MULTIDIMENSIONAL RESIDUE THEORY AND THE LOGARITHMIC DE RHAM COMPLEX

A.G. ALEKSANDROV

Abstract

We study logarithmic differential forms with poles along a reducible hypersurface and the multiple residue map with respect to the complete intersection given by its components. Some applications concerning computation of the kernel and image of the residue map and the description of the weight filtration on the logarithmic de Rham complex for hypersurfaces whose irreducible components are defined by a regular sequence of functions are considered. Among other things we give an easy proof of the de Rham theorem (1954) on residues of closed meromorphic differential forms whose polar divisor has rational quadratic singularities, and correct some inaccuracies in its original formulation and later citations.

Keywords: logarithmic de Rham complex; regular meromorphic forms; multiple residues; complete intersections; weight filtration

Contents

Introduction 1

1. The logarithmic de Rham complex 3
2. Logarithmic forms with poles along reducible hypersurfaces 4
3. A decomposition of meromorphic forms along complete intersections 5
4. The multiple residue map 8
5. Regular meromorphic differential forms 9
6. Multiple residues of logarithmic forms 11
7. Closed differential forms and the image of the residue map 13
8. The weight filtration 14
References 17

Introduction

The term "residue" (together with its formal definition) appeared for the first time in an article by A. Cauchy (1826), although one can find such a notion as implicit in Cauchy's prior work (1814) about the computation of particular integrals which were related with his research towards hydrodynamics. For the next three-four years, Cauchy developed residue calculus and applied it to the computation of integrals, the expansion of functions as series and infinite products, the analysis of differential equations, and so on.

Though it was already transparent in the pioneer work by N. Abel, a major step towards the elaboration of the residue concept was made by H. Poincaré who introduced in 1887 the notion of differential residue 1-form attached to any rational differential 2-form in \mathbf{C}^{2} with simple poles along a smooth complex curve. Such rational form can be considered as the simplest prototype of differential forms called logarithmic in the modern terminology. Subsequently É. Picard (1901), G. de Rham (1932/36),

[^0]A. Weil (1947) obtained a series of important results about residues of meromorphic forms of degree 1 and 2 on complex manifolds; such developments were associated with cohomological ideas, leading to the formulation of a cohomological residue formula, and therefore to explicit computations of integrals of rational forms (in the spirit of Cauchy or Abel) along cycles.

Among other things Poincaré has also proved that the residue is, in fact, a holomorphic 1-form. A simple generalization of his construction to the case of a complex analytical variety M of dimension $m \geq 2$ leads to the following exact sequence of \mathcal{O}_{M}-modules

$$
0 \longrightarrow \Omega_{M}^{m} \longrightarrow \Omega_{M}^{m}(D) \xrightarrow{\text { rés }} \Omega_{D}^{m-1} \longrightarrow 0,
$$

where $\Omega_{M}^{m}(D)$ is a sheaf of meromorphic differential forms of degree m on M with poles of the first order on the smooth divisor $D \subset M$, and Ω_{M}^{m} and Ω_{D}^{m-1} are sheaves of regular holomorphic forms on M and D of degrees m and $m-1$, respectively.

In the fifties further cohomological ideas were pursued by G. de Rham (1954) and J. Leray (1959) who defined and studied residues of d-closed C^{∞}-regular differential forms on the complement $M \backslash D$ with poles of the first order along a smooth hypersurface D in complex manifold M. Thus, for any such q-form ω there exists locally the following decomposition

$$
\begin{equation*}
\omega=\frac{d h}{h} \wedge \xi+\eta \tag{1}
\end{equation*}
$$

where h is the germ of a holomorphic function determining the smooth hypersurface D, and ξ, η are germs of regular forms. Moreover, the restriction of ξ to D does not depend on a local equation of the hypersurface; it is globally and uniquely determined and closed on D. The differential form $\left.\xi\right|_{D}$ is called the residue-form denoted by rés (ω). If ω is holomorphic on $M \backslash D$, then the differential form $\left.\xi\right|_{D}$ is holomorphic on D.

In 1972, J.-B. Poly showed that Leray decomposition (1) as well as the residue form are determined correctly for the so-called semi-meromorphic forms (not necessarily closed) if both they and their total differentials have poles of the first order along D (see [16]). Such meromorphic forms were called by P. Deligne (1969) differential forms with logarithmic poles along D; in fact, he considered the case of divisors with normal crossings. The corresponding coherent sheaves of \mathcal{O}_{M}-modules are denoted by $\Omega_{M}^{q}(\log D), q \geq 1$. It is not difficult to see that in these notations there are exact sequences of $\mathcal{O}_{M^{-}}$ modules

$$
0 \longrightarrow \Omega_{M}^{q} \longrightarrow \Omega_{M}^{q}(\log D) \xrightarrow{\text { rés }} \Omega_{D}^{q-1} \longrightarrow 0
$$

where $\Omega_{D}^{q-1}, q \geq 1$, are sheaves of regular holomorphic differential forms on D.
In 1977, making use of decomposition (1) with a multiplier, K.Saito introduced the notion of residue res. (ω) for a meromorphic form ω on M with logarithmic poles along a reduced divisor D with arbitrary singularities (see [19]). Somewhat later the author proved (see [1], [2]) that in this case for all $q \geq 1$ there are exact sequences

$$
\begin{equation*}
0 \longrightarrow \Omega_{M}^{q} \longrightarrow \Omega_{M}^{q}(\log D) \xrightarrow{\text { res. }} \omega_{D}^{q-1} \longrightarrow 0 \tag{2}
\end{equation*}
$$

where $\omega_{D}^{q}, q \geq 0$, are sheaves of regular meromorphic q-forms on D. Further generalizations of these results are investigated in [3], 4].

For completeness it should be remarked that the original concept of residue is, in fact, a local notion; the classical local residue is given by a variant of Cauchy formula for several complex variables. In the focus of the global theory of residue is the residue formula. For rational differential 1-forms defined on a compact complex algebraic curve it is one of the fundamental results in the classical analytic and algebraic geometry (see [21]). In the multidimensional case, that is, for meromorphic differential m-forms given on an m-dimensional complex manifold many variants of the residue formula in various situations and different contexts are known (see, for example, [8). Such a form ω is closed, $d \omega=0$, by reason of dimension. In this case only meromorphic forms with polar singularities, namely logarithmic differential m-forms, enter non-trivial contributions in the residue formula.

The paper is organized as follows. In the first two sections some elementary properties of logarithmic differential forms with simple poles along a divisor are considered. Then in the third and fourth sections
we discuss properties of multiple residues of logarithmic differential forms with poles along reducible hypersurfaces. In particular, it is proved that the residue map determines exact sequences similarly to the above $\sqrt{22}$ for divisors whose components are defined locally by regular sequences of function germs. The proof is based essentially on the theory of logarithmic and multi-logarithmic differential forms and some properties of the multiple residue studied earlier in [1], [2], 3]. In the next two sections the kernel and image of the multiple residue map are described. Some applications are considered in two final sections, then the obtained results adapt for computing residues of logarithmic differential forms of principal type and for description of the weight filtration on the logarithmic de Rham complex for divisors whose components are defined by a regular sequence of functions. In particular, this allows to compute the mixed Hodge structure on cohomology of the complement of divisors of certain types without using theorems on resolution of singularities or the standard reduction to the case of normal crossings. Among other things in Section 7 we also give an easy proof of the well-known theorem goes back to de Rham (1954) which asserts that the residues of closed meromorphic differential forms whose polar divisor has rational quadratic singularities are holomorphic on the divisor, and correct also some inaccuracies in its original formulation and later citations.

The author thanks the organizing committee, especially Laurentiu Maxim for a complimentary invitation to participate in the conference as well as all colleagues from Mathematical Department of the University of Science and Technology of China for well provided and excellent organization of this unforgettable meeting.

1. The logarithmic de Rham complex

Let S be a complex analytical variety of dimension $m \geq 1$, and $z=\left(z_{1}, \ldots, z_{m}\right)$ be a local coordinate system in a neighborhood U of the distinguished point $x \in U \subset S$. Further, suppose that a hypersurface $D \subset S$ is defined by a function $h \in \mathcal{O}_{U}$. We will also assume that h has no multiple factors so that the hypersurface D is reduced, that is, the divisor D does not contain multiple components.

Let ω be a meromorphic differential q-form on U with poles along D. Then ω is called logarithmic or q-form with logarithmic poles along D if $h \omega$ and $h d \omega$ are holomorphic on U.

Let us also denote by $S=(S, x) \cong\left(\mathbb{C}^{m}, 0\right)$ the germ of S at the distinguished point x. For simplification in the record identical notations for the spaces and their germs at this point are often used without additional comments when the sense is clear from the context. Throughout the paper we also use the term divisor for (locally principal) Cartier divisors D in a manifold.

The localization of the concept of logarithmic forms leads to the definition of $\mathcal{O}_{S, x}$-module $\Omega_{S, x}^{q}(\log D)$ which consists of the germs of meromorphic q-forms on S with poles along D such that $h \omega$ and $h d \omega$ are holomorphic at the point x, that is, $h \cdot \Omega_{S, x}^{q}(\log D) \subseteq \Omega_{S, x}^{q}$ and $h \cdot d \Omega_{S, x}^{q}(\log D) \subseteq \Omega_{S, x}^{q+1}$. Evidently, the second condition is equivalent to the inclusion $d h \wedge \Omega_{S, x}^{q}(\log D) \subseteq \Omega_{S, x}^{q+1}$. The corresponding coherent analytic sheaves of logarithmic differential forms are denoted by $\Omega_{S}^{q}(\log D), q \geq 0$. It should be remarked that $\Omega_{S, x}^{m}(\log D) \cong \mathcal{O}_{S, x}\left(d z_{1} \wedge \ldots \wedge d z_{m} / h\right)$. By definition, $\Omega_{S}^{0}(\log D) \cong \mathcal{O}_{S}$, and there are natural inclusions $\Omega_{S}^{q} \subseteq \Omega_{S}^{q}(\log D)$ for all $q \geq 1$ which are, in fact, isomorphisms $\Omega_{S, x}^{q} \cong \Omega_{S, x}^{q}(\log D)$ for all $x \notin D$.

The family $\Omega_{S}^{q}(\log D), q \geq 0$, endowed with differential induced by the de Rham differentiation d of Ω_{S}^{\bullet} defines an increasing complex called the logarithmic de Rham complex. Further, the sheaves of logarithmic differential forms are \mathcal{O}_{S}-modules of finite type, and their direct sum $\oplus_{q=0}^{m} \Omega_{S}^{q}(\log D)$ forms an \mathcal{O}_{S}-exterior algebra closed under the action of d.

Recall that \mathcal{O}_{S}-module of vector fields logarithmic along $D \subset S$ consists of germs of holomorphic vector fields $\mathcal{V} \in \operatorname{Der}\left(\mathcal{O}_{S}\right)$ on S such that $\mathcal{V}(h)$ belongs to the principal ideal $(h) \cdot \mathcal{O}_{S}$. In particular, \mathcal{V} is tangent to D at its non-singular points. This module is denoted by $\operatorname{Der}_{S}(\log D)$. There is a perfect pairing

$$
\operatorname{Der}_{S}(\log D) \times \Omega_{S}^{1}(\log D) \rightarrow \mathcal{O}_{S}
$$

induced by the contraction of differential forms along vector fields (see [20]).
Let us also remark that in general $\Omega_{S}^{q}(\log D) \not \not 二 \bigwedge^{q} \Omega_{S}^{1}(\log D)$. However, for all $q>0$ there exist natural inclusions $\Lambda^{q} \Omega_{S}^{1}(\log D) \rightarrow \Omega_{S}^{q}(\log D)$. All these inclusions are isomorphisms if $\Omega_{S}^{1}(\log D)$ or,
equivalently, $\operatorname{Der}_{S}(\log D)$ is locally free. In this case D is called the free hypersurface or Saito free divisor.

