {0}

and f0 := f [d]. Notice that

ft = f [d] + tf [d+1] + t2f [d+2] + . . . , t ∈ C.

The family (ft) has the following properties:
• (ft) is a holomorphic family with respect to t,
• ft are semi-weighted homogeneous singularities,
• µ0(ft) = µ0(f [d]) for t ∈ C ([AGV], Thm. in Section 12.2), where µ0(f) is the Milnor

number of a singularity f,
• f0 = fS .

By the semicontinuity of the Łojasiewicz exponent in holomorphic µ-constant families of isolated
singularities [T, P3] we obtain

£0(f0) ≤ £0(ft)

for t sufficiently close to 0. On the other hand £0(ft) = £0(f) for t 6= 0, because

ft = α · (f ◦ L),

where α ∈ C \ {0} and L is a linear change of coordinates in Cn. Hence for any sufficiently small
t 6= 0 we have

£0(fS) = £0(f0) ≤ £0(ft) = £0(f).

�

Now, we are ready to prove Theorem 3.3.
Proof of Theorem 3.3. Let L ⊂ R3 : α1/w1 + α2/w2 + α3/w3 = 1 be a supporting

plane to Γ+(f) along the face S (if S is 2-dimensional then L and w = (w1, w2, w3) are uniquely
determined). Since supp(fS) ⊂ L, fS is a weighted homogeneous polynomial of type (w1, w2, w3).
Write f = fS + f ′, where all monomials appearing in the Taylor expansion of f ′ lie above the
plane L. Now, by ([KOP], Thm. 3) we get

(5) £0(fS) = min
( 3

max
i=1

wi − 1,

3∏
i=1

(wi − 1)
)
.

Using ([P2], Prop. 2.2) we obtain £0(f) ≤ max3
i=1 wi − 1. By ([P1], Thm. 1), ([AGV], Thm. in

Section 12.2) and the Milnor-Orlik formula [MO] we get £0(f) ≤ µ0(f) = µ0(fS) =
∏3
i=1(wi−1).

Consequently

(6) £0(f) ≤ min
( 3

max
i=1

wi − 1,

3∏
i=1

(wi − 1)
)

On the other hand by Proposition 4.1 we get

(7) £0(fS) ≤ £0(f)

By (5), (6), (7) we obtain the assertion of the theorem. �

To prove Theorem 3.1 we give some lemmas and properties.

Property 4.2. Every isolated singularity f : (Cn, 0) −→ (C, 0) is nearly convenient.
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Proof. It suffices to show that for every i = 1, 2, . . . , n there exists j ∈ {1, 2, . . . , n} and k ≥ 1
such that monomial zjzki appears in the Taylor expansion of f with a non-zero coefficient.
Indeed, suppose to the contrary that for some i ∈ {1, 2, . . . , n} no monomial zjzki appears in
the expansion of f for every j ∈ {1, 2, . . . , n} and k ≥ 1. Then one can easily check that
f ′zj (0, . . . , 0, zi, 0, . . . , 0) ≡ 0, j = 1, . . . , n, which is impossible since ∇f has an isolated zero at
0. �

For a series φ ∈ C{t}, φ 6= 0, by infoφ (resp. incoφ) we mean the initial form of φ (resp. the
non-zero coefficient of infoφ).

Lemma 4.3. Let f : (Cn, 0) −→ (C, 0) , n ≥ 3, be a singularity and ∇f ◦ φ = 0 for some
φ = (φ1, . . . , φn) ∈ C{t}n, φ(0) = 0, φ1, . . . , φk 6= 0, φk+1 = . . . = φn = 0, k ≥ 2, and
f(z1, . . . , zk, 0, . . . , 0) 6≡ 0. Then there exists S ∈ Γ(f) on which f is degenerate.

Proof. We can represent f in the form

f(z1, . . . , zn) = g(z1, . . . , zk) + zk+1hk+1(z1, . . . , zn) + . . .+ znhn(z1, . . . , zn)

By the assumption we get g 6= 0, g(0) = 0, ∇g(φ1, . . . , φk) = 0. By [O2, Cor. 2.4] there exists
S ∈ Γ(g), such that (ordφi)

k
i=1 is a primitive vector of S and

(8) ∇gS(infoφ1, . . . , infoφk) = 0.

