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FIRST CASES OF INTERSECTION SPACES

IN STRATIFICATION DEPTH 2

MARKUS BANAGL

Abstract. Previous constructions of intersection spaces for stratified pseudomanifolds all
required the stratification depth to be at most 1. Here, we construct intersection spaces for

certain simple stratifications of depth 2, involving different singularity links.

1. Introduction

In [1], we introduced a method that associates to certain classes of stratified pseudomanifolds
X CW complexes

I p̄X,

the intersection spaces of X, where p̄ is a perversity in the sense of Goresky and MacPher-

son’s intersection homology, such that the ordinary (reduced) cohomology H̃∗(I p̄X;Q) satisfies
generalized Poincaré duality when X is closed and oriented. The resulting cohomology theory
X ; HI∗p̄ (X) = H∗(I p̄X) is not isomorphic to intersection cohomology IH∗p̄ (X), since the for-
mer has a p̄-internal cup product while the latter does not, in general. For example, the singular
Calabi-Yau quintic

X = {z ∈ P4 | z5
0 + z5

1 + z5
2 + z5

3 + z5
4 − 5z0z1z2z3z4 = 0}

has intersection cohomology ranks

rk IH2(X) = 25, rk IH3(X) = 2, rk IH4(X) = 25,

whereas
rkHI2(X) = 1, rkHI3(X) = 204, rkHI4(X) = 1.

The expository article [5] of the present volume provides a gentle introduction to intersection
spaces and surveys results obtained by Maxim and the author in [4] on the stability of HI∗

under nearby smooth deformations of a singular projective hypersurface. Given a spectrum E
in the sense of stable homotopy theory, one may form EI∗p̄ (X) = E∗(I p̄X). This, then, yields an
approach to defining intersection versions of generalized cohomology theories such as K-theory.
The theory HI∗ also addresses questions in type II string theory related to the existence of
massless D-branes arising in the course of a Calabi-Yau conifold transition. These questions
are answered by IH∗ for IIA theory, and by HI∗ for IIB theory; see Chapter 3 of [1]. A de
Rham-type description of HI∗ has been developed in [2], which has been applied in [3] to obtain
spectral sequence degeneration results for flat bundles and equivariant cohomology of isometric
group actions.

Up to the present point, intersection spaces have only been constructed for singular spaces that
possess a stratification of depth at most 1, although a construction method for greater depths has
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been proposed in [1], pp. 186 – 189. In the present note, we implement this method for certain
stratifications of depth 2. We consider only the two middle perversities m̄ and n̄. Let X be an
n-dimensional, compact, oriented PL pseudomanifold (without boundary) with n = 2k > 0 even.
Suppose X can be endowed with a PL stratification of the form X = Xn ⊃ X1 ⊃ X0 with X1 a
circle and X0 a point, such that the respective links L,L0 of the two singular strata X1−X0, X0

are simply connected. For the link L of the odd-(co)dimensional stratum X1 −X0, we require
the following strong version of the Witt condition: X satisfies the strong Witt condition, if
L possesses a CW structure such that the cellular boundary operator Ck−1(L) → Ck−2(L) is
injective. This condition implies of course that the middle homology Hk−1(L) of the manifold
L vanishes, which is the classical Witt condition of [9] when rational coefficients are used. The
strong Witt condition is obviously satisfied if L has no middle-dimensional cells. Closely related
versions of this condition have been considered in the literature before. Weinberger [13] calls
an n-manifold antisimple, if its chain complex is chain homotopy equivalent to a complex of
projective modules P∗ with Pi = 0 for i = [n/2]. Hausmann considers manifolds that have
a handlebody without middle-dimensional handles, which is stronger than our condition; see
[7, p.334, p.336]. For X satisfying the strong Witt condition, we follow the method of [1] to
construct the two middle-perversity intersection spaces Im̄X and I n̄X. As expected, they turn
out to be equal, and we put IX = Im̄X = I n̄X. The main theorem (Theorem 6.2) asserts that
there exists a Poincaré duality isomorphism

D : H̃n−r(IX;Q)
∼=−→ H̃r(IX;Q)

that is compatible with Poincaré-Lefschetz duality for the exterior of the singular set.

The basic paradigm for the construction of intersection spaces is to replace links by their spa-
tial homology truncations (Moore approximations), where the truncation degree is determined
by the perversity function. We review spatial homology truncation in Section 3. The simple
connectivity assumption on the links is adopted to ensure the existence of homology truncations,
and is in practice not always necessary. Roughly, we proceed as follows: We first disassemble the
boundary of a regular neighborhood of the singular set, so that we can build a nice homotopy
theoretic model of it. This involves certain simple kinds of homotopy colimits, whose properties
we collect in Section 2. In the disassembled state, the pieces are the link bundle over X1 −X0,
the space obtained from the link L0 of X0 by removing cone neighborhoods of its two singular
points, and a space L̈, PL homeomorphic to two copies of L, where the two other pieces are
glued. The gluing involves maps from L̈ to the other two pieces. We then apply spatial homology
truncation to truncate all these pieces (more precisely, the bundle over X1 − X0 is truncated
in a fiberwise fashion), as well as the maps relating them to each other. Then the truncated
pieces are reassembled again, using the truncated maps, and IX is the homotopy cofiber of the
map from the reassembly to the complement of the open regular neighborhood of the singular set.

Notation and Conventions: If X and Y are topological spaces, A ⊂ X a subspace, and
f : A → Y a continuous map, then Y ∪f X denotes the space obtained from the disjoint union
of X and Y by attaching X along A to Y using the map f , that is, Y ∪f X = (Y t X)/(a ∼
f(a) for all a ∈ A). Our convention for the mapping cylinder Y ∪f X × I of a map f : X → Y is
that the attaching is carried out at time 1, that is, the points of X×{1} ⊂ X×I are attached to
Y using f . The homology H∗(f) of the map f is defined to be H∗(f) = H∗(Y ∪fX×I,X×{0}).
For products in cohomology and homology, we will use the conventions of Spanier’s book [10].
In particular, for an inclusion i : A ⊂ X of spaces and elements ξ ∈ Hp(X), x ∈ Hn(X,A), the
formula ∂∗(ξ ∩ x) = i∗ξ ∩ ∂∗x holds for the connecting homomorphism ∂∗ (no sign). For the
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compatibility between cap- and cross-product, one has the sign

(ξ × η) ∩ (x× y) = (−1)p(n−q)(ξ ∩ x)× (η ∩ y),

where ξ ∈ Hp(X), η ∈ Hq(Y ), x ∈ Hm(X), and y ∈ Hn(Y ).

2. Required Properties of Homotopy Pushouts

In order to form the intersection space of a given pseudomanifold, one has to glue together
pieces obtained at various stages of homology (Moore) towers. The gluing is accomplished via
homotopy pushouts, whose fundamentals we shall collect in the present section. It is not possi-
ble to glue through ordinary pushouts, since the output of spatial homology truncation is only
well-defined up to homotopy.

A 3-diagram Γ of spaces is a diagram of the form

X
f←− A g−→ Y,

where A,X, Y are topological spaces and f, g are continuous maps. If A,X, Y are CW complexes
and f, g are cellular, then we call Γ a CW-3-diagram. The realization |Γ| of Γ is the pushout of
f and g, that is,

|Γ| = (X t Y )/(f(a) ∼ g(a), for all a ∈ A).

If Γ is a CW-3-diagram and g is the inclusion of a subcomplex, then |Γ| is a CW complex, [8]. In
particular, the mapping cylinder cyl(f) is a CW complex in a natural way. A morphism Γ→ Γ′

of 3-diagrams is a commutative diagram

(1) X

��

A
foo

��

g // Y

��
X ′ A′

f ′oo g′ // Y ′

in the category of topological spaces. If Γ and Γ′ are both CW-3-diagrams, then we call the
morphism cellular, if all vertical arrows are cellular maps. The universal property of the pushout
implies that a morphism Γ → Γ′ induces a map |Γ| → |Γ′| between realizations. If Γ → Γ′ is
cellular, with g, g′ subcomplex inclusions, then |Γ| → |Γ′| is cellular. A homotopy theoretic
weakening of a morphism is the notion of an h-morphism Γ →h Γ′. This is again a diagram
of the above form (1), but the two squares are required to commute only up to homotopy. An
h-morphism does not induce a map between realizations. The remedy is to use the homotopy
pushout, or double mapping cylinder. This is a special case of the notion of a homotopy colimit.
To a 3-diagram Γ we associate another 3-diagram H(Γ) given by

X ∪f A× I = cyl(f)
at 0←↩ A at 0

↪→ cyl(g) = Y ∪g A× I.

If Γ is a CW-3-diagram, then cyl(f) and cyl(g) are CW complexes and hence H(Γ) is again a
CW-3-diagram. We define the homotopy pushout, or homotopy colimit, of Γ to be

hocolim(Γ) = |H(Γ)|.