2. Logarithmic forms with poles along reducible hypersurfaces

Let $D=D_{1} \cup \ldots \cup D_{k}$ be any irredundant (not necessarily irreducible) decomposition of a reduced divisor D. It is clear that there are natural inclusions

$$
\sum_{i=1}^{k} \Omega_{S}^{q}\left(\log D_{i}\right) \hookrightarrow \Omega_{S}^{q}(\log D), q \geq 0
$$

Analogously, if $\widehat{D_{i}}$ is the union of all elements of the decomposition excluding D_{i}, that is, $\widehat{D_{i}}=$ $D_{1} \cup \ldots \cup D_{i-1} \cup D_{i+1} \cup \ldots \cup D_{k}$, then

$$
\sum_{i=1}^{k} \Omega_{S}^{q}\left(\log \widehat{D_{i}}\right) \hookrightarrow \Omega_{S}^{q}(\log D)
$$

and $\Omega_{S, x}^{q}\left(\log D_{i}\right) \cong \Omega_{S, x}^{q}(\log D)$ are isomorphisms for all $x \in D_{i} \backslash\left(D_{i} \cap \widehat{D_{i}}\right)$, and so on.
Claim 1. Assume that divisors D_{i} defined by function germs $h_{i}, i=1, \ldots, k$, are components of a locally irredundant decomposition of D. Then there is a natural isomorphism

$$
\operatorname{Der}_{S}\left(\log D_{1}\right) \cap \ldots \cap \operatorname{Der}_{S}\left(\log D_{k}\right) \cong \operatorname{Der}_{S}(\log D)
$$

Proof. It is clear, that the left side of the relation is contained in the rightist. Conversely, take $\mathcal{V} \in \operatorname{Der}_{S}(\log D)$. Then $\mathcal{V}(h)=\sum_{i=1}^{k}\left(h_{1} \cdots \widehat{h_{i}} \cdots h_{k}\right) \mathcal{V}\left(h_{i}\right)=f h$, where $f \in \mathcal{O}_{S}$. After division by h_{i} the both part of the latter equality one obtains that the function $\left(h_{1} \cdots \widehat{h_{i}} \cdots h_{k}\right) \mathcal{V}\left(h_{i}\right) / h_{i}$ is holomorphic, that is, h_{i} divides $\mathcal{V}\left(h_{i}\right)$. Hence, $\mathcal{V}\left(h_{i}\right) \in\left(h_{i}\right) \mathcal{O}_{S}, i=1, \ldots, k$. QED.

The following assertion one may consider as a dual variant of the above statement.
Claim 2. Under the same assumptions let us suppose that $\Omega_{S}^{1}(\log D)$ is generated by closed forms. Then one has an isomorphism

$$
\Omega_{S}^{1}\left(\log D_{1}\right)+\ldots+\Omega_{S}^{1}\left(\log D_{k}\right) \cong \Omega_{S}^{1}(\log D)
$$

Proof. Due to Theorem 2.9 from [20] the conditions of closeness of generators of $\Omega_{S}^{1}(\log D)$ is equivalent to the isomorphism $\sum_{i=1}^{k} \mathcal{O}_{S} \frac{d h_{i}}{h_{i}}+\Omega_{S}^{1} \cong \Omega_{S}^{1}(\log D)$. On the other side, $\frac{d h_{i}}{h_{i}} \in \Omega_{S}^{1}\left(\log D_{i}\right)$ and there is a natural inclusion $\sum_{i=1}^{k} \Omega_{S}^{1}\left(\log D_{i}\right) \hookrightarrow \Omega_{S}^{1}(\log D)$. This completes the proof. QED.
Proposition 1. Under assumptions of Claims above there exist natural inclusions

$$
h_{i} \Omega_{S}^{\bullet}(\log D) \subseteq \Omega_{S}^{\bullet}\left(\log \widehat{D_{i}}\right), \quad d h_{i} \wedge \Omega_{S}^{\bullet}(\log D) \subseteq \Omega_{S}^{\bullet+1}\left(\log \widehat{D_{i}}\right), \quad i=1, \ldots, k
$$

In other words, the external product by total differentials $d h_{i}$ as well as multiplication by functions h_{i} "dissipates" poles of $\omega \in \Omega_{S}^{\bullet}(\log D)$ located on D_{i}.

Proof. Let us first examine the case $k=2$. Let us set $i=1$, then take $x \in D_{1} \cap D_{2}$ and show that $h_{2} \Omega_{S}^{\bullet}(\log D) \subseteq \Omega_{S}^{\bullet}\left(\log D_{1}\right)$. By assumptions, $h_{1}\left(h_{2} \omega\right)=h \omega \in \Omega_{S}^{\bullet}$. Further,

$$
d h \wedge\left(h_{2} \omega\right)=h_{2} d h_{1} \wedge\left(h_{2} \omega\right)+h_{1} d h_{2} \wedge\left(h_{2} \omega\right)=h_{2} d h_{1} \wedge\left(h_{2} \omega\right)+d h_{2} \wedge(h \omega)
$$

Since the differential form $d h \wedge \omega$ is holomorphic then $d h \wedge\left(h_{2} \omega\right)$ is also a holomorphic form. Analogously, $d h_{2} \wedge(h \omega) \in \Omega_{S}^{\bullet}$ and, consequently, $h_{2} d h_{1} \wedge\left(h_{2} \omega\right)=h_{2}^{2} d h_{1} \wedge \omega \in \Omega_{S}^{\bullet}$. Set $d h_{1} \wedge \omega=\vartheta / h_{2}^{2}$, where $\vartheta \in \Omega_{S}^{\bullet}$. Let us note that $\frac{d h_{1}}{h_{1}} \in \Omega_{S}^{\bullet}(\log D)$, so that $\frac{d h_{1}}{h_{1}} \wedge \omega \in \Omega_{S}^{\bullet}(\log D)$ in virtue of \wedge-closeness. Therefore, $\frac{d h_{1}}{h_{1}} \wedge \omega=\frac{\vartheta}{h_{1} h_{2}^{2}} \in \Omega_{S}^{\bullet}(\log D)$, that is, $\frac{\vartheta}{h_{2}} \in(h) \Omega_{S}^{\bullet}(\log D) \subseteq \Omega_{S}^{\bullet}$. Hence, $\vartheta \in\left(h_{2}\right) \Omega_{S}^{\bullet}$ and $d h_{1} \wedge \omega=\vartheta^{\prime} / h_{2}$, where $\vartheta^{\prime} \in \Omega_{S}^{\bullet_{S}^{2}}$.

Thus, $h_{2}\left(d h_{1} \wedge \omega\right)=d h_{1} \wedge\left(h_{2} \omega\right) \in \Omega_{S}^{\bullet}$, that is, $d h_{1} \wedge\left(h_{2} \omega\right)$ is a holomorphic form. It does mean that $h_{2} \omega \in \Omega_{S}^{\bullet}\left(\log D_{1}\right)$. This completes the proof of the first inclusion.

The second inclusion can be proved in the same style. Really, $h_{1}\left(d h_{2} \wedge \omega\right)$ is a holomorphic differential form because it is equal to the difference $d h \wedge \omega-h_{2} d h_{1} \wedge \omega$, where the first form is holomorphic by
assumptions, while the holomorphicity of the second form is established similarly to the proof of the first inclusion. Further,

$$
d h_{1} \wedge\left(d h_{2} \wedge \omega\right)=d\left(h_{1} d h_{2} \wedge \omega\right)+h_{1}\left(d h_{2} \wedge d \omega\right)
$$

Since the form $h_{1} d h_{2} \wedge \omega$ is holomorphic then its total differential is also holomorphic. At last,

$$
h_{1}\left(d h_{2} \wedge d \omega\right)=d h \wedge d \omega-h_{2}\left(d h_{1} \wedge d \omega\right) .
$$

The differential form $d h \wedge d \omega$ is holomorphic by hypothesis since the external algebra $\Omega_{S}^{\bullet}(\log D)$ is closed relative to the de Rham differentiation d, so that $d \omega \in \Omega_{S}^{\bullet}(\log D)$. As in the proof of the first inclusion one obtains that $h_{2}\left(d h_{1} \wedge d \omega\right)$ is a holomorphic form. This implies that $h_{1}\left(d h_{2} \wedge d \omega\right)$ as well as $h_{1}\left(d h_{2} \wedge \omega\right)$ are holomorphic forms. Thus, $d h_{2} \wedge \omega \in \Omega_{S}^{\bullet}\left(\log D_{1}\right)$ as required. The general case $k>2$ is considered analogously. QED.

Remark 1. By the same reasonings one can see that for all $j=1, \ldots, k$ there are inclusion

$$
\left(h_{1} \cdots \widehat{h_{i}} \cdots h_{k}\right) \Omega_{S}^{\bullet}(\log D) \subseteq \Omega_{S}^{\bullet}\left(\log D_{i}\right), \quad d\left(h_{1} \cdots \widehat{h_{i}} \cdots h_{k}\right) \wedge \Omega_{S}^{\bullet}(\log D) \subseteq \Omega_{S}^{\bullet}\left(\log D_{i}\right)
$$

Similar relations are also valid for divisors obtained by the exclusion of any collection of components of the decomposition.

Claim 3. Assume that components $D_{i}, i=1, \ldots, k$, of an irredundant decomposition of a reduced divisor D are defined locally by elements of a regular \mathcal{O}_{S}-sequence $\left(h_{1}, \ldots, h_{k}\right)$. Then

$$
\Omega_{S}^{\bullet}\left(\log \widehat{D_{1}}\right) \cap \ldots \cap \Omega_{S}^{\bullet}\left(\log \widehat{D_{k}}\right)=\Omega_{S}^{\bullet},
$$

and there is an exact sequence of complexes

$$
0 \longrightarrow \Omega_{S}^{\bullet} \longrightarrow \oplus \Omega_{S}^{\bullet}\left(\log \widehat{D_{i}}\right) \longrightarrow \sum \Omega_{S}^{\bullet}\left(\log \widehat{D_{i}}\right) \longrightarrow 0
$$

Proof. It is sufficient to prove the first relation. Clearly, the right side of the relation is contained in the leftist. Conversely, let us take a differential p-form ω from the left side. Then $\left(h_{1} \cdots \widehat{h_{i}} \cdots h_{k}\right) \omega \in$ $\Omega_{S}^{p}, i=1, \ldots, k$. Hence, $\omega \in \bigcap \frac{1}{\left(h_{1} \cdots h_{i} \cdots h_{k}\right)} \Omega_{S}^{p}$, or, equivalently, $h \omega \in\left(h_{1}\right) \Omega_{S}^{p} \cap \ldots \cap\left(h_{k}\right) \Omega_{S}^{p}$. Elementary properties of regular sequences imply that the latter intersection is equal to $\left(h_{1} \cdots h_{k}\right) \Omega_{S}^{p}$, that is, $\omega \in \Omega_{S}^{p}$. QED.

3. A DECOMPOSITION OF MEROMORPHIC FORMS ALONG COMPLETE INTERSECTIONS

Let $D=D_{1} \cup \ldots \cup D_{k}$ be a reduced reducible hypersurface. We will denote the \mathcal{O}_{S}-modules of meromorphic differential q-forms, $q \geq 1$, formed by differential q-forms with simple poles and with poles of any order on the divisor $\widehat{D_{i}}=D_{1} \cup \ldots \cup D_{i-1} \cup D_{i+1} \cup \ldots \cup D_{k}$, by $\Omega_{S}^{q}\left(\widehat{D_{i}}\right)$ and by $\Omega_{S}^{q}\left(\star \widehat{D_{i}}\right), i=1, \ldots, k$, respectively. When $k=1$ we set $\widehat{D_{1}}=\emptyset$, so that $\Omega_{S}^{q}\left(\widehat{D_{1}}\right)=\Omega_{S}^{q}\left(\star \widehat{D_{1}}\right)=\Omega_{S}^{q}$.