By [O2, Property 2.10] we get S ∈ Γ(f). Of course fS = gS . Therefore we have

(fS)′zi(infoφ1(t), . . . , infoφk(t), t, . . . , t) ≡ 0, i = k + 1, . . . , n

and by (8) we get

(fS)′zi(infoφ1(t), . . . , infoφk(t), t, . . . , t) ≡ 0, i = 1, . . . , k.

Hence
(fS)′zi(incoφ1, . . . , incoφk, 1, . . . , 1) = 0, i = 1, . . . , n,

thus f is degenerate on S. �

Proposition 4.4. Let f :
(
C3, 0

)
−→ (C, 0) be a nondegenerate nearly convenient singularity

such that Γ+(f) ∩OXiXj 6= ∅ for i 6= j. Then f is an isolated singularity.

Proof. Suppose to the contrary that f is not an isolated singularity. Then there exists a non-zero
parametization φ such that ∇f ◦ φ = 0. It is not possible for φ to have two coordinates equal to
zero, because if for example φ = (0, 0, φ3), φ3 6= 0, then by Property 4.2 we get that monomial
ziz

k
3 appears in the Taylor expansion of f with a non-zero coefficient for some i ∈ {1, 2, 3} and

k ≥ 1. Then one can check that info f ′zi(0, 0, φ3(t)) = (infoφ3(t))k 6= 0. Hence f ′zi(0, 0, φ3) 6= 0,
which contradicts the hypothesis ∇f ◦φ = 0. Therefore we may assume that φ = (φ1, φ2, φ3) and
φi 6= 0, φj 6= 0 for some i 6= j. Without loss of generality we may assume that φ1 6= 0, φ2 6= 0.
Then by Lemma 4.3 we have that f is degenerate on some face S ∈ Γ(f), which contradicts the
assumption on f. �

Lemma 4.5. Let f :
(
C3, 0

)
−→ (C, 0) be a singularity. Suppose there exists an unexceptional

face S for f such that fS is an isolated singularity. Put wi := xi(S) for i = 1, 2, 3. Then

(9) m(S)− 1 = min
( 3

max
i=1

wi − 1,

3∏
i=1

(wi − 1)
)
.
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Proof. Since fS is an isolated singularity, therefore ord fS ≥ 2 and hence xi(S) > 1, i = 1, 2, 3.
We consider two cases.

If wi ≥ 2, i = 1, 2, 3, then
3∏
i=1

(wi − 1) ≥ 3
max
i=1

wi − 1 =
3

max
i=1

xi(S)− 1 = m(S)− 1,

which gives (9).
If wi < 2 for some i ∈ {1, 2, 3}, say i = 1, then 1 < x1(S) < 2 and by Property 4.2

there exists a monomial z1z2 or z1z3, say z1z2, appearing in the Taylor expansion of f with
a non-zero coefficient. Then (1, 1, 0) lies on the plane α1/w1 + α2/w2 + α3/w3 = 1. Hence
(w1 − 1)(w2 − 1) = 1 and thus

∏3
i=1(wi − 1) = w3 − 1. Since S is an unexceptional face, there

exists a point (1, 0, k) ∈ supp(fS), k ≥ 1. Therefore x3(S) ≥ x2(S) and obviously x2(S) > 2.
Hence m(S) = x3(S) = w3. �

Proof of Theorem 3.1. Using the Lemma about the choice of an unexceptional face
(Lemma 3.1 in [O2]) one can check that fS is nearly convenient and Γ+(fS) ∩ OXiXj 6= ∅ for
i 6= j. Then by Proposition 4.4 we get that fS has an isolated singularity. Therefore by Theorem
3.3 and by Theorem 3 in [KOP] we get

£0(f) = £0(fS) = min
( 3

max
i=1

wi − 1,

3∏
i=1

(wi − 1)
)
,

where wi = xi(S), i = 1, 2, 3. Since S is an unexceptional face, by Lemma 4.5 we have

m(S)− 1 = min
( 3

max
i=1

wi − 1,

3∏
i=1

(wi − 1)
)
.

Summing up we get
£0(f) = m(S)− 1.

�
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