If Γ is CW, then, as the two maps in H(Γ) are subcomplex inclusions, |H(Γ)| is a CW complex.
Sometimes, especially in large diagrams, we will omit parentheses and briefly write HΓ for
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H(Γ), C∗|HΓ| for the chain groups C∗(|HΓ|), and H∗|HΓ| for the homology groups H∗(|HΓ|).
The morphism H(Γ)→ Γ given by

X ∪f A× I

r

��

Aoo

idA

��

// Y ∪g A× I

r

��
X A

foo g // Y,

where the maps r are the canonical mapping cylinder retractions, induces a canonical map

hocolim(Γ) −→ |Γ|.
A morphism Γ→ Γ′, given by

X

ξ

��

A
foo

α

��

g // Y

η

��
X ′ A′

f ′oo g′ // Y ′,

induces a morphism H(Γ)→ H(Γ′), given by

X ∪f A× I

ξ∪(α×idI)

��

A? _
at 0oo

α

��

� � at 0 // Y ∪g A× I

η∪(α×idI)

��
X ′ ∪f ′ A′ × I A′? _

at 0oo � � at 0 // Y ′ ∪g′ A′ × I,

which in turn induces a map hocolim(Γ)→ hocolim(Γ′). If Γ→ Γ′ is cellular, thenH(Γ)→ H(Γ′)
is cellular. Since the horizontal arrows are subcomplex inclusions, hocolim(Γ) → hocolim(Γ′)
is thus also cellular. If α, ξ and η are homeomorphisms, then ξ ∪ (α × idI) and η ∪ (α ×
idI) are homeomorphisms and hence hocolim(Γ) → hocolim(Γ′) is a homeomorphism. An h-
morphism Γ→h Γ′ together with a choice of homotopies between clockwise and counterclockwise
compositions will induce a map on the homotopy pushout,

hocolim(Γ) −→ |Γ′|.
Indeed, let

X

ξ

��

A
foo

α

��

g // Y

η

��
X ′ A′

f ′oo g′ // Y ′

be the given h-morphism. Let F : A× I → X ′ be a homotopy between F0 = f ′α and F1 = ξf.
Let G : A× I → Y ′ be a homotopy between G0 = g′α and G1 = ηg. Then

X ∪f A× I

ξ∪fF

��

A?
_at 0oo

α

��

� � at 0 // Y ∪g A× I

η∪gG

��
X ′ A′

f ′oo g′ // Y ′,

commutes (on the nose) and thus defines a morphism H(Γ) → Γ′. This morphism induces a
continuous map on realizations hocolim(Γ) = |H(Γ)| → |Γ′|.

A pair (X,A) of (compactly generated) topological spaces is an NDR pair, if the inclusion
A ⊂ X is a closed cofibration. A relative CW complex, for instance, is an NDR pair.
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Proposition 2.1. If

(2) Y

φY'
��

A
foo

φA'
��

� � i // X

φX'
��

Y ′ A′
f ′oo � � i′ // X ′

is a commutative diagram of continuous maps such that i and i′ are inclusions of NDR pairs
and φY , φA, φX are homotopy equivalences, then

φY ∪ φX : Y ∪f X −→ Y ′ ∪f ′ X ′

is a homotopy equivalence.

This is Theorem 1.13 in Section 1 of [6], where a proof can be found. For our purposes, for
example when cellular approximation is required, we need to weaken the assumptions of the above
proposition by requiring the left square of the diagram to be merely homotopy commutative. A
similar conclusion will then hold if the pushouts are replaced by homotopy pushouts.

Proposition 2.2. If the right hand square of diagram (2) commutes and the left hand square
commutes up to homotopy, i and i′ are inclusions of NDR pairs and φY , φA, φX are homotopy
equivalences, then the homotopy pushouts of the first and second row are homotopy equivalent,

Y ∪f A× I ∪i X ' Y ′ ∪f ′ A′ × I ∪i′ X ′.

(In fact, both of these homotopy pushouts are equivalent to Y ′ ∪f ′ X ′.)

Proof. Let H : A× I → Y ′ be a homotopy between H0 = f ′φA and H1 = φY f . We claim that
the map

φY ∪f H : Y ∪f A× I −→ Y ′

is a homotopy equivalence. To see this, consider the following homotopy {Fs}0≤s≤1,

Fs : Y ∪f A× I −→ Y ′.

For given s, Fs consists of φY on Y . On A × [s, 1] ⊂ A × I, use H(a, t), a ∈ A, s ≤ t ≤ 1. On
the remaining part A× [0, s] ⊂ A× I, use H(a, s) (constant in t). Then F0 = φY ∪f H and F1

is φY on Y and F1(a, t) = H(a, 1) = φY f(a) for all t. We may think of F1 as the composition of
the mapping cylinder retraction

r : Y ∪f A× I −→ Y

induced by projection, and φY : Y → Y ′. Since both of these maps are homotopy equivalences,
so is F1. Thus F0 = φY ∪f H is homotopic to a homotopy equivalence, thus itself a homotopy
equivalence. Applying Proposition 2.1 to the (on the nose) commutative diagram

Y ∪f A× I

φY ∪fH'
��

A_?
at 0oo

φA'
��

� � i // X

φX'
��

Y ′ A′
f ′oo � � i′ // X ′

yields the result that

φY ∪f H ∪ φX : Y ∪f A× I ∪X −→ Y ′ ∪f ′ X ′



62 MARKUS BANAGL

is a homotopy equivalence. Applying Proposition 2.1 to the commutative diagram

Y ′ ∪f ′ A′ × I

r′'
��

A′_?
at 0oo � � i′ // X ′

Y ′ A′
f ′oo � � i′ // X ′

where r′ is the mapping cylinder retraction, yields an equivalence

Y ′ ∪f ′ A′ × I ∪X ′
'−→ Y ′ ∪f ′ X ′.

Both equivalences together show that

Y ∪f A× I ∪i X ' Y ′ ∪f ′ A′ × I ∪i′ X ′.

�

Proposition 2.3. If a manifold M is decomposed as M = M+ ∪M0
M−, with M0 a com-

pact codimension one submanifold and M± codimension 0 submanifolds with common boundary
∂M+ = M0 = M+ ∩M− = ∂M− so that M = |Γ| with Γ = (M+ ←M0 →M−), then there is a
homeomorphism |Γ| ∼= |H(Γ)|.

Proof. The codimension one submanifold M0 = ∂M+ has a collar in M+ and a collar in M−,
as M0 = ∂M−. Using this bicollar, a homeomorphism to the double mapping cylinder can be
readily constructed. �

3. Spatial Homology Truncation

The goal of spatial homology truncation is to associate to a CW complex K and an integer
k a complex t<kK together with a cellular map t<kK → K, which induces an isomorphism
Hr(t<kK)→ Hr(K) in degrees r < k, whereas Hr(t<kK) = 0 for r ≥ k.

Definition 3.1. A CW complex K is called k-segmented if it contains a subcomplex K<k ⊂ K
such that Hr(K<k) = 0 for r ≥ k and

i∗ : Hr(K<k)
∼=−→ Hr(K) for r < k,

where i is the inclusion of K<k into K.

Not every k-dimensional complex is k-segmented, but if K is simply connected, then K is
homotopy equivalent to a k-segmented complex by [1, Prop. 1.6, p. 12]. If the group of k-cycles
of a k-dimensional CW complex K has a basis of cells, then K is k-segmented. Spatial homology
truncation should also apply to maps f : K → L. However, counterexamples in [1] show that in
general there need not exist a truncated map t<kf : t<kK → t<kL, which fits with the structural
maps into a homotopy commutative square, see pages 3–5 and p. 39 of loc. cit. This problem
can be addressed by introducing the following category.

Definition 3.2. The category CWk⊃∂ of k-boundary-split CW complexes consists of the fol-
lowing objects and morphisms: Objects are pairs (K,Y ), where K is a simply connected CW
complex and Y ⊂ Ck(K;Z) is a subgroup of the k-th cellular chain group of K that arises
as the image Y = s(im ∂) of some splitting s : im ∂ → Ck(K;Z) of the boundary map
∂ : Ck(K;Z)→ im ∂(⊂ Ck−1(K;Z)). (Given K, such a splitting always exists, since im ∂ is free
abelian.) A morphism (K,YK)→ (L, YL) is a cellular map f : K → L such that f∗(YK) ⊂ YL.
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Let HoCWk−1 denote the category whose objects are CW complexes and whose morphisms
are rel (k − 1)-skeleton homotopy classes of cellular maps. Let

t<∞ : CWk⊃∂ −→ HoCWk−1

be the natural projection functor, that is, t<∞(K,YK) = K for an object (K,YK) in CWk⊃∂ ,
and t<∞(f) = [f ] for a morphism f : (K,YK) → (L, YL) in CWk⊃∂ . The following theorem is
part of Theorem 1.41 in [1].

Theorem 3.3. Let k ≥ 3 be an integer. There is a covariant assignment t<k : CWk⊃∂ −→
HoCWk−1 of objects and morphisms together with a natural transformation embk : t<k → t<∞
such that for an object (K,Y ) of CWk⊃∂ , one has Hr(t<k(K,Y )) = 0 for r ≥ k, and

embk(K,Y )∗ : Hr(t<k(K,Y ))
∼=−→ Hr(K)

is an isomorphism for r < k.

This means in particular that given a morphism f , one has squares

t<k(K,YK)
embk(K,YK)//

t<k(f)

��

t<∞(K,YK)

t<∞(f)

��
t<k(L, YL)

embk(L,YL)// t<∞(L, YL)

that commute in HoCWk−1. If k ≤ 2, then the situation is much simpler and the category
CWk⊃∂ is not needed at all. For k = 1, there is a covariant truncation functor t<1 : CW0 →
HoCW, where CW0 is the category of path-connected CW complexes and cellular maps. For
k = 2, there is a covariant truncation functor t<2 : CW1 → HoCW, where CW1 is the category
of simply connected CW complexes and cellular maps. See [1, Section 1.1.5]. We call a space T
together with a structural map e : T → K a cohomological k-truncation of K, if Hr(T ) = 0 for
r ≥ k, and e∗ : Hr(K)→ Hr(T ) is an isomorphism for r < k.

4. Homological Tools

Let j be a positive integer.

Definition 4.1. A CW complex K satisfies condition (INJj) if and only if the cellular chain
boundary operator ∂j : Cj(K)→ Cj−1(K) is injective.

The condition is in particular satisfied if K has no j-cells. It implies of course that Hj(K) = 0.
Let Zj(K) ⊂ Cj(K) denote the subgroup of j-cycles.

Lemma 4.2. If K satisfies condition (INJj), then the following statements hold (for (1) and
(2) assume that K is simply connected):
(1) There is a unique completion of K to an object (K,Yj) ∈ CWj⊃∂ , namely Yj = Cj(K).
(2) There is a unique completion of K to an object (K,Yj+1) ∈ CWj+1⊃∂ , namely Yj+1 = 0.
(3) K is j-segmented and (j + 1)-segmented.
(4) t<j(K,Yj) = t<j+1(K,Yj+1) = Kj .
(5) t<j+1(K,Yj+1) is an (integral) cohomological (j + 1)-truncation.