Let us further assume that the complex analytical space $C=D_{1} \cap \ldots \cap D_{k}$ is a complete intersection. This means that the ideal \mathcal{J} defining $C \subset U$ is locally generated by a regular \mathcal{O}_{U}-sequence $\left(h_{1}, \ldots, h_{k}\right)$ and $\operatorname{dim} C=m-k \geq 0$. We also suppose that $C=C_{\text {red }}$ is a reduced space when $\operatorname{dim} C>0$. In other words, the ideal $\mathcal{J}=\sqrt{\mathcal{J}}$ is radical. In particular, these conditions imply that the differential k-form $d h_{1} \wedge \ldots \wedge d h_{k}$ is not identically zero on every irreducible component of C. The following statement and its proof are slightly changed versions of considerations from (3), 4.

Theorem 1. Suppose that in a neighborhood U of $x \in C$ all irreducible components $D_{i}, i=1, \ldots, k$, of D are defined by elements of a regular \mathcal{O}_{U}-sequence $\left(h_{1}, \ldots, h_{k}\right)$. Assume also that a meromorphic differential form $\omega \in \Omega_{U}^{q}(D)$ satisfies the following conditions

$$
\begin{equation*}
d h_{j} \wedge \omega \in \sum_{i=1}^{k} \Omega_{U}^{q+1}\left(\widehat{D_{i}}\right), \quad j=1, \ldots, k \tag{3}
\end{equation*}
$$

Then there is a holomorphic function g, which is not identically zero on every irreducible component of the complete intersection C, a holomorphic differential form $\xi \in \Omega_{U}^{q-k}$ and a meromorphic q-form $\eta \in \sum_{i=1}^{k} \Omega_{U}^{q}\left(\widehat{D_{i}}\right)$ such that there exists the following representation

$$
\begin{equation*}
g \omega=\frac{d h_{1}}{h_{1}} \wedge \ldots \wedge \frac{d h_{k}}{h_{k}} \wedge \xi+\eta . \tag{4}
\end{equation*}
$$

Proof. In a neighborhood of $x \in U$ the differential form ω is represented as follows:

$$
\omega=\frac{1}{h_{1} \cdots h_{k}} \sum_{|I|=q} a_{I}(z) \cdot d z_{I},
$$

where $I:=I^{q}=\left(i_{1}, \ldots, i_{q}\right), 1 \leq i_{1}, \ldots, i_{q} \leq m$, is a multiple index, $d z_{I}=d z_{i_{1}} \wedge \ldots \wedge d z_{i_{q}}$, and $a_{I}(z) \in \mathcal{O}_{U}$ is the set of coefficients, skew-symmetric relative to I. It is clear that conditions (3) are equivalent to inclusions

$$
d h_{j} \wedge \sum_{I} a_{I}(z) \cdot d z_{I} \in \sum_{\ell=1}^{k} h_{\ell} \Omega_{U}^{q+1}, \quad j=1, \ldots, k
$$

These inclusions give us the following system of relations between the coefficients a_{I} and the partial derivatives of h_{j} :

$$
\begin{equation*}
\sum_{\ell=1}^{q}(-1)^{\ell-1} \frac{\partial h_{j}}{\partial z_{i_{\ell}}} a_{I \backslash i_{\ell}}=b_{j I}^{1} h_{1}+\ldots+b_{j I}^{k} h_{k}, \quad j=1, \ldots, k \tag{5}
\end{equation*}
$$

with holomorphic functions $b_{j I}^{1}, \ldots, b_{j I}^{k} \in \mathcal{O}_{U}$.
Let us fix a multi-index $J^{p}=\left(j_{1}, \ldots, j_{p}\right), 1 \leq j_{1}, \ldots, j_{p} \leq m, 1 \leq p \leq k$, and denote the corresponding minor of $\operatorname{Jacobian}$ matrix $\operatorname{Jac}\left(h_{1}, \ldots, h_{k}\right)=\left\|\partial h_{i} / \partial z_{j}\right\|$ by

$$
\Delta_{J^{p}}=\delta_{j_{1} \ldots j_{p}}=\operatorname{det}\left\|\frac{\partial h_{i}}{\partial z_{j_{r}}}\right\|_{1 \leq i, r \leq p}
$$

We will prove by induction on index p that the following relations are valid:

$$
\begin{equation*}
\Delta_{J^{p}} a_{I^{q}} \equiv \sum_{K \subset I^{q},|K|=p} \operatorname{sgn}\binom{I^{q}}{K, I^{q} \backslash K} \Delta_{K} a_{\left(J^{p}, I^{q} \backslash K\right)}(\bmod (\mathcal{J})), \quad p=1, \ldots, k, \tag{6}
\end{equation*}
$$

where $\mathcal{J} \subseteq \mathcal{O}_{U}$ is generated by the regular sequence $\left(h_{1}, \ldots, h_{k}\right)$.
First let us assume that $p=1$ and set $J^{1}=j_{1}=j, I=\left(j, I^{q}\right)=\left(j, i_{1}, \ldots, i_{q}\right)$ in formula (5). Then one gets the following relation

$$
\frac{\partial h_{1}}{\partial z_{j}} a_{I^{q}} \equiv \sum_{\ell=1}^{q}(-1)^{\ell-1} \frac{\partial h_{1}}{\partial z_{i_{\ell}}} a_{I \backslash i_{\ell}}(\bmod (\mathcal{J}))
$$

which coincides with relation (6) for $p=1$.
Let us suppose that (6) is true for $p-1$ and prove it for p as follows. The cofactor expansion of determinant $\Delta_{J^{p}}$ along the p-th row gives the identity:

$$
\Delta_{J^{p}} a_{I^{q}}=\sum_{\ell=1}^{p}(-1)^{p-\ell} \frac{\partial h_{p}}{\partial z_{j_{\ell}}} \Delta_{j_{1} \ldots \hat{j}_{\ell} \ldots j_{p}}^{p-1} a_{I^{q}} .
$$

By the induction hypothesis there is the congruence

$$
\Delta_{j_{1} \ldots \hat{j}_{\ell} \ldots j_{p}} a_{I^{q}} \equiv \sum_{\substack{K^{\prime} \subseteq I^{q} \\\left|K^{\prime}\right|=p-1}} \operatorname{sgn}\binom{I^{q}}{K^{\prime}, I^{q} \backslash K^{\prime}} \Delta_{K^{\prime}} a_{\left(j_{1} \ldots \widehat{\hat{\ell}_{\ell}} \ldots j_{p}, I^{q} \backslash K^{\prime}\right)}(\bmod (\mathcal{J}))
$$

Let us substitute this expression in the previous identity. Changing then the order of summation, one obtains

$$
\Delta_{J^{p}} a_{I^{q}} \equiv \sum_{\substack{K^{\prime} \subset I^{q} \\\left|K^{\prime}\right|=p-1}} \operatorname{sgn}\binom{I^{q}}{K^{\prime}, I^{q} \backslash K^{\prime}} \Delta_{K^{\prime}} \sum_{\ell=1}^{p}(-1)^{p-\ell} \frac{\partial h_{p}}{\partial z_{j_{\ell}}} a_{\left(j_{1} \ldots \hat{\rho_{\ell}} \ldots j_{p}, I^{q} \backslash K^{\prime}\right)}(\bmod (\mathcal{J}))
$$

The second sum consists of p terms containing in formula (5) with $j=p, I=\left(j_{1}, \ldots, j_{p}, I^{q} \backslash K^{\prime}\right)$.
It is not difficult to rewrite this expression in the form of the sum which contains the remaining $q-p+1$ terms with opposite signs and an element from the ideal $\left(h_{1}, \ldots, h_{k}\right) \mathcal{O}_{U}$. Hence, one obtains the congruence modulo \mathcal{J} :

$$
\begin{equation*}
\Delta_{J^{p}} a_{I^{q}} \equiv \sum_{\substack{K^{\prime} \subset I^{q} \\\left|K^{\prime}\right|=p-1}} \operatorname{sgn}\binom{I^{q}}{K^{\prime}, I^{q} \backslash K^{\prime}} \Delta_{K^{\prime}}(-1)^{p-1} \sum_{i \in I \backslash K^{\prime}}(-1)^{\#\left(i ; I \backslash K^{\prime}\right)} \frac{\partial h_{p}}{\partial z_{i}} a_{\left(j_{1} \ldots j_{p}, I^{q} \backslash K^{\prime} \backslash i\right)}, \tag{7}
\end{equation*}
$$

where $\#\left(i ; I \backslash K^{\prime}\right)$ is equal to the number of occurrences of the index i in the set $I \backslash K^{\prime}$. At last, let us put in order all pairs $\left(K^{\prime}, i\right)$ in such a way that the multi-index $K^{\prime} \cup\{i\}$ coincides with the given one $K \subset I$. For any such pair the corresponding coefficient $a_{\left(j_{1} \ldots j_{p}, I \backslash K^{\prime} \backslash i\right)}$ is equal to $a_{(J, I \backslash K)}$. Then the contribution of the above ordered set to relation $\sqrt[7]{ }$ is equal to the following:

$$
\begin{aligned}
a_{\left(J^{p}, I^{q} \backslash K\right)}(-1)^{p-1} \sum_{i \in K} \operatorname{sgn}\binom{I^{q}}{K \backslash i, I^{q} \backslash K, i}(-1)^{\#(i ; I \backslash(K \backslash i))} \frac{\partial h_{p}}{\partial z_{i}} \Delta_{K \backslash i} & = \\
& =\operatorname{sgn}\binom{I^{q}}{K, I^{q} \backslash K} a_{J^{p}, I^{q} \backslash K} \Delta_{K} .
\end{aligned}
$$

This completes the proof of relation (6) for $p \geq 1$.
It remains to show that it is possible to choose the function g in such a way that $g \not \equiv 0$ on each irreducible component of the complete intersection C. For this we examine ideal \mathcal{G} of the ring \mathcal{O}_{U} generated by all minors $\Delta_{i_{1} \ldots i_{k}}$ of the maximal order of Jacobian matrix $\operatorname{Jac}\left(h_{1}, \ldots, h_{k}\right)$. Since $d h_{1} \wedge$ $\ldots \wedge d h_{k}$ does not vanish identically on each irreducible component of the complete intersection C, then the image $\widetilde{\mathcal{G}}$ of the ideal \mathcal{G} in the ring $\mathcal{O}_{C, 0}$ is not equal to $\operatorname{Ann} \mathcal{O}_{C, 0}$. Thus, it is possible to use Theorem 2.4. (1) from [6] which yields that $\mathcal{O}_{C, 0}$-depth of the ideal $\widetilde{\mathcal{G}}$ is not less than one. Hence, there is an element $g \in \mathcal{O}_{C, 0}$ with the property required by Theorem 1 QED.

Remark 2. It is not difficult to verify that formula (6) implies the following identity

$$
\Delta_{i_{1} \ldots i_{k}} \cdot \sum_{|I|=q} a_{I} d z_{I}=d h_{1} \wedge \ldots \wedge d h_{k} \wedge\left(\sum_{\left|I^{\prime}\right|=q-k} a_{i_{1} \ldots i_{k} I^{\prime}} d z_{I^{\prime}}\right)+\nu
$$

where $\nu \in \sum_{j=1}^{k} h_{j} \Omega_{U}^{q-k}$. Therefore, by analogy with the case of hypersurface (see [20], Lemma (2.8)) the maximal minors of Jacobian matrix $\operatorname{Jac}\left(h_{1}, \ldots, h_{k}\right)$ can be considered as universal denominators for the complete intersection C.

If $m=k$, that is, $\operatorname{dim} C=0$ and C is non-reduced then the latter formula implies that there exists representation (4) with a function g equal to an element of the one-dimensional socle of the local algebra $\mathcal{O}_{C, 0}$ generated over the ground field by the determinant of the Jacobian matrix $\operatorname{Jac}(h)$ (see [23]). In this case the notion of multiple residue of meromorphic differential forms of degree m coincides with the so-called multidimensional residue; in the context of Grothendieck local duality theory it can be expressed in terms of projection of elements of a certain finite dimensional vector space to this socle (cf. [8).
Corollary 1. Let $\omega \in \Omega_{S}^{q}(\log D)$ be a differential form with logarithmic poles along a hypersurface D and let $C=D_{1} \cap \ldots \cap D_{k}$ be a complete intersection. Then there exists representation (4) with a differential form $\eta \in \sum_{i=1}^{k} \Omega_{S}^{\bullet}\left(\log \widehat{D_{i}}\right)$.

Proof. Since for the logarithmic form ω conditions (3) are fulfilled in virtue of Proposition 1 from Section 2 then there is decomposition (4) with $\eta \in \sum_{i=1}^{k} \Omega_{U}^{q}\left(\widehat{D_{i}}\right)$. For the sake of simplicity, let us
examine the case $k=2$. Then $\eta=\eta_{1} / h_{1}+\eta_{2} / h_{2}$, where $\eta_{1}, \eta_{2} \in \Omega_{U}^{q}$. Taking the external product by $d h$ of both parts of representation (4), one concludes that the differential form

$$
d h \wedge \eta=d h \wedge\left(\frac{\eta_{1}}{h_{1}}+\frac{\eta_{2}}{h_{2}}\right)=d h_{2} \wedge \eta_{1}+d h_{1} \wedge \eta_{2}+h_{2} \frac{d h_{1}}{h_{1}} \wedge \eta_{1}+h_{1} \frac{d h_{2}}{h_{2}} \wedge \eta_{2}
$$

is holomorphic. Hence, the sum of the both last terms is also holomorphic. Now let us reduce all the terms of the sum to the common denominator. This gives the inclusion

$$
h_{2}^{2}\left(d h_{1} \wedge \eta_{1}\right)+h_{1}^{2}\left(d h_{2} \wedge \eta_{2}\right) \in\left(h_{1} h_{2}\right) \Omega_{S}^{\bullet}
$$

i.e., $h_{2}^{2} \alpha+h_{1}^{2} \beta=h_{1} h_{2} \gamma$, where $\alpha, \beta, \gamma \in \Omega_{S}^{\bullet}$. Therefore, $h_{2}^{2} \alpha+\left(h_{1} \beta-h_{2} \gamma\right) h_{1}=0$. Since $\left(h_{1}, h_{2}\right)$ is a regular sequence, then, comparing the coefficients of the corresponding form for every fixed collection of differentials, one obtains that $\alpha=h_{1} \alpha^{\prime}, \alpha^{\prime} \in \Omega_{S}^{\bullet}$. Hence, $d h_{1} \wedge \eta_{1} \in\left(h_{1}\right) \Omega_{S}^{\bullet}$, that is, $\eta_{1} / h_{1} \in \Omega_{S}^{\bullet}\left(\log D_{1}\right)$. By the same reasonings one can check that $\eta_{2} / h_{2} \in \Omega_{S}^{\bullet}\left(\log D_{2}\right)$. The general case $k>2$ is investigated analogously. QED.

Corollary 2. Under conditions of Theorem 1 representation (4) exists if and only if there are analytical subsets $A_{j} \subset D_{j}, j=1, \ldots, k$, of codimension not less than 2 such that the germ ω at any point $x \in \bigcup_{j=1}^{k}\left(D_{j} \backslash A_{j}\right)$ belongs to the space

$$
\begin{equation*}
\frac{d h_{1}}{h_{1}} \wedge \ldots \wedge \frac{d h_{k}}{h_{k}} \wedge \Omega_{U, x}^{q-k}+\sum_{i=1}^{k} \Omega_{U, x}^{q}\left(\widehat{D_{i}}\right) \tag{8}
\end{equation*}
$$

Proof. Taking $A_{j}=D_{j} \cap\{g=0\}, j=1, \ldots, k$, one obtains the decomposition of Theorem 1 which implies the desired statement.

The converse is true in view of the following reasonings. If there exists representation (8) for a meromorphic form ω, then $h \omega$ is, in fact, holomorphic outside of subsets $A_{i} \subset D_{i}, i=1, \ldots, k$, of codimension not less than 2 . Consequently, according to Riemann extension Theorem, the differential form $h \omega$ is holomorphic everywhere so that $h_{j} \omega \in \Omega_{U}^{q}\left(\widehat{D_{j}}\right), j=1, \ldots, k$.

Further, $d h_{j} \wedge \omega$ is represented as the sum of meromorphic forms ω_{i}, each of which is singular not more than on $k-1$ components of divisor $\widehat{D_{i}}$ and on the subset $A_{i} \subset D_{i}$ of codimension not less than 2. Again, applying Riemann Theorem to $\left(h_{1} \cdots \widehat{h_{i}} \cdots h_{k}\right) \omega_{i}$, one obtains that the differential form ω_{i} has singularities only on $\widehat{D_{i}}$. As a result $d h_{j} \wedge \omega \in \sum_{i=1}^{k} \Omega_{U}^{q}\left(\widehat{D_{i}}\right), j=1, \ldots, k$ QED.

Remark 3. If one takes a decomposition of a reducible divisor D of length $k=1$, so that $C=D$, then representation (4) looks like this

$$
\begin{equation*}
g \omega=\frac{d h}{h} \wedge \xi+\eta, \quad \xi, \eta \in \Omega_{U}^{\bullet} \tag{9}
\end{equation*}
$$

it coincides with representation of the basic lemma by K.Saito (see [20], (1.1), iii)).

4. The multiple residue map

Let us now discuss the concept of multiple residues of meromorphic forms which satisfy conditions of Section 3 In notations of Theorem 1 it is not difficult to see that the function g from representation (4) is a non-zero divisor in $\mathcal{O}_{S, 0} /\left(h_{1}, \ldots, h_{k}\right) \mathcal{O}_{S, 0} \cong \mathcal{O}_{C, 0}$. Therefore the restriction of the form ξ / g to the germ of complete intersection $C=D_{1} \cap \ldots \cap D_{k}$ is well-defined.

Definition 1. The restriction of differential form ξ / g to the complete intersection C is called the multiple residue of the differential form ω; the corresponding map is denoted by Res_{C}, so that

$$
\operatorname{Res}_{C}(\omega)=\left.\frac{\xi}{g}\right|_{C}
$$

REmARK 4. The multiple residue of ω is contained in the space $\mathcal{M}_{C} \otimes_{\mathcal{O}_{C}} \Omega_{C}^{q-k} \cong \mathcal{M}_{\widetilde{C}} \otimes_{\mathcal{O}_{\tilde{C}}} \Omega_{\widetilde{C}}^{q-k}$, $q \geq k$, where \widetilde{C} is the normalization of C.

Proposition 2. The multiple residue map is well-defined, that is, its values do not depend on representation (4).

Proof. Let us assume that $q \geq k$ and a differential q-form ω have two local representations

$$
g_{\ell} \omega=\frac{d h_{1}}{h_{1}} \wedge \ldots \wedge \frac{d h_{k}}{h_{k}} \wedge \xi_{\ell}+\eta_{\ell}, \quad \ell=1,2 .
$$

Then

$$
d h_{1} \wedge \ldots \wedge d h_{k} \wedge\left(g_{1} \xi_{2}-g_{2} \xi_{1}\right)=h_{1} \cdots h_{k}\left(g_{1} \eta_{2}-g_{2} \eta_{1}\right) \in\left(h_{1}, \ldots, h_{k}\right) \Omega_{S}^{q}
$$

Consequently,

$$
d h_{1} \wedge \ldots \wedge d h_{k} \wedge\left(g_{1} \xi_{2}-g_{2} \xi_{1}\right) \equiv 0\left(\bmod \left(h_{1}, \ldots, h_{k}\right)\right)
$$

Then the first part of the main Theorem from 18 (the generalized de Rham Lemma) with $R=\mathcal{O}_{C, 0}$, $M=\Omega_{S, 0}^{1} \otimes \mathcal{O}_{C, 0}, e_{i}=z_{i}, i=1, \ldots, m, \omega_{j}=d h_{j}, j=1, \ldots, k, p=q-k \geq 0$, implies that

$$
\mathcal{G}^{e}\left(g_{1} \xi_{2}-g_{2} \xi_{1}\right) \subset d h_{1} \wedge \Omega_{S, 0}^{q-k-1}+\ldots+d h_{k} \wedge \Omega_{S, 0}^{q-k-1}+\left(h_{1}, \ldots, h_{k}\right) \Omega_{S, 0}^{q-k}, \quad e \in \mathbf{Z}_{+}
$$

where the ideal $\mathcal{G} \subset \mathcal{O}_{S, 0}$ is generated by all minors $\Delta_{i_{1} \ldots i_{k}}$ of maximal order of Jacobian matrix $\operatorname{Jac}\left(h_{1}, \ldots, h_{k}\right)$. As in the end of the proof of Theorem 1 we note that the image $\widetilde{\mathcal{G}}$ of the ideal \mathcal{G} in the ring $\mathcal{O}_{C, 0}$ is not equal to $\operatorname{Ann} \mathcal{O}_{C, 0}$, since the germ C is reduced. Therefore $\mathcal{O}_{C, 0}$-depth of the ideal $\widetilde{\mathcal{G}}$ is not less than 1 . Consequently, there is an element $\Delta \in \widetilde{\mathcal{G}}$, a non-zero divisor in $\mathcal{O}_{C, 0}$ such that

$$
\Delta^{e}\left(g_{1} \xi_{2}-g_{2} \xi_{1}\right) \in d h_{1} \wedge \Omega_{S, 0}^{q-k-1}+\ldots+d h_{k} \wedge \Omega_{S, 0}^{q-k-1}+\left(h_{1}, \ldots, h_{k}\right) \Omega_{S, 0}^{q-k} .
$$

Therefore the class of the element $\Delta^{e}\left(g_{1} \xi_{2}-g_{2} \xi_{1}\right)$ in $\Omega_{C, 0}^{q-k}$ is equal to zero. It does mean that both elements $\frac{1}{g_{1}} \xi_{1}$ and $\frac{1}{g_{2}} \xi_{2}$ determine the same class in $\mathcal{M}_{C, 0} \otimes_{\mathcal{O}_{C, 0}} \Omega_{C, 0}^{q-k}$. QED.
Lemma 1. The kernel of the multiple residue map coincides with the space $\sum_{i=1}^{k} \Omega_{S}^{\bullet}\left(\widehat{D_{i}}\right)$.
Proof. It is clear that the kernel contains this sum. It remains to prove the converse inclusion. Suppose that $\operatorname{Res}_{C}(\omega)=0$ for a certain q-form $\omega, q \geq k$. Then there exists a function g in representation (4) of Theorem 1 such that the restriction of meromorphic form ξ / g to C vanishes. Consequently, $\xi=g\left(\sum h_{i} \xi_{i}+\sum d h_{i} \wedge \xi_{i}^{\prime}\right)$, where $\xi_{i}, \xi_{i}^{\prime} \in \Omega_{S}^{\bullet}$, and

$$
h \omega=d h_{1} \wedge \ldots \wedge d h_{k} \wedge\left(\sum h_{i} \xi_{i}\right)+\frac{1}{g}\left(\sum h_{i} \eta_{i}\right), \eta_{i} \in \Omega_{S}^{\bullet}
$$

Since $h \omega$ and the first term in the right side of the identity are holomorphic, then g divides $\sum h_{i} \eta_{i}$ in Ω_{S}^{\bullet}, that is, $g \eta_{0}=\sum h_{i} \eta_{i}, \eta_{0} \in \Omega_{S}^{\bullet}$. On the other hand, $\left(h_{1}, \ldots, h_{k}\right)$ is a regular sequence and g is a non-zero divisor in $\mathcal{O}_{C}=\mathcal{O}_{S} /\left(h_{1}, \ldots, h_{k}\right) \mathcal{O}_{S}$. Therefore, examining coefficients of the differentials $d z_{I}$ in the coordinate representation of the holomorphic form $\sum h_{i} \eta_{i}$, one obtains that $\eta_{0} \in\left(h_{1}, \ldots, h_{k}\right) \Omega_{S}^{\bullet}$. This yields $\omega \in \sum_{i=1}^{k} \Omega_{S}^{\bullet}\left(\widehat{D_{i}}\right)$. QED.