Proof. The injectivity of ∂j : Cj(K) → Cj−1(K) means that Zj(K) = 0. Hence, for the de-
composition Zj(K) ⊕ Yj = Cj(K) to hold, we must take Yj = Cj(K). The injectivity of ∂j
also implies that ∂j+1 = 0 : Cj+1(K) → Cj(K) and thus Zj+1(K) = Cj+1(K). Hence, for the
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decomposition Zj+1(K)⊕Yj+1 = Cj+1(K) to hold, we must take Yj+1 = 0. This proves (1) and
(2). The (j + 1)-skeleton of K has the form

Kj+1 = Kj−1 ∪
⋃
α

yjα ∪
⋃
β

zj+1
β ,

where the yjα are the j-cells and the zj+1
β the (j + 1)-cells of K. Since {zj+1

β } is a basis for

Zj+1(K), Lemma 1.2 of [1] implies that Kj+1, and thus K, is (j + 1)-segmented. Furthermore,
Proposition 1.3 of loc. cit. shows that the truncating subcomplex t<j+1(K,Yj+1 = 0) ⊂ Kj+1 is
unique (if we insist on not changing the j-skeleton) and given by t<j+1(K,Yj+1) = Kj because
K has no (j + 1)-cells that are not cycles. Similarly, the empty set is a basis for Zj(K) = 0, so
we may apply Lemma 1.2 of [1] to conclude that Kj , and thus K, is j-segmented, proving (3).
By Proposition 1.3 loc. cit., the truncating subcomplex t<j(K,Yj) ⊂ Kj is unique (if we insist
on not changing the (j − 1)-skeleton) and given by

t<j(K,Yj) = Kj−1 ∪
⋃
α

yjα = Kj ,

since {yjα} is the set of j-cells of K that are not cycles. This proves statement (4). Statement
(5) follows from Remark 1.42 of [1], observing that Ext(Hj(K),Z) = 0 is a consequence of
(INJj). �

To a CW-3-diagram we wish to associate certain Mayer-Vietoris type sequences that compute
the homology of their homotopy pushouts. Furthermore, to cellular morphisms of such diagrams
we wish to associate long exact sequences of these Mayer-Vietoris sequences. This is carried out
in the rest of this section through a progression of ever more general statements culminating in
Proposition 4.5. The reader may want to consult [12, Chapter 0] for a general setup of n-ads of
CW complexes, but we only need n = 3, i.e. triads.

Lemma 4.3. Let (Q;Q+, Q−) be a CW-triad so that Q = Q+ ∪ Q− and Q0 = Q+ ∩ Q− is
a subcomplex of Q+ and of Q−. Let i : Q0 ↪→ Q be the inclusion map and q−∗ : C∗(Q) →
C∗(Q)/C∗(Q+), q+

∗ : C∗(Q)→ C∗(Q)/C∗(Q−) the natural projections. Then:
(1) The inclusions Q− ⊂ Q, Q+ ⊂ Q induce isomorphisms

C∗(Q−)

C∗(Q0)

∼=−→ C∗(Q)

C∗(Q+)
,
C∗(Q+)

C∗(Q0)

∼=−→ C∗(Q)

C∗(Q−)
.

(2) The sequence

0→ C∗(Q0)
i∗−→ C∗(Q)

(q−∗ ,−q
+
∗ )−→ C∗(Q)

C∗(Q+)
⊕ C∗(Q)

C∗(Q−)
→ 0

is exact.

Proof. (1) Since Q+ ∪Q− = Q, the claim follows from the short exact sequences

0→ C∗(Q+)

C∗(Q+ ∩Q−)
−→ C∗(Q)

C∗(Q−)
−→ C∗(Q)

C∗(Q+ ∪Q−)
→ 0,

0→ C∗(Q−)

C∗(Q+ ∩Q−)
−→ C∗(Q)

C∗(Q+)
−→ C∗(Q)

C∗(Q+ ∪Q−)
→ 0

of the triad (Q;Q+, Q−); see [12, p. 5] for these sequences.
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(2) The injectivity of i∗ is clear. Let [a] ∈ C∗(Q)/C∗(Q+), [b] ∈ C∗(Q)/C∗(Q−). By (1), there
exist chains α ∈ C∗(Q−), β ∈ C∗(Q+) with q−∗ (α) = [a], q+

∗ (β) = [b]. Since q−∗ (β) = 0 and
q+
∗ (α) = 0, we have

(q−∗ ,−q+
∗ )(α− β) = (q−∗ (α− β),−q+

∗ (α− β))
= (q−∗ (α),−q+

∗ (−β))
= ([a], [b]).

Thus (q−∗ ,−q+
∗ ) is surjective. The composition (q−∗ ,−q+

∗ )◦i∗ is zero because Q0 ⊂ Q+, Q0 ⊂ Q−.
Let q ∈ C∗(Q) be a chain such that q−∗ (q) = 0, q+

∗ (q) = 0. This implies that q ∈ C∗(Q+) ∩
C∗(Q−) = C∗(Q+ ∩Q−) = C∗(Q0), proving exactness at C∗(Q). �

Let (Q;Q+, Q−) be a CW-triad with Q = Q+ ∪Q− and set Q0 = Q− ∩Q+. Let (R;R+, R−)
be a CW-triad with R = R+ ∪R− and set R0 = R− ∩R+. Let Γ be the CW-3-diagram

Q+ ←↩ Q0 ↪→ Q−

and let Θ be the CW-3-diagram

R+ ←↩ R0 ↪→ R−.

Suppose that Γ is a CW sub-3-diagram of Θ, that is, there is a commutative diagram

Q+

��

Q0
oo //

��

Q−

��
R+ R0
oo // R−

of subcomplex inclusions. Assume furthermore that the equations

R+ ∩Q = Q+, R− ∩Q = Q−

hold. These equations imply

R0 ∩Q = (R+ ∩R−) ∩Q = (R+ ∩Q) ∩ (R− ∩Q) = Q+ ∩Q− = Q0.

Since Q+ = Q ∩R+, the triad (R;R+, Q) has an associated exact sequence

0→ C∗(Q)

C∗(Q+)
−→ C∗(R)

C∗(R+)
−→ C∗(R)

C∗(Q ∪R+)
→ 0.

Similarly, since Q− = Q ∩R−, the triad (R;R−, Q) has an associated exact sequence

0→ C∗(Q)

C∗(Q−)
−→ C∗(R)

C∗(R−)
−→ C∗(R)

C∗(Q ∪R−)
→ 0.

These two sequences add to give an exact sequence

0→ C∗(Q)

C∗(Q+)
⊕ C∗(Q)

C∗(Q−)
−→ C∗(R)

C∗(R+)
⊕ C∗(R)

C∗(R−)
−→ C∗(R)

C∗(Q ∪R+)
⊕ C∗(R)

C∗(Q ∪R−)
→ 0.

Lemma 4.3 applied to the triads (Q;Q+, Q−) and (R;R+, R−) delivers exact sequences

0→ C∗(Q0) −→ C∗(Q) −→ C∗(Q)

C∗(Q+)
⊕ C∗(Q)

C∗(Q−)
→ 0,

0→ C∗(R0) −→ C∗(R) −→ C∗(R)

C∗(R+)
⊕ C∗(R)

C∗(R−)
→ 0.
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We obtain the following commutative 3× 3-diagram with exact columns and exact rows:

0

��

0

��

0

��
0 // C∗(Q0) //

��

C∗(Q) //

��

C∗(Q)
C∗(Q+) ⊕

C∗(Q)
C∗(Q−)

//

��

0

0 // C∗(R0) //

��

C∗(R) //

��

C∗(R)
C∗(R+) ⊕

C∗(R)
C∗(R−)

//

��

0

C∗(R0)
C∗(Q0)

��

C∗(R)
C∗(Q)

��

C∗(R)
C∗(Q∪R+) ⊕

C∗(R)
C∗(Q∪R−)

��
0 0 0

The inclusion C∗(R0) → C∗(R) induces a map C∗(R0)/C∗(Q0) → C∗(R)/C∗(Q). The identity
on C∗(R) induces quotient maps

C∗(R)

C∗(Q)
−→ C∗(R)

C∗(Q ∪R+)
,
C∗(R)

C∗(Q)
−→ C∗(R)

C∗(Q ∪R−)
.

We use these to complete the above diagram to a commutative diagram

0

��

0

��

0

��
0 // C∗(Q0) //

��

C∗(Q) //

��

C∗(Q)
C∗(Q+) ⊕

C∗(Q)
C∗(Q−)

//

��

0

0 // C∗(R0) //

��

C∗(R) //

��

C∗(R)
C∗(R+) ⊕

C∗(R)
C∗(R−)

//

��

0

0 // C∗(R0)
C∗(Q0)

//

��

C∗(R)
C∗(Q)

��

// C∗(R)
C∗(Q∪R+) ⊕

C∗(R)
C∗(Q∪R−)

��

// 0,

0 0 0
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which has exact top and middle row, as well as exact columns. By the 3× 3-lemma, the bottom
row is exact as well. Using the isomorphisms of Lemma 4.3(1), this diagram can be rewritten as

0

��

0

��

0

��
0 // C∗(Q0) //

��

C∗(Q) //

��

C∗(Q−)
C∗(Q0) ⊕

C∗(Q+)
C∗(Q0)

//

��

0

0 // C∗(R0) //

��

C∗(R) //

��

C∗(R−)
C∗(R0) ⊕

C∗(R+)
C∗(R0)

//

��

0

0 // C∗(R0)
C∗(Q0)

//

��

C∗(R)
C∗(Q)

��

// C∗(R)
C∗(Q∪R+) ⊕

C∗(R)
C∗(Q∪R−)

��

// 0.