5. Regular meromorphic differential forms

Let M be a complex variety, $\operatorname{dim} M=m$, and let $X \subset M$ be an analytical subset in a neighborhood of $x \in U \subset M$ defined by a sequence of functions $f_{1}, \ldots, f_{k} \in \mathcal{O}_{U}$. We denote by $\Omega_{X}^{q}, q \geq 0$, the sheaves of germs of regular holomorphic differential q-forms on X; they are defined as restriction to X of the quotient module

$$
\Omega_{X}^{q}=\Omega_{U}^{q} /\left.\left(\left(f_{1}, \ldots, f_{k}\right) \Omega_{U}^{q}+d f_{1} \wedge \Omega_{U}^{q-1}+\ldots+d f_{k} \wedge \Omega_{U}^{q-1}\right)\right|_{X}
$$

Then the usual differential d endows this family of sheaves with structure of a complex; it is called the de Rham complex on X and is denoted by $\left(\Omega_{X}^{\bullet}, d\right)$.

Throughout this section we assume that X is a Cohen-Macaulay space and $\operatorname{dim} X=n$. Then

$$
\omega_{X}^{n}=\operatorname{Ext}_{\mathcal{O}_{M}}^{m-n}\left(\mathcal{O}_{X}, \Omega_{M}^{m}\right)
$$

is called the Grothendieck dualizing module of X.

Definition 2. For any $q \geq 0$ the coherent sheaf of \mathcal{O}_{X}-modules ω_{X}^{q} is locally defined as the set of germs of meromorphic differential forms ω of degree q on X such that $\omega \wedge \eta \in \omega_{X}^{n}$ for any $\eta \in \Omega_{X}^{n-q}$. In other words (see [5),

$$
\omega_{X}^{q} \cong \operatorname{Hom}_{\mathcal{O}_{X}}\left(\Omega_{X}^{n-q}, \omega_{X}^{n}\right) \cong \operatorname{Ext}_{\mathcal{O}_{M}}^{m-n}\left(\Omega_{X}^{n-q}, \Omega_{M}^{m}\right)
$$

Elements of ω_{X}^{q} are called regular meromorphic differential q-forms on X. There are also other equivalent definitions of such forms in terms of Noether normalization and trace (see [13, [5), in terms of residual currents (see [3), and so on. Here are some useful properties of regular meromorphic differential forms.

1) $\omega_{X}^{q}=0$, if $q<0$ or $q>\operatorname{dim} X$;
2) ω_{X}^{q} has no torsion, that is, Tors $\omega_{X}^{q}=0, q \geq 0$;
3) de Rham differential d acting on ω_{X}^{q} is extended on the family of modules $\omega_{X}^{q}, 0 \leq q \leq n$, and endows this family with structure of complex $\left(\omega_{X}^{\bullet}, d\right)$;
4) there exists an inclusion $\omega_{X}^{q} \subseteq j_{*} j^{*} \Omega_{X}^{q}$, where $j: X \backslash Z \longrightarrow X$ is the canonical inclusion and $Z=\operatorname{Sing} X$; moreover, if X is a normal space, then $\omega_{X}^{q} \cong j_{*} j^{*} \Omega_{X}^{q}$;
5) if $\pi: \widetilde{X} \rightarrow X$ is a finite morphism of the normalization of X, then the mapping of direct image $\pi_{*}: \omega_{\tilde{X}}^{\bullet} \rightarrow \omega_{X}^{\bullet}$ is injective; if moreover the germ of the normalization is smooth and the codimension of the set of points, in neighborhood of which π is a local isomorphism, is not less than two, then mapping π_{*} is surjective (see [5). This means that $\omega_{\tilde{X}}^{\bullet}$ and ω_{X}^{\bullet} are isomorphic and, in particular, $\Omega_{\hat{X}}^{\bullet} \cong \omega_{\dot{X}}^{\bullet}$.
6) if X is a simple rational singularity of type $A_{k}, D_{k}, E_{6}, E_{7}$ or E_{8}, then the complex $\left(\omega_{X}^{\bullet}, d\right)$ is acyclic in positive dimensions (see 11), that is, ω_{X}^{\bullet} is a resolution of the constant sheaf \mathbb{C}_{X}.

Let us now assume that $X=C$ is a complete intersection given by a regular sequence of functions $f_{1}, \ldots, f_{k} \in \mathcal{O}_{U}$ in a neighborhood U of a point $x \in C$. Then $n=m-k$ and

$$
\omega_{C, x}^{n}=\operatorname{Ext}_{\mathcal{O}_{M, x}}^{k}\left(\mathcal{O}_{C, x}, \Omega_{M, x}^{m}\right) \cong \mathcal{O}_{C, x}\left(\omega_{0}\right)
$$

where ω_{0} is the uniquely (modulo $d f_{1}, \ldots, d f_{k}$) determined meromorphic differential n-form in $j_{*} j^{*} \Omega_{C, x}^{n}$ for which there is a representation $\omega_{0} \wedge d f_{1} \wedge \ldots \wedge d f_{k}=d z_{1} \wedge \ldots \wedge d z_{m}$ in $j_{*} j^{*}\left(\Omega_{M, x}^{m} \otimes \mathcal{O}_{C, x}\right)$ with local coordinates z_{1}, \ldots, z_{m} in U. Thus, the dualizing module ω_{C}^{n} is a locally free \mathcal{O}_{C}-module of rank one. Furthermore, there are isomorphisms of \mathcal{O}_{M}-modules

$$
\omega_{C}^{q} \cong \operatorname{Hom}_{\mathcal{O}_{C}}\left(\Omega_{C}^{n-q}, \mathcal{O}_{C}\right) \cong \operatorname{Ext}_{\mathcal{O}_{M}}^{k}\left(\Omega_{C}^{n-q}, \mathcal{O}_{M}\right), \quad 0 \leq q \leq n .
$$

Changing by places the arguments of the extension group Ext ${ }^{k}$, one obtains another useful description of regular meromorphic forms [5].

Lemma 2. Let a subspace $C \subset M$ be a complete intersection. Then there is an exact sequence of \mathcal{O}_{C}-modules

$$
\begin{equation*}
0 \longrightarrow \omega_{C}^{q} \xrightarrow{\mathrm{e}} \operatorname{Ext}_{\mathcal{O}_{M}}^{k}\left(\mathcal{O}_{C}, \Omega_{M}^{q+k}\right) \xrightarrow{\varepsilon}\left(\operatorname{Ext}_{\mathcal{O}_{M}}^{k}\left(\mathcal{O}_{C}, \Omega_{M}^{q+k+1}\right)\right)^{k}, \quad q \geq 0 \tag{10}
\end{equation*}
$$

where $\omega_{C}^{q} \subseteq j_{*} j^{*} \Omega_{C}^{q}$, the morphism \mathcal{C} is the multiplication by the fundamental class C, and the mapping \mathcal{E} is locally defined by $\mathcal{E}(e)=\left(e \wedge d f_{1}, \ldots, e \wedge d f_{k}\right)$.

Corollary 3. Let $C=C_{1} \cup \cdots \cup C_{r}$ be an irredundant decomposition of a complete intersection space C. Then there is a canonical inclusion of complexes of regular meromorphic forms

$$
\omega_{C_{1}}^{\bullet} \oplus \cdots \oplus \omega_{C_{r}}^{\bullet} \hookrightarrow \omega_{C}^{\bullet}
$$

Proof. It is sufficient to examine the case $r=2$. Thus, let $C=C^{\prime} \cup C^{\prime \prime}$ be the union of two sets which consist of irreducible components of C and have no common elements. One can apply the functor Ext $_{\mathcal{O}_{M}}^{*}$ to the short exact sequence

$$
0 \rightarrow \mathcal{O}_{C} \rightarrow \mathcal{O}_{C^{\prime}} \oplus \mathcal{O}_{C^{\prime \prime}} \rightarrow \mathcal{O}_{C^{\prime} \cap C^{\prime \prime}} \rightarrow 0
$$

then use Lemma 2 and standard properties of functor Ext. QED.

6. Multiple residues of logarithmic forms

As already mentioned before (cf. Corollary 11 for logarithmic differential forms with poles along a divisor satisfying assumptions of Section 3 there exists representation (4), and, consequently, the restriction of multiple residue map Res_{C} to the subspace of such logarithmic forms is well-defined.

Lemma 3. Let $\omega \in \Omega_{S}^{q}(\log D)$ be a differential form with logarithmic poles along D and let $C=$ $D_{1} \cap \ldots \cap D_{k}$ be a complete intersection. Then the multiple residue map commutes with de Rham differentiation.

Proof. Let us apply differentiation d to representation (4) for ω :

$$
\omega=\frac{d h_{1}}{h_{1}} \wedge \ldots \wedge \frac{d h_{k}}{h_{k}} \wedge \frac{\bar{\xi}}{g}+\frac{\eta}{g},
$$

Corollary 1 implies that the form η is logarithmic as well as its total differential $d \eta$. Thus, $\operatorname{Res}_{C}(d \omega)=$ $\left.d\left(\frac{\xi}{g}\right)\right|_{C}$. This completes the proof. QED.

The following assertion in the case $k=1$ has been obtained in 1] (see also [2]); we give a proof in general case $k>1$ similarly to the proof of Theorem from [3].

Theorem 2. In notations of Section 3 let $C=D_{1} \cap \ldots \cap D_{k}$ be a complete intersection. Then for $p \geq k$ there is an exact sequence of \mathcal{O}_{S}-modules

$$
0 \longrightarrow \sum_{i=1}^{k} \Omega_{S}^{p}\left(\log \widehat{D_{i}}\right) \longrightarrow \Omega_{S}^{p}(\log D) \xrightarrow{\operatorname{Res}_{C}} \omega_{C}^{p-k} \longrightarrow 0
$$

Proof. Let us first compute the kernel of the restriction of the multiple residue morphism Res_{C} to $\Omega_{S}^{\bullet}(\log D)$. In view of Claim 3 from Section 2 and Lemma 1 from Section 4 it is sufficient to verify that for all $j=1, \ldots, k$ one has

$$
\Omega_{S}^{\bullet}(\log D) \cap \Omega_{S}^{\bullet}\left(\widehat{D_{j}}\right)=\Omega_{S}^{\bullet}\left(\log \widehat{D_{j}}\right)
$$

Since $\Omega_{S}^{\bullet}\left(\log \widehat{D_{j}}\right) \subseteq \Omega_{S}^{\bullet}(\log D)$ then the right side is contained in the leftist. To prove the converse inclusion we examine in detail the case $k=2$. Thus, take $\omega \in \Omega_{S}^{\bullet}\left(\widehat{D_{1}}\right)=\Omega_{S}^{\bullet}\left(D_{2}\right) \cong \frac{1}{h_{2}} \Omega_{S}^{\bullet}$, that is, $\omega=\xi / h_{2}$. If $\omega \in \Omega_{S}^{\bullet}(\log D)$, then $h \omega=h_{1} \xi \in \Omega_{S}^{\bullet}$ and

$$
d h \wedge \omega=d h_{1} \wedge \xi+d h_{2} \wedge\left(h_{1} \omega\right) \in \Omega_{S}^{\bullet}
$$

This implies that $d h_{2} \wedge\left(h_{1} \omega\right) \in \Omega_{S}^{\bullet}$, that is, $d h_{2} \wedge\left(h_{1} \xi\right) \in\left(h_{2}\right) \Omega_{S}^{\bullet}$. Therefore, $h_{1} d h_{2} \wedge \xi=h_{2} \eta$, where $\eta \in \Omega_{S}^{\bullet}$. Since h_{1} and h_{2} form a regular sequence, then, comparing coefficients of the differential forms $d h_{2} \wedge \xi$ and η, one obtains that h_{1} divides η, and, therefore, $d h_{2} \wedge \xi \in\left(h_{2}\right) \Omega_{S}^{\bullet}, d h_{2} \wedge \omega \in \Omega_{S}^{\bullet}$, that is, $\omega \in \Omega_{S}^{\bullet}\left(D_{2}\right)=\Omega_{S}^{\bullet}\left(\widehat{D_{1}}\right)$ as required. The general case $k \geq 2$ is analyzed analogously. QED.