0 0 0

Given a map a : (X,Y )→ (X ′, Y ′) of pairs, we write H∗(a, a|) for

H∗(X
′ ∪a X × I, (Y ′ ∪a| Y × I) ∪ (X × {0})).

Lemma 4.4. Let Θ be any CW-3-diagram

S+
f←− S0

g−→ S−

and let Γ, given by

P+
f |←− P0

g|−→ P−,

be a cellular subdiagram of Θ. Then the inclusion morphism

(3) P+� _

��

P0

f |oo g| //
� _

��

P−� _

��
S+ S0

foo g // S−

induces on homology the following commutative diagram with exact Mayer-Vietoris-type rows
and exact columns:

(4) Hr(P0) //

��

Hr|HΓ| //

��

Hr(g|)⊕Hr(f |)
∂∗ //

��

Hr−1(P0)

��
Hr(S0) //

��

Hr|HΘ| //

��

Hr(g)⊕Hr(f)
∂∗ //

��

Hr−1(S0)

��
Hr(S0, P0) //

∂∗

��

Hr(|HΘ|, |HΓ|) //

∂∗

��

Hr(g, g|)⊕Hr(f, f |)
∂∗ //

∂∗

��

Hr−1(S0, P0)

Hr−1(P0) // Hr−1|HΓ| // Hr−1(g|)⊕Hr−1(f |).
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Proof. The inclusion Γ ⊂ Θ induces an inclusion H(Γ) ⊂ H(Θ):

Q+ := P+ ∪f | P0 × I� _

��

Q0 := P0_?
at 0oo � � at 0 //

� _

��

P− ∪g| P0 × I =: Q−� _

��
R+ := S+ ∪f S0 × I R0 := S0_?

at 0oo � � at 0 // S− ∪g S0 × I =: R−.

Both H(Γ) and H(Θ) are CW-3-diagrams. With

Q = |H(Γ)| = Q+ ∪Q0 Q−, R = |H(Θ)| = R+ ∪R0 R−,

the equations

Q+ ∩Q− = Q0, R+ ∩R− = R0, R+ ∩Q = Q+, R− ∩Q = Q−

hold. Thus the previous considerations yield a commutative 3× 3-diagram with exact rows and
columns:

0

��

0

��

0

��

0 // C∗(P0) //

��

C∗|H(Γ)| //

��

C∗(P−∪g|P0×I)
C∗(P0) ⊕ C∗(P+∪f|P0×I)

C∗(P0)
//

��

0

0 // C∗(S0) //

��

C∗|H(Θ)| //

��

C∗(S−∪gS0×I)
C∗(S0) ⊕ C∗(S+∪fS0×I)

C∗(S0)
//

��

0

0 // C∗(S0)
C∗(P0)

//

��

C∗|H(Θ)|
C∗|H(Γ)|

��

// C∗|H(Θ)|
C∗(|HΓ|∪S+∪fS0×I) ⊕

C∗|H(Θ)|
C∗(|HΓ|∪S−∪gS0×I)

��

// 0.

0 0 0

Let (A;A+, A−) be the CW-triad

A = |HΘ|, A+ = |HΓ| ∪R+, A− = R−,

which satisfies A+ ∪A− = A. With A0 = A+ ∩A−, we have

A0 = (R+ ∩R−) ∪ (|HΓ| ∩R−) = S0 ∪Q−.
The isomorphism

C∗(A)

C∗(A+)
∼=
C∗(A−)

C∗(A0)

of Lemma 4.3(1) thus identifies

C∗|H(Θ)|
C∗(|HΓ| ∪ S+ ∪f S0 × I)

∼=
C∗(S− ∪g S0 × I)

C∗(P− ∪g| P0 × I ∪ S0)
.

In particular,
H∗(|H(Θ)|, |HΓ| ∪ S+ ∪f S0 × I) ∼= H∗(g, g|),

and similarly
H∗(|H(Θ)|, |HΓ| ∪ S− ∪g S0 × I) ∼= H∗(f, f |).

The above chain-level 3× 3-diagram then induces the desired diagram of exact Mayer-Vietoris-
type sequences on homology. �
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Proposition 4.5. Let Γ be any CW-3-diagram

X+
ξ+←− X0

ξ−−→ X−

and let Γ′ be any CW-3-diagram

Y+
η+←− Y0

η−−→ Y−.

Any cellular morphism ε : Γ→ Γ′ given by

X+

ε+

��

X0

ξ+oo ξ− //

ε0

��

X−

ε−

��
Y+ Y0

η+oo η− // Y−

induces on homology the following commutative diagram with exact Mayer-Vietoris-type rows
and exact columns:

(5) Hr(X0) //

ε0∗

��

Hr|HΓ| //

|Hε|∗
��

Hr(ξ−)⊕Hr(ξ+)
∂∗ //

ε−∗⊕ε+∗
��

Hr−1(X0)

ε0∗

��
Hr(Y0) //

��

Hr|HΓ′| //

��

Hr(η−)⊕Hr(η+)
∂∗ //

��

Hr−1(Y0)

��
Hr(ε0) //

∂∗

��

Hr(|Hε|) //

∂∗

��

Hr(η−, ξ−)⊕Hr(η+, ξ+)
∂∗ //

∂∗

��

Hr−1(ε0)

Hr−1(X0) // Hr−1|HΓ| // Hr−1(ξ−)⊕Hr−1(ξ+).

Here, the map |Hε| : |HΓ| → |HΓ′| is induced by ε as explained in Section 2.

Proof. Set S+ = Y+ ∪ε+ X+ × I, S0 = Y0 ∪ε0 X0 × I, S− = Y− ∪ε− X− × I, and define the
CW-3-diagram Θ = Γ′ ∪ε Γ× I to be

S+ S0

σ+=η+∪ξ+×idIoo σ−=η−∪ξ−×idI // S−.

Then Γ is a cellular subdiagram of Θ by including Γ at the free end of the cylinders:

(6) X+� _

at 0

��

X0

ξ+oo ξ− //
� _

at 0

��

X−� _

at 0

��
Y+ ∪ε+ X+ × I Y0 ∪ε0 X0 × I

σ+oo σ− // Y− ∪ε− X− × I.

The canonical cellular inclusion ι : Γ′ ↪→ Θ given by

Y+� _

ι+

��

Y0

η+oo η− //
� _

ι0

��

Y−� _

ι−

��
Y+ ∪ε+ X+ × I Y0 ∪ε0 X0 × I

σ+oo σ− // Y− ∪ε− X− × I
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induces a cellular morphism H(ι) : H(Γ′)→ H(Θ) given by

(7) Y+ ∪η+
Y0 × J� _

ι+∪ι0×idJ

��

Y0_?
at 0oo � � at 0 //

� _

ι0

��

Y− ∪η− Y0 × J� _

ι−∪ι0×idJ

��
S+ ∪σ+

S0 × J S0_?
at 0oo � � at 0 // S− ∪σ− S0 × J,

where we have written J for the second copy of the unit interval in order to distinguish it from
the first copy, I. The realization |H(ι)| : |H(Γ′)| → |H(Θ)| is a cellular map and a homotopy
equivalence, since |H(Θ)| deformation retracts to |H(Γ′)| by deformation retracting I = [0, 1] to
1. More formally, applying Proposition 2.1 to

Y±� _

ι±'
��

Y0 × {1}
η±oo � � incl //

� _

ι0'
��

Y0 × J� _
ι0×idJ'
��

S± S0 × {1}
σ±oo � � incl // S0 × J,

we see that ι± ∪ ι0 × idJ are homotopy equivalences. Then applying Proposition 2.1 to (7), we
deduce that |H(ι)| is an equivalence. Diagram (6) is of type (3), so that by Lemma 4.4, we have
a commutative diagram

Hr(X0) //

��

Hr|HΓ| //

��

Hr(ξ−)⊕Hr(ξ+)
∂∗ //

��

Hr−1(X0)

ε0∗

��
Hr(S0) //

��

Hr|HΘ| //

��

Hr(σ−)⊕Hr(σ+)
∂∗ //

��

Hr−1(S0)

��
Hr(S0, X0) //

∂∗

��

Hr(|HΘ|, |HΓ|) //

∂∗

��

Hr(σ−, ξ−)⊕Hr(σ+, ξ+)
∂∗ //

∂∗

��

Hr−1(S0, X0)

Hr−1(X0) // Hr−1|HΓ| // Hr−1(ξ−)⊕Hr−1(ξ+)

with exact rows and columns. Using the deformation retraction I = [0, 1] 7→ 1 throughout the
diagram, we obtain the desired diagram (5). �

In constructing the duality isomorphism D of Theorem 6.2, we shall make use of Lemma 4.6
below, a standard result from linear algebra. The lemma is ultimately really only relevant in the
middle dimension, see Remark 6.4 following the proof of the theorem.

Lemma 4.6. ([1, Lemma 2.46]) Let

A //

��

B //

��

C // D //

��

E

��
A′ // B′ // C ′ // D′ // E′

be a commutative diagram of rational vector spaces with exact rows. Then there exists a map
C → C ′ completing the diagram commutatively.
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5. Construction of the Intersection Spaces

Let Xn be an oriented, compact, PL stratified pseudomanifold of even dimension n = 2k with
a PL stratification of the form Xn = Xn ⊃ X1 ⊃ X0, X1

∼= S1, X0 = {x0}. There are thus three

strata. (The case of a depth 1 stratified space Xn with stratification X̂n = Xn ⊃ X̂1
∼= S1,

X̂0 = ∅, and possibly twisted link bundle (mapping torus) can be treated within the present

framework by inserting a point x0 ∈ X̂1 as a new stratum X̂0 = {x0}, whose link is the suspen-

sion of the link of X̂1.) Let N0 be a regular neighborhood of x0 in X. Then N0 = cone(L0),
where L0 is a compact PL stratified pseudomanifold of dimension n − 1, the link of x0. Set
X ′ = X− int(N0), a compact pseudomanifold with boundary. This X ′ has one singular stratum,
X ′1 = X1 ∩X ′ ∼= ∆1, where ∆1 is a closed interval. Let L be the link of X ′1, a closed manifold
of dimension n − 2. To be able to carry out spatial homology truncation, we assume that the
links L and L0 are simply connected. (In specific cases this assumption is not always necessary,
since a space may very well have a Moore approximation even if it is not simply connected.)
The space L0 may be singular with singular stratum L0 ∩ X1 = L0 ∩ X ′1 = ∂∆1 = {∆0

0,∆
0
1}

(two points). The link L, being triangulable, certainly has some CW structure.