Now we are going to describe the image of morphism Res_{C}, following the scheme of the proof from [1, § 4. Thus, it suffices to check everything locally. Let us first note that the image of Resc is an \mathcal{O}_{C}-module, since in view of Proposition 1 of Section 2 there are inclusions $h_{j} \Omega_{S}^{\bullet}(\log D) \subseteq \Omega_{S}^{\bullet}\left(\log \widehat{D_{j}}\right)$ for all $j=1, \ldots, k$. In particular, the ideal $\mathcal{J}=\left(h_{1}, \ldots, h_{k}\right)$ annihilates this image. Further, Remark 2 yields that

$$
\left.\left.\Delta_{i_{1} \ldots i_{k}} \cdot \operatorname{Res}_{C} \Omega_{S}^{q}(\log D)\right|_{U} \subset \Omega_{C}^{q-k}\right|_{C \cap U}
$$

for maximal minors $\Delta_{i_{1} \ldots i_{k}},\left(i_{1}, \ldots, i_{k}\right) \in[1, \ldots, m]$ of Jacobian matrix $\operatorname{Jac}\left(h_{1}, \ldots, h_{k}\right)$. Since $\omega_{C, 0}^{n} \cong$ $\mathcal{O}_{C, 0}\left(d z_{1} \wedge \ldots \wedge d z_{n+k} / d h_{1} \wedge \ldots \wedge d h_{k}\right)$, then by definition of regular meromorphic forms one obtains that $\operatorname{Res}_{C}\left(\Omega_{S, 0}^{q}(\log D)\right) \subseteq \Omega_{C, 0}^{q-k}$. Let now $\mathcal{K}_{\bullet}(\underline{h})$ be the usual Koszul complex associated with the regular sequence $\underline{h}=\left(h_{1}, \ldots, h_{k}\right)$:

$$
0 \rightarrow \mathcal{O}_{S, 0}\left\langle e_{0} \wedge \ldots \wedge e_{k-1}\right\rangle \xrightarrow{d_{k-1}} \ldots \xrightarrow{d_{1}} \sum_{i=0}^{k-1} \mathcal{O}_{S, 0}\left\langle e_{i}\right\rangle \xrightarrow{d_{0}} \mathcal{O}_{S, 0} \xrightarrow{d_{-1}} \mathcal{O}_{C, 0} \rightarrow 0
$$

where $\mathcal{K}_{k}(\underline{h})=\mathcal{O}_{S, 0}\left\langle e_{0} \wedge \ldots \wedge e_{k-1}\right\rangle, \ldots, \mathcal{K}_{1}(\underline{h})=\mathcal{O}_{S, 0}\left\langle e_{0}\right\rangle+\ldots+\mathcal{O}_{S, 0}\left\langle e_{k-1}\right\rangle, \mathcal{K}_{0}(\underline{h})=\mathcal{O}_{S, 0}, d_{0}\left(e_{i}\right)=$ $h_{i+1}, i=0, \ldots, k-1, d_{-1}(1)=1$.

The dual exact sequence implies an isomorphism

$$
\operatorname{Ext}_{\mathcal{O}_{S, 0}}^{k}\left(\mathcal{O}_{C, 0}, \Omega_{S, 0}^{q+1}\right) \cong \operatorname{Hom}_{\mathcal{O}_{S, 0}}\left(\mathcal{K}_{k}(\underline{h}), \Omega_{S, 0}^{q+1}\right) / d^{k-1}\left(\operatorname{Hom}_{\mathcal{O}_{S, 0}}\left(\mathcal{K}_{k-1}(\underline{h}), \Omega_{S, 0}^{q+1}\right)\right)
$$

Thus, any element from the space $\operatorname{Ext}_{\mathcal{O}_{S, 0}}^{k}\left(\mathcal{O}_{C, 0}, \Omega_{S, 0}^{q+1}\right)$ can be represented as a Čzech $(k-1)$-cochain (more precisely, as a ($k-1$)-cocycle) as follows:

$$
\frac{\nu}{h_{1} \cdots h_{k}} \in \operatorname{Hom}_{\mathcal{O}_{S, 0}}\left(\mathcal{K}_{k}(\underline{h}), \Omega_{S, 0}^{q+1}\right) \cong C_{(k)}^{k-1}\left(\Omega_{S, 0}^{q+1}\right),
$$

where $\nu \in \Omega_{S, 0}^{q+1}$. Let us consider an element $\nu \in \Omega_{S, 0}^{q+1}$ such that the meromorphic form

$$
\frac{\nu}{h_{1} \cdots h_{k}} \wedge d h_{j} \in \operatorname{Ext}_{\mathcal{O}_{S, 0}}^{k}\left(\mathcal{O}_{C, 0}, \Omega_{S, 0}^{q+2}\right), \quad j=1, \ldots, k
$$

corresponds to the trivial element.
This means that for any $j=1, \ldots, k$ the differential form $\nu \wedge d h_{j} / h_{1} \cdots h_{k}$ is determined by a certain element from the space $d^{k-1}\left(\operatorname{Hom}_{\mathcal{O}_{S, 0}}\left(\mathcal{K}_{k-1}(\underline{h}), \Omega_{S, 0}^{q+2}\right)\right)$. Hence, one gets

$$
\nu \wedge d h_{j} \in \sum_{i=1}^{k} h_{i} \Omega_{S}^{q+2}, \quad j=1, \ldots, k,
$$

or, equivalently,

$$
\omega \wedge d h_{j} \in \sum_{i=1}^{k} \Omega_{S}^{q+2}\left(\widehat{D_{i}}\right), \quad j=1, \ldots, k, \quad \text { where } \quad \omega=\frac{\nu}{h_{1} \cdots h_{k}}
$$

As a result, the differential form ω satisfies conditions (3) of Theorem 1 . It remains to use exact sequence 10 of Lemma 2 as follows.

Let $\tilde{\nu}=\mathcal{C}^{-1}\left(\nu / h_{1} \cdots h_{k}\right)$. Then $\mathcal{C}(\tilde{\nu})$ corresponds to Čzech cocycle $\nu / h_{1} \cdots h_{k}$ such that $\nu=\tilde{\nu} \wedge$ $d h_{1} \wedge \cdots \wedge d h_{k}$. Making use of the description for ω_{C}^{q} in terms of multiplication by the fundamental class $C \subset S$ in exact sequence 10 , one can take $v=\tilde{\nu}, w=\nu$, since $\mathcal{C}(v)$ corresponds to Čzech cocycle w / h such that $w=v \wedge d h_{1} \wedge \cdots \wedge d h_{k}$. This implies

$$
\omega=\tilde{\nu} \wedge \frac{d h_{1}}{h_{1}} \wedge \cdots \wedge \frac{d h_{k}}{h_{k}}, \quad \operatorname{Res}_{C}(\omega)=\operatorname{Res}_{C}\left(\frac{\nu}{h_{1} \cdots h_{k}}\right)=\tilde{\nu}
$$

Thus, for any element $\tilde{\nu} \in \omega^{q-k}$ there exists a preimage relatively to the residue map Res_{C} represented by $\omega=\nu / h_{1} \cdots h_{k}$ such that the differential form $h \omega$ is holomorphic, and $d h \wedge \omega=0$. In particular, this means that $\omega \in \Omega_{S}^{\bullet}(\log D)$ as required. QED.

Remark 5. In notations of Remark 3 let us take $k=1$, and $C=D$. Then $\operatorname{Res}_{C}=\operatorname{Res}_{D}$; it is, in fact, the residue map res. introduced by K.Saito [20. In this case there is (see [1) an exact sequence

$$
\begin{equation*}
0 \longrightarrow \Omega_{S}^{q} \longrightarrow \Omega_{S}^{q}(\log D) \xrightarrow{\text { res. }} \omega_{D}^{q-1} \longrightarrow 0, q \geq 1 \tag{11}
\end{equation*}
$$

supplementing diagram (2.5) of 20 from the right side. Thus, Theorem 2 can be considered as an extension of this sequence for the multiple residue map.

Corollary 4. Under the same assumptions there is a natural isomorphism

$$
\mathcal{H}_{D R}^{p}\left(\Omega_{S}^{\bullet}(\log D)\right) \cong \mathcal{H}_{D R}^{p-1}\left(\omega_{D}^{\bullet}\right),
$$

where $\mathcal{H}_{D R}^{*}$ is the functor of cohomologies of complexes endowed with de Rham differentiation d. In particular, $\Omega_{S}^{\bullet}(\log D)$ is acyclic in dimensions $p>1$ when D is a simple rational singularity of type A_{k}, D_{k}, E_{6}, E_{7} or E_{8} of dimension $n \geq 2$.

Proof. The residue map is compatible with differentiation d. Hence, exact sequences (11) for all $q \geq 1$ are composed in the exact sequence of the corresponding complexes. This yields the desired isomorphism. Further, it is known (see [11, Bem. (4.8), (2)) that for rational singularities the complex $\left(\omega_{D}^{\bullet}, d\right)$ is acyclic in positive dimensions; this implies the second part of the statement. In addition, since the dimension of $\mathcal{H}_{D R}^{0}\left(\omega_{D}^{\bullet}\right)$ is equal to the number of irreducible components of D [loc. cite, (4.1)], then $\mathcal{H}_{D R}^{1}\left(\Omega_{S}^{\bullet}(\log D)\right) \cong \mathbb{C}$ under our assumptions. For completeness, it should be mentioned that these results can be also obtained by direct computations (see [10]).

7. Closed differential forms and the image of the residue map

As was discussed before the image of Poincaré-Leray residue map consists of holomorphic forms on a smooth hypersurface D; in this case Ω_{D}^{\bullet} and ω_{D}^{\bullet} are naturally isomorphic. Let us prove in the context of the theory of logarithmic differential forms the following statement for singular hypersurfaces due to G. de Rham [17] (see also [14], p.83).

Theorem 3. Let D be a hypersurface in a manifold S, $\operatorname{dim} S=m \geq 3$. Assume that $\operatorname{Sing} D$ consists of isolated double quadratic points and ω is a holomorphic d-closed p-form on $S \backslash D$ with a pole of the first order on D. Then the residue-form $\operatorname{res}_{D}(\omega)$ is holomorphic at singular points of D if and only if either $p<m$, or $p=m$ and the functional coefficient of m-form $\omega(z) h(z)$ vanishes on $\operatorname{Sing} D$.

Proof. At first remark, that $\Omega_{S}^{m}(D) \cong \Omega_{S}^{m}(\log D)$, and $d \omega=0$ for all $\omega \in \Omega_{S}^{m}(D)$. By assumptions, for any $p<m$ the differential p-form $\omega \in \Omega_{S}^{p}(D)$ is closed, $d \omega=0$. Thus, $d h \wedge \omega=d(h \omega)$ is holomorphic at $x \in S$. That is, ω is logarithmic, $\omega \in \Omega_{S, x}^{p}(\log D)$.