Assumption: The space L possesses a CW structure such that condition (INJk−1) is satisfied.

(This is the strong Witt condition from the introduction.) Fix such a CW structure on L
from now on. A regular neighborhood of ∆0

i , i = 0, 1, in L0 is PL homeomorphic to cone(L).
If we remove the interiors of these two cones from L0, we obtain a compact (n − 1)-manifold
W , which is a bordism between L at ∆0

0 and L at ∆0
1. Choose any CW structure on W so that

∂W is a subcomplex (This is possible, since W can be triangulated with ∂W as a simplicial
subcomplex.) A normal regular neighborhood of X ′1 in X ′ is PL homeomorphic to a product
∆1 × cone(L). In more detail, this can be seen as follows: By Theorem 2.1 of [11], a normal
regular neighborhood N of X ′1 in X ′ is the total space N = |ξ| of a cone block bundle ξ, with
fiber cone(L) over X ′1. As the base X ′1 is PL homeomorphic to ∆1, Theorem I, 1.1 of [11,
Appendix] applies to show that ξ is trivial, that is, there is a cone block bundle isomorphism
ξ ∼= X ′1 × cone(L). Thus N = |ξ| ∼= X ′1 × cone(L) ∼= ∆1 × cone(L). Removing from X ′ the

preimage of X ′1×
◦

cone(L), where
◦

cone(L) denotes the open cone, under the trivialization, we get
a compact n-manifold M with boundary ∂M . In order to describe ∂M as the realization of a
3-diagram, set NL = cl ∂(N − (N ∩ ∂X ′)), where cl is closure in X ′. Then NL is the total space
of the link bundle of X1 −X0, restricted to X ′1. In the terminology of [11], NL is the rim of the
cone block bundle ξ. This rim is a compact manifold with boundary ∂NL which is equal to the
boundary of W . Let us denote this common boundary by Λ. Then ∂M = |Θ|, where Θ is the
3-diagram

W Λ_?
incloo � � incl // NL.

Let

φ : (N,NL, N ∩ ∂X ′)
∼=−→ (∆1 × cone(L),∆1 × L, (∂∆1)× cone(L))

denote the above trivialization of the regular neighborhood and let Γ∂ be the 3-diagram

W L̈
f ′oo � � incl× id // L,

where we wrote L = ∆1 × L, L̈ = ∂∆1 × L, and the map f ′ is the composition

L̈
φ|−1

−→ Λ ↪→W.
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Then φ induces a morphism Θ→ Γ∂ given by

W Λ

φ|∼=
��

_?
incloo � � incl // NL

φ|∼=
��

W L̈
f ′oo � � incl× id // L.

This morphism induces a homeomorphism ∂M = |Θ| ∼= |Γ∂ |, and a homeomorphism |H(Θ)| ∼=
|H(Γ∂)|. For example, if the link-type does not change running along X1 −X0 into x0, then L0

is the suspension of L and W is the cylinder W ∼= I×L. The boundary of M is a mapping torus
with fiber L and we may think of f ′ as the monodromy of the mapping torus. In the diagram
Γ∂ , L is equipped with the product CW structure. The map f ′ is in general not cellular.

We shall proceed to define the middle perversity intersection spaces Im̄X and I n̄X. It will
turn out that the above strong Witt assumption (INJk−1) on L implies that Im̄X = I n̄X.
Roughly, the construction paradigm of intersection spaces says that in order to obtain I p̄X, for
a given perversity p̄, every link L of a stratum of codimension c must be replaced by its spatial
homology kL(p̄)-truncation (Moore approximation), where

kL(p̄) = c− 1− p̄(c).
The first step is to replace Γ∂ by a CW-3-diagram Γ in which f ′ is replaced by a cellular
approximation. Thus, let Γ be the CW-3-diagram

W L̈
foo � � // L,

where f is a cellular approximation of f ′. In the h-morphism Γ∂ → Γ defined by

W L̈
f ′oo � � // L

W L̈
foo � � // L,

the left hand square commutes up to homotopy and the right hand square commutes. Hence,
we may apply Proposition 2.2 to obtain a homotopy equivalence

|H(Γ∂)| ' |H(Γ)|.
By Proposition 2.3,

|Θ| ∼= |H(Θ)|.
Composing, we get a homotopy equivalence

∂M = |Θ| ∼= |H(Θ)| ∼= |H(Γ∂)| ' |H(Γ)|.
The space |H(Γ)| will be the homotopy theoretic model of the boundary of M that we will
subsequently work with.

Let us first discuss the intersection space for the lower middle perversity p̄ = m̄. For our X,
we must truncate L and W . The truncation degrees are

kL(m̄) = n− 2− m̄(n− 1) = k,

kW (m̄) = n− 1− m̄(n) = k.

Thus there is one common cut-off degree for both L and W , namely k.
By Lemma 4.2(2), (L, YL = 0) is the unique completion of L to an object in CWk⊃∂ . Note

that W is simply connected: Write W ′ for the space obtained from L0 by deleting one of the



FIRST CASES OF INTERSECTION SPACES 73

two points in L0 ∩X1. A neighborhood in L0 of such a point is PL homeomorphic to the cone
on L. By the Seifert-van Kampen theorem,

1 = π1(L0) ∼= π1(W ′) ∗π1(L) π1(cone(L)) = π1(W ′)

and so

1 = π1(W ′) ∼= π1(W ) ∗π1(L) π1(cone(L)) = π1(W ),

using the simple connectivity of L. Let (W,YW ) be any completion of W to an object in CWk⊃∂ .

Let fi : L = ∆0
i × L → W be the restriction of f to ∆0

i × L ⊂ ∂∆1 × L = L̈, i = 0, 1. Since
the cellular maps fi satisfy fi∗(YL) ⊂ YW , they both define morphisms fi : (L, YL) → (W,YW )
in CWk⊃∂ . Thus there exist truncation cellular maps t<k(fi) : t<k(L, YL) → t<k(W,YW ) such
that

L<k
t<k(fi)//

eL

��

W<k

eW

��
L

fi // W

commutes (a priori) up to homotopy rel (k−1)-skeleton, where we have written L<k = t<k(L, YL),
W<k = t<k(W,YW ), eL is a cellular rel (k − 1)-skeleton representative of the homotopy class
embk(L, YL), and eW is a cellular rel (k − 1)-skeleton representative of embk(W,YW ). We set

L̈<k = (∆0
0 × L<k) t (∆0

1 × L<k),

t<k(f) = t<k(f0) t t<k(f1) : L̈<k −→W<k,

and eL̈ = eL t eL : L̈<k → L̈. The diagram

(8) L̈<k
t<k(f)//

eL̈
��

W<k

eW

��
L̈

f // W

commutes (a priori) up to homotopy rel (k − 1)-skeleton. By Lemma 4.2(4), L<k = Lk−1 and

thus L̈<k = L̈k−1. The map t<k(f) factors as

L̈k−1 f |−→W k−1 ⊂W<k.

The map eL̈ is the skeletal inclusion L̈k−1 ↪→ L̈. Since the restriction of eW to W k−1 is the

skeletal inclusion W k−1 ↪→ W , we deduce that the diagram (8) commutes on the nose, not just
up to homotopy.

Applying Proposition 4.5 to the cellular morphism

W<k

eW

��

L̈<k
t<kfoo

� _

��

L̈<k� _

��
W L̈

foo L̈
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yields the commutative diagram

(9) Hr(L̈<k)
(t<kf)∗ //

��

Hr(W<k) //

eW∗

��

Hr(t<kf)
∂∗ //

��

Hr−1(L̈<k)

��
Hr(L̈)

f∗ //

��

Hr(W ) //

��

Hr(f)
∂∗ //

��

Hr−1(L̈)

��
Hr(L̈, L̈<k) //

∂∗
��

Hr(eW ) //

∂∗

��

Hr(f, t<kf)
∂∗ //

∂∗

��

Hr−1(L̈, L̈<k)

Hr−1(L̈<k) // Hr−1(W<k) // Hr−1(t<kf)

with exact rows and columns.

Lemma 5.1. The map

Hr(f) −→ Hr(f, t<kf)

is an isomorphism for r ≥ k, while

Hr(f, t<kf) = 0

for r < k.

Proof. The proof is based on an examination of the above diagram (9) in the three cases r < k,
r = k, and r > k. Suppose r < k. Then Hr(W<k) → Hr(W ) and Hr−1(W<k) → Hr−1(W )
are isomorphisms. By exactness of the second column of the diagram, Hr(eW ) = 0. Similarly,

the exactness of the long sequence of the last column implies that Hr−1(L̈, L̈<k) = 0. By the
exactness of the third row, Hr(f, t<kf) = 0.

Suppose next that r = k. Since L satisfies condition (INJk−1) and L̈ ∼= L t L, we have

Hk−1(L̈<k) ∼= Hk−1(L̈) = 0. Together with Hk(W<k) = 0, the exactness of the top row shows
that Hk(t<kf) = 0. An application of the 5-lemma to the ladder

Hk−1(L̈<k) //

∼=
��

Hk−1(W<k) //

∼=
��

Hk−1(t<kf)
∂∗ //

��

Hk−2(L̈<k) //

∼=
��

Hk−2(W<k)

∼=
��

Hk−1(L̈) // Hk−1(W ) // Hk−1(f)
∂∗ // Hk−2(L̈) // Hk−2(W )

yields that

Hk−1(t<kf) −→ Hk−1(f)

is an isomorphism. The exact sequence

0 = Hk(t<kf)→ Hk(f)→ Hk(f, t<kf)
∂∗=0−→ Hk−1(t<kf)

∼=→ Hk−1(f)

shows that

Hk(f) −→ Hk(f, t<kf)

is an isomorphism.
If r > k, then using the exact sequences

0 = Hr(W<k) −→ Hr(t<kf) −→ Hr−1(L̈<k) = 0

and

0 = Hr−1(W<k) −→ Hr−1(t<kf) −→ Hr−2(L̈<k) = 0,
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we obtain
Hr(t<kf) = 0, Hr−1(t<kf) = 0.

(If r = k + 1, then Hr−2(L̈<k) = 0 is implied by (INJk−1).) From the exactness of the sequence

0 = Hr(t<kf)→ Hr(f)→ Hr(f, t<kf)
∂∗−→ Hr−1(t<kf) = 0

we deduce that the middle map is an isomorphism. �

Set L<k = ∆1 × L<k. The notation L<k is potentially ambiguous because it could also be
construed to indicate a spatial homology truncation t<k of L. This ambiguity is deliberate, for
∆1×L<k is indeed a valid homology truncation of L: The map id∆1 × incl : L<k = ∆1×L<k →
∆1 × L = L induces an isomorphism Hr(L<k) ∼= Hr(L<k) ∼= Hr(L) ∼= Hr(L) for r < k, and
Hr(L<k) ∼= Hr(L<k) vanishes in degrees r ≥ k. Let Γm̄ be the 3-diagram

W<k L̈<k
t<k(f)oo � � incl× id // L<k.

The diagram of commutative squares

W<k

eW

��

L̈<k
t<k(f)oo

� _

eL̈=incl

��

� � incl× id // L<k� _

id∆1 × incl

��
W L̈

foo � � incl× id // L

defines a cellular morphism ε : Γm̄ → Γ, which induces a cellular map |H(ε)| : |H(Γm̄)| → |H(Γ)|.

Definition 5.2. The lower middle perversity intersection space Im̄X of X is the homotopy
cofiber of the composition

|H(Γm̄)| |H(ε)|−→ |H(Γ)| ' ∂M ↪→M.

For the upper middle perversity p̄ = n̄, we have the cut-off values

kL(n̄) = n− 2− n̄(n− 1) = k − 1,

kW (n̄) = n− 1− n̄(n) = k.

The intersection space I n̄X is defined using the construction principle of Definition 5.2, em-
ploying an appropriate diagram Γn̄ instead of Γm̄. Let us construct this Γn̄. Since L satisfies
condition (INJk−1), Lemma 4.2(1) asserts that (L, Y ′L = Ck−1(L)) is the unique completion of
L to an object in CWk−1⊃∂ . Furthermore, by Lemma 4.2(4),

t<kL(n̄)(L, Y
′
L) = t<k−1(L, Y ′L) = t<k(L, YL = 0) = Lk−1.

Therefore, a CW-3-diagram Γn̄ of the required type

t<kW (n̄)(W,YW )← ∂∆1 × t<kL(n̄)(L, Y
′
L) ↪→ ∆1 × t<kL(n̄)(L, Y

′
L)

can be defined by

Γn̄ =
(
t<k(W,YW )← ∂∆1 × t<k−1(L, Y ′L) ↪→ ∆1 × t<k−1(L, Y ′L)

)
=

(
W<k ← ∂∆1 × t<k(L, YL) ↪→ ∆1 × t<k(L, YL)

)
=

(
W<k

t<k(f)←− L̈<k ↪→ L<k

)
= Γm̄.

Thus, as expected,
Im̄X = I n̄X
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due to the strong Witt assumption on L. We shall denote this space by IX.

6. The Duality Theorem

Rational homology and cohomology will be used throughout this section. Let e : |HΓm̄| → ∂M
be the composition of |Hε| with the homotopy equivalence |HΓ| ' ∂M .

Proposition 6.1. Cap product with the fundamental class [∂M ] ∈ Hn−1(∂M) induces an iso-
morpism

Hn−r|HΓm̄|
∼=−→ Hr−1(e)

such that

Hn−r(∂M)
e∗ //

−∩[∂M ] ∼=
��

Hn−r|HΓm̄|

∼=
��

Hr−1(∂M) // Hr−1(e)

commutes. This isomorphism is determined uniquely by the above commutativity requirement.

Proof. The morphism ε : Γm̄ → Γ induces a map of standard Mayer-Vietoris sequences for
double mapping cylinders:

Hn−r−1(L̈)
δ∗ //

restr

��

Hn−r|HΓ| //

|Hε|∗

��

Hn−r(W )⊕Hn−r(L)
f∗+restr //

e∗W⊕restr

��

Hn−r(L̈)

restr

��
Hn−r−1(L̈<k)

δ∗ // Hn−r|HΓm̄| // Hn−r(W<k)⊕Hn−r(L<k) // Hn−r(L̈<k)

(The last arrow in the bottom row is (t<kf)∗ + restr.) Using the homotopy equivalence |HΓ| '
∂M, this diagram may be rewritten as

(10) Hn−r−1(L̈)
δ∗ //

restr

��

Hn−r(∂M) //

e∗

��

Hn−r(W )⊕Hn−r(L) //

e∗W⊕restr

��

Hn−r(L̈)

restr

��
Hn−r−1(L̈<k)

δ∗ // Hn−r|HΓm̄| // Hn−r(W<k)⊕Hn−r(L<k) // Hn−r(L̈<k).

An application of Proposition 4.5 to ε : Γm̄ → Γ yields a commutative diagram

Hr−1(L̈<k) //

��

Hr−1|HΓm̄| //

|Hε|∗

��

Hr−1(L<k, L̈<k)⊕Hr−1(t<kf) //

incl∗ ⊕eW∗
��

Hr−2(L̈<k)

��
Hr−1(L̈) //

��

Hr−1|HΓ| //

��

Hr−1(L, L̈)⊕Hr−1(f) //

��

Hr−2(L̈)

��
Hr−1(L̈, L̈<k) //

��

Hr−1(|Hε|) //

��

Hr−1(L,L<k ∪ L̈)⊕Hr−1(f, t<kf) //

��

Hr−2(L̈, L̈<k)

Hr−2(L̈<k) // Hr−2|HΓm̄| // Hr−2(L<k, L̈<k)⊕Hr−2(t<kf)
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with exact rows and columns. Again using |HΓ| ' ∂M, we can in particular extract the following
map of Mayer-Vietoris sequences:

(11) Hr−1(L̈) //

��

Hr−1(∂M) //

��

Hr−1(L, L̈)⊕Hr−1(f) //

��

Hr−2(L̈)

��
Hr−1(L̈, L̈<k) // Hr−1(e) // Hr−1(L,L<k ∪ L̈)⊕Hr−1(f, t<kf) // Hr−2(L̈, L̈<k).

We shall distinguish the cases r > k and r ≤ k. Suppose that r > k. Then, since n = 2k,
n − r < k and the maps restr and e∗W in diagram (10) are isomorphisms. By the 5-lemma,
e∗ : Hn−r(∂M)→ Hn−r|HΓm̄| is an isomorphism as well. Let us prove next that Hr−1(∂M)→
Hr−1(e) is an isomorphism. Since r − 1 ≥ k, the maps

Hr−1(f) −→ Hr−1(f, t<kf) and Hr(f) −→ Hr(f, t<kf)

are isomorphisms by Lemma 5.1. Applying the same lemma to

L̈<k //

��

L<k

��
L̈ // L

instead of

L̈<k //

��

W<k

��
L̈

f // W,

we see that the maps

Hr−1(L, L̈) −→ Hr−1(L,L<k ∪ L̈)

and

Hr(L, L̈) −→ Hr(L,L<k ∪ L̈)

are isomorphisms. The map

Hr−1(L̈) −→ Hr−1(L̈, L̈<k)

is an isomorphism, as follows from the exact sequence

Hr−1(L̈<k) −→ Hr−1(L̈) −→ Hr−1(L̈, L̈<k)
∂∗−→ Hr−2(L̈<k)

by observing that Hr−1(L̈<k) = 0 and even Hr−2(L̈<k) = 0, since in the worst case (when
r − 2 = k − 1),

Hk−1(L̈<k) = Hk−1(Lk−1)⊕Hk−1(Lk−1)

and

Hk−1(Lk−1) = ker(∂k−1 : Ck−1(L)→ Ck−2(L)) = 0

by condition (INJk−1). The map

Hr−2(L̈) −→ Hr−2(L̈, L̈<k)
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is injective by Hr−2(L̈<k) = 0. In summary, the diagram (11) has the form

Hr(L, L̈)⊕Hr(f)
∼= //

∂∗
��

Hr(L,L<k ∪ L̈)⊕Hr(f, t<kf)

∂∗
��

Hr−1(L̈)
∼= //

��

Hr−1(L̈, L̈<k)

��
Hr−1(∂M) //

��

Hr−1(e)

��
Hr−1(L, L̈)⊕Hr−1(f)

∼= //

∂∗
��

Hr−1(L,L<k ∪ L̈)⊕Hr−1(f, t<kf)

∂∗
��

Hr−2(L̈) �
� // Hr−2(L̈, L̈<k).

This is enough to deduce from a sharp version of the 5-lemma that Hr−1(∂M)→ Hr−1(e) is an
isomorphism, as claimed. Let

Hn−r|HΓm̄|
∼=−→ Hr−1(e)

be the unique isomorphism such that the square

Hn−r(∂M)
e∗

∼=
//

−∩[∂M ] ∼=
��

Hn−r|HΓm̄|

��
Hr−1(∂M)

∼= // Hr−1(e)

commutes.