In view of Remark 3 for such differential form ω there exists locally representation (9) with a holomorphic function g, a non-zero divisor of $\mathcal{O}_{S, x} /(h) \mathcal{O}_{S, x}$, where $x \in \operatorname{Sing} D$ and h is equal to the sum of squares of local coordinate functions, $h=z_{1}^{2}+\ldots+z_{m}^{2}$, in a suitable neighborhood of x. Moreover, $h \omega$ is a torsion element of $\Omega_{D, x}^{p}$ and there is an exact sequence (see [1], [2])

$$
0 \longrightarrow \Omega_{S, x}^{p}+\frac{d h}{h} \wedge \Omega_{S, x}^{p-1} \longrightarrow \Omega_{S, x}^{p}(\log D) \xrightarrow{\cdot h} \operatorname{Tors} \Omega_{D, x}^{p} \longrightarrow 0 .
$$

Since $m \geq 3$ and Sing D consists of isolated double quadratic points, then D is a normal irreducible hypersurface. Hence, Tors $\Omega_{D, x}^{p}=0$ for all $p<\operatorname{codim}(\operatorname{Sing} D, D)=m-1$, and for such p one has $\omega \in \frac{d h}{h} \wedge \Omega_{S, x}^{p-1}+\Omega_{S, x}^{p}$, that is, the function g in representation $\sqrt{9}$ is invertible at x. Consequently, $\operatorname{res}_{D}(\omega)=\left.\xi\right|_{D}$ is holomorphic on D.

When $p=m$, then $\omega=\varphi d z_{1} \wedge \ldots \wedge d z_{m} / h$, where φ is a holomorphic function germ. The vanishing of φ at $x \in \operatorname{Sing} D$ yields that $h \omega=d h \wedge \xi$. Hence $\operatorname{res}_{D}(\omega)=\left.\xi\right|_{D}$, where ξ is holomorphic at $x \in S$ and vice versa.

It remains to analyze the case $p=m-1$. In this case one has Tors $\Omega_{D, x}^{m-1}=\Omega_{D, x}^{m} \neq 0$. To be more precise, if z_{1}, \ldots, z_{m} is a local coordinate system at $x \in S, x=0$, then Tors $\Omega_{D, x}^{m-1}$ is generated over \mathbb{C} by the Euler differential form $\vartheta=\sum(-1)^{\ell-1} z_{\ell} d z_{1} \wedge \ldots \wedge \widehat{d z_{\ell}} \wedge \ldots \wedge d z_{m}$, the result of contraction of the canonical generator of Tors $\Omega_{D, x}^{m}=\Omega_{D, x}^{m} \cong \mathbb{C}\left\langle d z_{1} \wedge \ldots \wedge d z_{m}\right\rangle$ along Euler vector field. The differential form ϑ / h is not closed, since $d(\vartheta / h)=(m-2) d z_{1} \wedge \ldots \wedge d z_{m} / h$. Since $\mathcal{O}_{D, x}$ is a domain, then all partial derivatives $\partial h / \partial z_{\ell}, \ell=1, \ldots, m$, are non-zero divisors. Therefore one can take the multiplier in representation (9) equal to any z_{ℓ}. Explicit calculations show that for $g=z_{\ell}$ one has

$$
\begin{aligned}
\xi & =\frac{1}{2} \sum_{j=1, j \neq \ell}^{m}(-1)^{\ell+j} \operatorname{sgn}(j-\ell) z_{j} d z_{1} \wedge \ldots \wedge \widehat{d z_{\ell}} \wedge \ldots \wedge \widehat{d z_{j}} \wedge \ldots \wedge d z_{m} \\
\eta & =(-1)^{\ell-1} d z_{1} \wedge \ldots \wedge \widehat{d z_{\ell}} \wedge \ldots \wedge d z_{m}
\end{aligned}
$$

It is clear that z_{ℓ} does not divide ξ; hence, the differential $(m-2)$-form $\operatorname{res}_{D}(\vartheta / h)=\left.\frac{\xi}{g}\right|_{D}$ is not holomorphic on D. Let us describe conditions under which a logarithmic form $\omega=\eta_{1}+\frac{d h}{h} \wedge \xi_{1}+\varphi \frac{\vartheta}{h}$ with holomorphic η_{1}, ξ_{1} and φ, has a holomorphic residue on D. Without loss of generality one can suppose that the above differential forms and functions are homogeneous at the distinguished point x. If φ is invertible at x, then $\operatorname{res}_{D}(\vartheta / h)=-\left.\frac{\xi_{1}}{\varphi}\right|_{D}$ is holomorphic at x; this contradicts to the above computations. Moreover, in such a case ω is not closed. Otherwise, if $d \omega=0$, then there is an identity

$$
d \eta_{1}-\frac{d h}{h} \wedge d \xi_{1}+(m-2) \varphi \frac{d z_{1} \wedge \ldots \wedge d z_{m}}{h}=0
$$

or, equivalently,

$$
h \eta_{1}-d h \wedge d \xi_{1}+(m-2) \varphi d z_{1} \wedge \ldots \wedge d z_{m}=0
$$

However, it is impossible, since h and $d h$ vanish at x, while φ is invertible. Finally, let suppose that φ is not invertible, that is, φ is contained in the maximal ideal of $\mathcal{O}_{D, x}$. In this case $\varphi \frac{\vartheta}{h}$ is contained in $\Omega_{S, x}^{m-1}+\frac{d h}{h} \wedge \Omega_{S, x}^{m-2}$ in view of the above calculations. As a result, ω has a holomorphic residue on D. In
particular, we also obtain that all closed logarithmic ($m-1$)-forms are contained in $\Omega_{S, x}^{m-1}+\frac{d h}{h} \wedge \Omega_{S, x}^{m-2}$, and, obviously, their residues are holomorphic on D. QED.

Remark 6. It is useful to examine also the case $m=2$ separately. Thus, $h=z^{2}+w^{2}$, that is, D is a node; it is a divisor with normal crossing in a plane. The module $\Omega_{S}^{1}(\log D)$ is generated by differential forms $d h / h$ and ϑ / h, where $\vartheta=-w d z+z d w$. It is not difficult to verify that $d(\vartheta / h)=0$ in contrast with the case $m \geq 3$ considered in the above Theorem. Furthermore, $\operatorname{res}_{D}(\vartheta / h)=-\left.\frac{w}{z}\right|_{D}=\left.\frac{z}{w}\right|_{D}$ is not holomorphic on D. Simple considerations show that this residue is, in fact, a weakly holomorphic function on D, that is, it is holomorphic only on the normalization \widetilde{D} of D. Really, changing coordinate system, one gets $h=z w$, and $\Omega_{S}^{1}(\log D)$ is generated by two closed differential forms $d z / z$ and $d w / w$ whose residues are holomorphic on \widetilde{D}, but not on D (see [18, (2.11)). In fact, this phenomenon occurs not only for divisors with normal crossings (see [loc.cite, Th. (2.9)]). Curiously that in the original formulation of the theorem as well as in its later citations the restriction $m \geq 3$ is omitted (cf. [14], pp. 84,103 , or [9, §5).

More generally, in a similar style one can describe the image of the multiple residue map for divisors with normal crossings. In this case this map coincides with the multidimensional Poincaré residue considered in [7, (3.1.5). To be more precise, residues of logarithmic p-forms along the union of any collection $D_{i_{1}} \cup \ldots \cup D_{i_{\ell}}$ of irreducible components of D consist of restrictions to the intersection $D_{i_{1}} \cap \ldots \cap D_{i_{\ell}}$ of differential ($p-\ell$)-forms holomorphic on the ambient space. Hence they are regular holomorphic on the intersection as well as on its normalization since the map of direct image π_{*} is an isomorphism in view of property 5) of Section 5

The next example is a simple modification of the above. By definition, \mathcal{O}_{S}-modules of logarithmic differential p-forms of principal type $\Omega_{S}^{p}\langle D\rangle, p \geq 0$, are defined as follows:

$$
\Omega_{S}^{0}\langle D\rangle=\mathcal{O}_{S}, \quad \Omega_{S}^{1}\langle D\rangle=\sum_{i=1}^{k} \mathcal{O}_{S} \frac{d h_{i}}{h_{i}}+\Omega_{S}^{1}, \quad \Omega_{S}^{p}\langle D\rangle=\bigwedge^{p} \Omega_{S}^{1}\langle D\rangle, p \geq 2
$$

One can easily verify that the family $\Omega_{S}^{p}\langle D\rangle, p \geq 0$, forms a subcomplex of the logarithmic de Rham complex $\Omega_{S}^{\bullet}(\log D)$ closed under the external differentiation and external product by $d h_{i} / h_{i}, 1 \leq i \leq k$. Clearly, for divisors with normal crossings the equality $\Omega_{S}^{p}\langle D\rangle=\Omega_{S}^{p}(\log D)$ holds for all $p \geq 0$. Further, any logarithmic form of principal type has decomposition (4) of Theorem 1 with an invertible multiplier g. Similarly to the case of divisors with normal crossings, multiple residues of such forms are holomorphic on the corresponding complete intersection.

More generally, if D is a divisor such that there is an isomorphism $\Omega_{S}^{p}\langle D\rangle \cong \Omega_{S}^{p}(\log D)$ for certain $p \geq k$, then the image of the multiple residue map can be characterized as above. A special class of such divisors considered in cohomology theory of the "twisted" de Rham complex can be described as follows (another examples are also studied in [15]).

Let $h_{j}, j=1, \ldots, \ell$, be non-constant homogeneous polynomials on S. Denote the ideal generated by all minors $\Delta_{i_{1} \ldots i_{r}}$ of maximal order of Jacobian matrix $\operatorname{Jac}\left(h_{i_{1}}, \ldots, h_{i_{r}}\right)$ and polynomials $h_{i_{1}}, \ldots, h_{i_{r}}$ by $\mathcal{G}_{i_{1} \ldots i_{r}} \subset \mathcal{O}_{S, 0}$.
Claim 4. Assume that for any $1 \leq r \leq \min \{\ell, m-1\}$, the algebraic set defined by the ideal $\mathcal{G}_{i_{1} \ldots i_{r}}$ is either empty or the origin, and $\bar{h}_{i_{1}}, \ldots, h_{i_{s}}$ is a regular sequence for $1 \leq s \leq \min \{\ell, m\}$. Then any logarithmic differential p-form, $0 \leq p \leq m-2$, has decomposition (4) of Theorem 1 with an invertible multiplier g, and there are isomorphisms $\Omega_{S}^{p}\langle D\rangle \cong \Omega_{S}^{p}(\log D)$.

Proof. It is a slightly modified version of considerations from 12 or 15. QED.

8. The weight filtration

The concept of weight filtration on the logarithmic de Rham complex for divisors with normal crossings on manifolds was introduced by P.Deligne [7] for computation of the mixed Hodge structure on the cohomologies of the complement. The case of divisors with normal crossings on V-varieties was examined by J.Steenbrink [22. In this section we construct the weight filtration on the logarithmic de Rham complex for divisors whose components are defined by a regular sequence of functions. In particular, this allows to compute the mixed Hodge structure on cohomology of the complement of divisors
of certain types without using theorems on resolution of singularities or the standard reduction to the case of normal crossings.