Suppose that r ≤ k. If r < k, then n− r ≥ k + 1 and Hn−r−1(L̈<k) = 0. If r = k, then

Hn−r−1(L̈<k) = Hom(Hk−1(L̈k−1),Q) = 0

by condition (INJk−1). Since Hn−r(W<k) = 0 and Hn−r(L<k) = 0, the exactness of

Hn−r−1(L̈<k)
δ∗−→ Hn−r|HΓm̄| −→ Hn−r(W<k)⊕Hn−r(L<k)

shows that

Hn−r|HΓm̄| = 0.

We shall show that Hr−1(e) = 0 also. The exactness of

Hr−1(L̈<k)
∼=−→ Hr−1(L̈)

0−→ Hr−1(L̈, L̈<k)
0−→ Hr−2(L̈<k)

∼=−→ Hr−2(L̈)

implies thatHr−1(L̈, L̈<k) = 0. Since r−1 < k, we infer from Lemma 5.1 thatHr−1(f, t<kf) = 0.

Similarly, Hr−1(L,L<k ∪ L̈) = 0, which can either also be deduced from Lemma 5.1 by taking

W = L, f = incl : L̈ ↪→ L, W<k = L<k = I × Lk−1, t<k(f) = incl : (∂I)× Lk−1 → I × Lk−1, or
directly from the exact sequence

0 = Hr−1(I × L, I × L<k) −→ Hr−1(L,L<k ∪ L̈) −→ Hr−2((∂I)× L, (∂I)× L<k) = 0.

The vanishing of Hr−1(e) follows from the exactness of

Hr−1(L̈, L̈<k) −→ Hr−1(e) −→ Hr−1(f, t<kf)⊕Hr−1(L,L<k ∪ L̈).
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Thus for r ≤ k, the zero map is the unique isomorphism

Hn−r|HΓm̄|
∼=−→ Hr−1(e)

such that the commutativity requirement is met. �

To a triple of continuous maps

A
φ //

ψφ ��

B

ψ

��
C

one can associate the 3-diagrams

Γ(φ) =
(
B

φ←− A× {1} ↪→ cone(A)
)
, Γ(ψ) =

(
C

ψ←− B × {1} ↪→ cone(B)
)
,

Γ(ψφ) =
(
C

ψφ←− A× {1} ↪→ cone(A)
)
,

and the morphisms Γ(φ)→ Γ(ψφ)→ Γ(ψ) given by

B

ψ

��

A× {1}
φoo

id

��

� � // cone(A)

id

��
C

id

��

A× {1}
ψφoo

φ

��

� � // cone(A)

cone(φ)

��
C B × {1}

ψoo � � // cone(B).

These morphisms induce maps |Γ(φ)| → |Γ(ψφ)| → |Γ(ψ)|. Applying this to the triple

(12) |HΓm̄| e //

g
##

∂M� _

j

��
M,

and observing |Γ(g)| = IX and |Γ(j)| = M/∂M, we obtain a map γ : IX → M/∂M . Let
µ : M → IX denote the canonical inclusion of the target of the map g into the mapping cone
IX of this map.

Theorem 6.2. Let X be an n-dimensional, compact, oriented PL pseudomanifold with n even.
Suppose X can be endowed with a PL stratification of the form X = Xn ⊃ X1 ⊃ X0 with
X1
∼= S1 and X0 a point, such that the links of the two strata are simply connected and X

satisfies the strong Witt condition. Then there exists a Poincaré duality isomorphism

D : H̃n−r(IX)
∼=−→ H̃r(IX)

for the reduced (co)homology of the middle perversity intersection space IX of X that extends
Poincaré duality for the exterior (M,∂M) of the singular set, that is, D makes

H̃n−r(IX)
µ∗ //

D∼=
��

Hn−r(M)

∼= −∩[M,∂M ]

��
H̃r(IX)

γ∗ // Hr(M,∂M)
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commute.

Proof. The isomorphism D will be fitted into an isomorphism between the cohomology exact
sequence of the pair |HΓm̄| →M and the complementary homology exact sequence of the triple
(12). Proposition 6.1 provides a commutative square

(13) Hn−r(∂M)
e∗ //

−∩[∂M ] ∼=
��

Hn−r|HΓm̄|

∼=
��

Hr−1(∂M) // Hr−1(e).

The connecting homomorphism ∂∗ : Hn(M,∂M) → Hn−1(∂M) sends the fundamental class
[M,∂M ] to ∂∗[M,∂M ] = [∂M ]. Since for j∗ : Hn−r(M) → Hn−r(∂M) and ξ ∈ Hn−r(M) we
have

∂∗(ξ ∩ [M,∂M ]) = j∗ξ ∩ ∂∗[M,∂M ]

(see [10], Chapter 5, Section 6, 20, page 255), the square

(14) Hn−r(M)
j∗ //

−∩[M,∂M ] ∼=
��

Hn−r(∂M)

∼= −∩[∂M ]

��
Hr(M,∂M)

∂∗ // Hr−1(∂M)

commutes. Since g∗ = e∗ ◦ j∗ and the connecting homomorphism

∂∗ : Hr(M,∂M) −→ Hr−1(e)

of the triple factors as

Hr(M,∂M)
∂∗−→ Hr−1(∂M) −→ Hr−1(e),

composing diagram (14) and diagram (13) yields a commutative square

Hn−r(M)
g∗ //

−∩[M,∂M ] ∼=
��

Hn−r|HΓm̄|

∼=
��

Hr(M,∂M)
∂∗ // Hr−1(e).

We use these squares in the diagram

Hn−r−1(M)
g∗ //

−∩[M,∂M ] ∼=
��

Hn−r−1|HΓm̄|

∼=
��

δ∗ // Hn−r(g) // Hn−r(M)
g∗ //

−∩[M,∂M ] ∼=
��

Hn−r|HΓm̄|

∼=
��

Hr+1(M,∂M)
∂∗ // Hr(e)

j∗ // Hr(g) // Hr(M,∂M)
∂∗ // Hr−1(e),

By Lemma 4.6, there exists a map

D : H̃n−r(IX) = Hn−r(g) −→ Hr(g) = H̃r(IX)

filling in the diagram commutatively. By the 5-lemma, D is an isomorphism. �

Remark 6.3. The simple connectivity conditions on the links L,L0 only enter in so far as to ensure
that the homological truncations L<k, W<k exist. Actually, regardless of simple connectivity,
the strong Witt condition on L alone guarantees that L<k exists (because then we may take
L<k = Lk−1). The simple connectivity of both L and L0 is a sufficient condition for the existence
ofW<k, but certainly not a necessary condition. Example 6.5 below illustrates this by considering
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nonsimply connected links such that L<k,W<k exist with the correct properties. The simple
connectivity assumption never enters otherwise in the proof of Proposition 6.1 and Theorem 6.2,
so that these results remain true for nonsimply connected L,L0, provided the truncations exist.

Remark 6.4. The construction of the duality isomorphism D in the proof of Theorem 6.2 uses
Lemma 4.6 and thus involves an element of choice. A canonical construction of an isomorphism

D : H̃n−r(IX) → H̃r(IX) in all degrees r except the middle, avoiding that lemma, runs as
follows: Suppose r > k. Then, as was shown in the proof of Proposition 6.1, e∗ : Hn−r(∂M)→
Hn−r|HΓm̄| and Hr−1(∂M)→ Hr−1(e) are isomorphisms. From the exact sequences

Hn−(r+1+i)(∂M)
∼=−→
e∗

Hn−(r+1+i)|HΓm̄| δ∗−→ Hn−(r+i)(e)

−→ Hn−(r+i)(∂M)
∼=−→
e∗

Hn−(r+i)|HΓm̄|, i = 0, 1,

we deduce that Hn−r−1(e) = 0 and Hn−r(e) = 0. The exact triple sequence

Hn−r−1(e)
δ∗−→ Hn−r(M,∂M) −→ Hn−r(g) −→ Hn−r(e)

implies that Hn−r(M,∂M)→ Hn−r(g) is an isomorphism. From the sequences

Hr+i(∂M)
∼=−→ Hr+i(e)

∂∗−→ Hr+i−1|HΓm̄|

−→ Hr+i−1(∂M)
∼=−→ Hr+i−1(e), i = 0, 1,

we infer that Hr|HΓm̄| = 0 and Hr−1|HΓm̄| = 0. Hence Hr(M)→ Hr(g) is an isomorphism by
the exactness of

Hr|HΓm̄| g∗−→ Hr(M) −→ Hr(g)
∂∗−→ Hr−1|HΓm̄|.

Define D to be the unique isomorphism such that the square

Hn−r(M,∂M)
∼= //

−∩[M,∂M ] ∼=
��

Hn−r(g)

D

��
Hr(M)

∼= // Hr(g)

commutes. Suppose r < k. Then, as was established in the proof of Proposition 6.1,

Hn−(r+1)|HΓm̄| = 0

and Hr(e) = 0. Therefore, by the exactness of

0 = Hn−(r+1)|HΓm̄| δ∗−→ Hn−r(g) −→ Hn−r(M)
g∗−→ Hn−r|HΓm̄| = 0,

the map Hn−r(g)→ Hn−r(M) is an isomorphism. The exact sequence

0 = Hr(e) −→ Hr(g) −→ Hr(M,∂M)
∂∗−→ Hr−1(e) = 0

shows that Hr(g) → Hr(M,∂M) is an isomorphism. Define D to be the unique isomorphism
such that

Hn−r(g)
∼= //

D

��

Hn−r(M)

∼= −∩[M,∂M ]

��
Hr(g)

∼= // Hr(M,∂M)
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commutes. In the middle dimension r = k, we have Hk−1(e) = 0 and Hk(∂M) → Hk(e) is an
isomorphism. Hence the commutative diagram with exact rows

Hk+1(M,∂M)
∂∗ // Hk(∂M) //

∼=
��

Hk(M) //

��

Hk(M,∂M)
∂∗ // Hk−1(∂M)

��
Hk+1(M,∂M)

∂∗ // Hk(e) // Hk(g) // Hk(M,∂M)
∂∗ // Hk−1(e) = 0

shows that Hk(g)→ Hk(M,∂M) is a surjection and Hk(M)→ Hk(g) is an injection.

Not every stratified pseudomanifold possesses an intersection space. This is not unexpected
in view of the rich internal algebraic structure of HI∗, as opposed to intersection cohomology
IH∗. For a given perversity, obstructions to constructing an intersection space arise from certain
differentials in the Serre spectral sequences of the link bundles. The techniques introduced in
the present paper seem to be useful in studying other depth 2 stratifications as well, or perhaps
even higher depth, but will not in general by themselves suffice to construct intersection spaces
in more general situations. For example, one might consider a stratification Xn ⊃ X2 ⊃ X0 with
X2 a 2-sphere and X0 a point. Then, as X2 −X0 is contractible, the link bundle over X2 −X0

is trivializable (as it is in this paper) and its total space looks like int(D2)× L. The link L0 of
X0 looks like L0 = W ∪∂W S1 × cone(L), where W is a manifold with boundary ∂W = S1 × L.
The exterior ∂M of the singular set looks like |Γ∂ |, with Γ∂ the 3-diagram

W
f←− S1 × L ↪→ D2 × L.

The map f is a homeomorphism onto its image ∂W . To form the intersection space, one would
have to produce the broken arrow in the 3-diagram

Γm̄ =
(
W<kW L99 S

1 × L<kL ↪→ D2 × L<kL
)

by suitably truncating f . However, as mentioned above, fiberwise truncation of maps is generally
obstructed. Appropriate assumptions on links and/or structure groups of the involved bundles
will imply that these obstructions vanish. Thus, particular features of the geometry of a given
pseudomanifold X enter in an interesting, nontrivial way to enable or disable the existence of
intersection spaces for X.

We conclude with a simple 6-dimensional example, illustrating in particular Proposition 6.1.

Example 6.5. Suppose that X is a 6-dimensional pseudomanifold with stratification

X6 ⊃ X1 ⊃ X0,

X1 a circle and X0 a point. Suppose the link L of X1 −X0 is the 4-manifold L = S1 × S3. Let
T be a 2-torus with two disjoint small open discs removed. The boundary of T consists of two
circles, ∂T = S1

c t S1
d . The 5-manifold W = T × S3 has boundary ∂W = S1

c × S3 t S1
d × S3.

Suppose that the link L0 of X0 is

L0 = W ∪∂W (cone(S1
c × S3) t cone(S1

d × S3))

and that the link bundle ∆1×L is attached to W by the identity maps {0}×L id−→ S1
c ×S3 and

{1} × L id−→ S1
d × S3. We equip the circle factor of L with the CW structure S1 = e0 ∪ e1 and

the 3-sphere factor with the structure S3 = e0
S ∪ e3

S . Then L receives the product cell structure.
We endow T with the CW structure

T = (e0
0 ∪ e0

1) ∪ (a ∪ b ∪ c ∪ d ∪ e1
d) ∪ e2,
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where a, b, c, d and e1
d are 1-cells such that a, b, c are all attached as loops to e0

0, whereas d is
attached as a loop to e0

1 and e1
d joins the two 0-cells e0

0 and e0
1. The 2-cell e2 is attached by

the word abe1
dd(e1

d)
−1a−1b−1c−1. Then S1

c ⊂ T and S1
d ⊂ T are the subcomplexes S1

c = e0
0 ∪ c,

S1
d = e0

1 ∪ d. The space W receives the product cell structure. As ∂2 : C2(T ) → C1(T ) maps
e2 to d − c, we have [c] = [d] ∈ H1(T ). This group H1(T ) has rank 3 generated by [a], [b] and
[c] = [d]. Consequently, the homology of W is given by the following generators:

H0(W ) [e0
0 × e0

S ]
H1(W ) [a× e0

S ], [b× e0
S ], [c× e0

S ]
H2(W ) 0
H3(W ) [e0

0 × e3
S ]

H4(W ) [a× e3
S ], [b× e3

S ], [c× e3
S ]

H5(W ) 0

Note that the strong Witt condition on L is satisfied, as L has no 2-dimensional cells. The link
L0 is not homeomorphic to the suspension of L, since H1(L0) has rank 2, generated by [a× e0

S ]
and [b × e0

S ], while the suspension has trivial first homology. Thus X cannot be restratified
with depth 1. Note also that L is not simply connected, but this presents no problem, since the
required spatial homology truncation does exist and is given by the 1-skeleton:

L<k = L<3 = L<2 = L1 = (e0 ∪ e1)× e0
S = S1 × pt .

The structural map eL is the inclusion eL : L<k = S1×pt ↪→ S1×S3 = L. The spatial homology
truncation of W is

W<k = W<3 = W<2 = T × e0
S .

Thus W<3 is precisely the 2-skeleton W 2 of W and the structural map eW : W<3 → W is the
skeletal inclusion W 2 ↪→ W . The map f : L̈ → W is the inclusion given on the component

{0} × L by {0} × L id−→ S1
c × S3 ↪→ ∂W ↪→ W and on the component {1} × L by {1} × L id−→

S1
d × S3 ↪→ ∂W ↪→ W . Its homological truncation t<kf = t<3f : L̈<3 → W<3 is the inclusion

given on the two components of L̈<3 by

{0} × (e0 ∪ e1)× e0
S

id−→ (e0
0 ∪ c)× e0

S ↪→ T × e0
S

and

{1} × (e0 ∪ e1)× e0
S

id−→ (e0
1 ∪ d)× e0

S ↪→ T × e0
S .

The diagram of inclusions

L̈<3
� � t<3f //
� _

eL̈
��

W<3� _

eW

��
L̈ �
� f // W

commutes. The m̄-perverse 3-diagram Γm̄ is given by

Γm̄ = ( W<3 L̈<3
t<3foo � � incl× id // L<3 )

= ( T × e0
S (∂I)× S1 × e0

S
? _oo � � // I × S1 × e0

S ),

that is, a handle I ×S1 is attached to T along the two boundary circles of the surface T . Hence
|HΓm̄| is the orientable closed surface Σ2 of genus 2. The map

e = |H(ε)| : |HΓm̄| −→ |HΓ| = ∂M
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is given by
idΣ2

× incl : Σ2 × e0
S ↪→ Σ2 × S3.

A straightforward calculation yields the following table of generators, illustrating the Poincaré
duality isomorphism

Hn−r|HΓm̄|
∼=−→ Hr−1(e)

of Proposition 6.1.

Hn−r|HΓm̄| Hr−1(e)
r = 0 0 0
r = 1 0 0
r = 2 0 0
r = 3 0 0
r = 4 [Σ2 × pt]∗ [pt×S3]
r = 5 [a× pt]∗ [b× S3]

[b× pt]∗ [a× S3]
[c× pt]∗ [z × S3]
[z × pt]∗ [c× S3]

r = 6 1 = [pt]∗ [Σ2 × S3]

Here, [·] denotes the homology class of a cycle and [·]∗ the image in cohomology of the linear
dual of a homology class under the universal coefficient isomorphism. Poincaré duals are listed
next to each other in the same row. The cycle z is z = I ∪∂I e1

d.

References

[1] M. Banagl, Intersection spaces, spatial homology truncation, and string theory, Lecture Notes in Math.,
no. 1997, Springer Verlag Berlin Heidelberg, 2010. DOI: 10.1007/978-3-642-12589-8

[2] , Foliated stratified spaces and a de Rham complex describing intersection space cohomology,

preprint, arXiv:1102.4781, 2011.
[3] , Isometric group actions and the cohomology of flat fiber bundles, preprint, arXiv:1105.0811,

2011.
[4] M. Banagl and L. Maxim, Deformation of singularities and the homology of intersection spaces,

preprint, arXiv:1101.4883, 2011.

[5] , Intersection spaces and hypersurface singularities, Hefei Conference Proceedings (L. Maxim
and X. Chen, eds.), 2012.

[6] Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Grad. Texts in Math., no. 205,

Springer Verlag New York, 2001.
[7] J.-C. Hausmann, Open books and h-cobordisms, Comment. Math. Helv. 55 (1980), 330–346. DOI:

10.1007/BF02566691
[8] J. P. May, A concise course in algebraic topology, University of Chicago Press, 1999.
[9] P. H. Siegel, Witt spaces: A geometric cycle theory for KO-homology at odd primes, Amer. J. Math.

105 (1983), 1067–1105. DOI: 10.2307/2374334

[10] E. H. Spanier, Algebraic topology, Springer Verlag, 1966.
[11] D. A. Stone, Stratified polyhedra, Lecture Notes in Math., no. 252, Springer Verlag, New York, 1972.

[12] C. T. C. Wall, Surgery on compact manifolds, second ed., Mathematical Surveys and Monographs,
vol. 69, American Mathematical Society, 1999.

[13] S. Weinberger, Higher ρ-invariants, Tel Aviv Topology Conference: Rothenberg Festschrift (M. Farber,
W. Lück, and S. Weinberger, eds.), Contemp. Math., vol. 231, Amer. Math. Soc., Providence, Rhode
Island, 1999, pp. 315 – 320.

Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69120 Heidelberg,

Germany

E-mail address: banagl@mathi.uni-heidelberg.de

http://dx.doi.org/10.1007/978-3-642-12589-8
http://dx.doi.org/10.1007/BF02566691
http://dx.doi.org/10.1007/BF02566691
http://dx.doi.org/10.2307/2374334

	1. Introduction
	2. Required Properties of Homotopy Pushouts
	3. Spatial Homology Truncation
	4. Homological Tools
	5. Construction of the Intersection Spaces
	6. The Duality Theorem
	References