Let X be an analytical manifold, $D \subset X$ be a reduced divisor with irreducible decomposition $D=$ $D_{1} \cup \ldots \cup D_{k}$. It is also assumed that D has no components with self-intersections. For any ordered collection $I=\left(i_{1} \cdots i_{n}\right), 1 \leq i_{1}<\ldots<i_{n} \leq k$, of length $n=\#(I)$, let us consider the following germs:

$$
D_{I}=D_{\left(i_{1} \cdots i_{n}\right)}=D_{i_{1}} \cup \ldots \cup D_{i_{n}}, \quad C^{I}=C^{\left(i_{1} \cdots i_{n}\right)}=D_{i_{1}} \cap \ldots \cap D_{i_{n}}
$$

We denote by $C^{(n)}$ an analytical subspace of X given by the union of $C^{\left(i_{1} \cdots i_{n}\right)}$ for all permissible collections so that $C^{(1)}=D, C^{(k)}=C^{\left(i_{1} \cdots i_{k}\right)}=C$, and so on. Let us also set $D_{0}=C^{0}=\emptyset$.

Definition 3. The weight filtration, or filtration of weights W on the logarithmic de Rham complex $\Omega_{X}^{p}(\log D)$ is locally defined as follows:

$$
W_{n}\left(\Omega_{X, x}^{p}(\log D)\right)=\left\{\begin{array}{cl}
0, & n<0 ; \\
\Omega_{X, x}^{p}, & n=0 ; \\
\sum_{\#(I)=p} \Omega_{X, x}^{p}\left(\log D_{I}\right), & n \geq p, 0<p<k_{x}, \\
\sum_{\#(I)=n} \Omega_{X, x}^{p}\left(\log D_{I}\right), & \text { otherwise },
\end{array}\right.
$$

where k_{x} is the number of irreducible components of D passing through the point $x \in X$.
First non-trivial elements of the weight filtration in the case $k=3$.

W_{0}	Ω_{X}^{1}	Ω_{X}^{2}	Ω_{X}^{3}	Ω_{X}^{4}
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
W_{1}	$\sum \Omega_{X}^{1}\left(\log D_{i}\right)$	$\sum \Omega_{X}^{2}\left(\log D_{i}\right)$	$\sum \Omega_{X}^{3}\left(\log D_{i}\right)$	$\sum \Omega_{X}^{4}\left(\log D_{i}\right)$
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
W_{2}	$\sum \Omega_{X}^{1}\left(\log D_{i}\right)$	$\sum \Omega_{X}^{2}\left(\log \left(D_{i} \cup D_{j}\right)\right)$	$\sum \Omega_{X}^{3}\left(\log \left(D_{i} \cup D_{j}\right)\right)$	$\sum \Omega_{X}^{4}\left(\log \left(D_{i} \cup D_{j}\right)\right)$
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
W_{3}	$\sum \Omega_{X}^{1}\left(\log D_{i}\right)$	$\sum \Omega_{X}^{2}\left(\log \left(D_{i} \cup D_{j}\right)\right)$	$\sum \Omega_{X}^{3}(\log D)$	$\sum \Omega_{X}^{4}(\log D)$
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
\cdots	\cdots	\cdots	\cdots	\cdots

Thus, $W_{n}\left(\Omega_{X, x}^{p}(\log D)\right)=\Omega_{X, x}^{p}(\log D)$, if $n \geq p \geq k_{x}$. Further, W is an increasing filtration and, in view of d - and \wedge-closeness of $\Omega_{X}^{\circ}(\log D)$, there exist the following natural inclusions

$$
\begin{aligned}
& d\left(W_{n}\left(\Omega_{X}^{\bullet}(\log D)\right)\right) \subset W_{n}\left(\Omega_{X}^{\bullet}(\log D)\right) \\
& W_{n}\left(\Omega_{X}^{p}(\log D)\right) \wedge W_{\ell}\left(\Omega_{X}^{q}(\log D)\right) \subset \\
& W_{n+\ell}\left(\Omega_{X}^{p+q}(\log D)\right)
\end{aligned}
$$

for all entire numbers p, q, n, ℓ. It should be remarked that for any $n \leq p$ the module $W_{n}\left(\Omega_{X, x}^{p}(\log D)\right)$ contains all differential forms of principal type from $\Omega_{X}^{n}\langle D\rangle$ considered in Section 7 :

$$
\frac{d h_{i_{1}}}{h_{i_{1}}} \wedge \cdots \wedge \frac{d h_{i_{\ell}}}{h_{i_{\ell}}} \wedge \Omega_{X, x}^{p-\ell}, \quad 1 \leq i_{1}<\ldots<i_{\ell} \leq k, 1 \leq \ell \leq n
$$

where $h_{i_{1}}, \ldots, h_{i_{\ell}}$ are local equations of the corresponding components of divisor D passing through the point $x \in X$. In general,

$$
\Omega_{X, x}^{n}\langle D\rangle \wedge \Omega_{X, x}^{p-n} \subseteq W_{n}\left(\Omega_{X, x}^{p}(\log D)\right) \subseteq \Omega_{X, x}^{n}(\log D) \wedge \Omega_{X, x}^{p-n}, n \in \mathbb{Z}, p \geq n
$$

For divisors with normal crossings two complexes $\Omega_{X}^{\bullet}\langle D\rangle$ and $\Omega_{X}^{\bullet}(\log D)$ are equal. Therefore, both inclusions in the latter formula are, in fact, equalities and the weight filtration on the complex $\Omega_{X}^{\bullet}\langle D\rangle$ is given as follows:

$$
W_{n}\left(\Omega_{X}^{p}\langle D\rangle\right)=\Omega_{X}^{n}\langle D\rangle \wedge \Omega_{X}^{p-n}, n \in \mathbb{Z}
$$

The following assertion can be considered as a generalization of isomorphism (3.1.5.2) from [7] valid for divisors with normal crossings to the case of divisors whose components are given by a regular sequence of functions.

Let $\pi: \widetilde{C}^{(n)} \rightarrow C^{(n)}$ be a morphism of normalization so that $\widetilde{C}^{(n)}$ coincides with the non-connected sum of normalizations $\widetilde{C}^{\left(i_{1} \cdots i_{n}\right)}$ for all possible collections of length $n \geq 1$. We denote by ι the projection $\widetilde{C}^{(n)}$ in X, so that $\iota=i \circ \pi$, where $i: C^{(n)} \rightarrow X$ is a natural inclusion.

Proposition 3. Let us assume that a divisor D satisfies assumptions of Theorem 1 and the morphism of normalization induces an isomorphism of complexes $\pi_{*}: \omega_{\stackrel{C}{C}^{(n)}}^{\bullet} \cong \omega_{C^{(n)}}^{\bullet}$. Then the multiple residue map

$$
\operatorname{Res}_{n}^{\bullet}: W_{n}\left(\Omega_{X}^{\bullet}(\log D)\right) \longrightarrow \iota_{*} \omega_{\tilde{C}^{(n)}}^{\bullet}[-n]
$$

induces an isomorphism of complexes of \mathcal{O}_{X}-modules

$$
\operatorname{Gr}_{n}^{W}\left(\Omega_{X}^{\bullet}(\log D)\right) \cong \iota_{*} \omega_{\widetilde{C}^{(n)}}^{\bullet}[-n]
$$

Proof. Let firstly note that the morphism of normalization induces the isomorphism of direct image π_{*} if condition 5) from Section 5 is fulfilled. Furthermore, it suffices to prove our assertion locally, for the $\operatorname{germ}(X, x)$ and for all $n \leq p$.

For any ordered collection $I=\left(i_{1} \cdots i_{n}\right), 1 \leq i_{1}<\ldots<i_{n} \leq k_{x}$, accordingly Theorem 2 with $D=D_{I}$ there exists an exact sequence of complexes of $\mathcal{O}_{X, x}$-modules

$$
0 \longrightarrow \sum_{\ell=1}^{n} \Omega_{X, x}^{\bullet}\left(\log \left(\widehat{D_{I}}\right)_{i_{\ell}}\right) \longrightarrow \Omega_{X, x}^{\bullet}\left(\log D_{I}\right) \xrightarrow{\operatorname{Res}_{C^{I}}} \omega_{C^{I}, x}^{\bullet}[-n] \longrightarrow 0
$$

From basic properties of regular meromorphic differential forms it follows that $\omega_{\stackrel{C}{C}^{(n)}}$ is isomorphic to the direct sum $\omega_{\widetilde{C}^{I}}^{\bullet}$ taking through all permissible collections $I=\left(i_{1} \cdots i_{n}\right)$. Further, any differential form $\omega \in W_{n}\left(\Omega_{X}^{\bullet}(\log D)\right)$ is decomposed into the sum of elements $\omega_{I} \in \Omega_{X}^{\bullet}\left(\log D_{I}\right)$. Let us denote the sum of $\operatorname{Res}_{C^{I}}\left(\omega_{I}\right)$ by $\operatorname{Res}_{C^{(n)}}(\omega)$. One then obtains an exact sequence of \mathcal{O}_{X}-modules

$$
0 \longrightarrow W_{n-1}\left(\Omega_{X}^{\bullet}(\log D)\right) \longrightarrow W_{n}\left(\Omega_{X}^{\bullet}(\log D)\right) \xrightarrow{\operatorname{Res}_{C(n)}} \iota_{*} \omega_{\tilde{C}^{(n)}}^{\bullet}[-n] \longrightarrow 0
$$

This yields the existence of required isomorphisms. QED.
Corollary 5. Under conditions of Proposition 3 there are natural isomorphisms of cohomology spaces

$$
\mathcal{H}^{i}\left(\operatorname{Gr}_{n}^{W}\left(\Omega_{X}^{\bullet}(\log D)\right)\right) \cong \mathcal{H}^{i}\left(\omega_{\tilde{C}^{(n)}}^{\bullet}\right)[-n],
$$

where $i \geq 1$ and $1 \leq n \leq k$.
Proof. Since the normalization π is finite and, therefore it is an affine morphism then

$$
\mathcal{H}^{i}\left(\pi_{*} \omega_{\stackrel{C}{C}^{(n)}}^{\bullet}\right) \cong \mathcal{H}^{i}\left(\omega_{\stackrel{\rightharpoonup}{C}^{(n)}}^{\bullet}\right), i \geq 1
$$

and the desired assertion follows from Proposition above. QED.
REmARK 7. Analyzing a more general situation where complexes $\omega_{\tilde{C}^{(n)}}^{\bullet}$ and $\omega_{C^{(n)}}^{\bullet}$ are non-isomorphic, the corresponding isomorphisms in the formulation of Proposition 3 should be replaced by epimorphisms.

Remark 8. Suppose that a (finite) group G acts on a manifold X. Then it is not difficult to verify that the residue mapping Res_{C} is compatible with the action of this group in the usual sense. In this case the complex of regular meromorphic forms $\omega_{X / G}^{\bullet}$ on the quotient variety X / G is a resolution of constant sheaf [11. Making use of simplest properties of sheaves $\Omega_{X}^{p}(\log D), \Omega_{C}^{q}$ and the corresponding subsheaves invariant relative to action of G, one obtains the isomorphism of Lemma (1.19) from [22] for divisors with normal crossings on a V-variety.

Let us examine a simple application. The canonical decreasing Hodge filtration F on the logarithmic de Rham complex $\Omega_{X}^{p}(\log D)$ is defined as follows:

$$
F^{n}\left(\Omega_{X}^{p}(\log D)\right)= \begin{cases}\Omega_{X}^{p}(\log D), & n \leq p \\ 0, & n>p\end{cases}
$$

Suppose now that D is a reduced divisor as before and the natural inclusions

$$
\begin{equation*}
\sum_{\#(I)=p} \Omega_{X, x}^{p}\left(\log D_{I}\right) \longrightarrow \Omega_{X, x}^{p}(\log D) \tag{12}
\end{equation*}
$$

are isomorphisms for all $1 \leq p<k_{x}$. Then $W_{n}\left(\Omega_{X}^{p}(\log D)\right) \cong \Omega_{X}^{p}(\log D)$ for all $n \geq p$ similarly to the classical case of divisors with normal crossings (see (3.1.8) in [7]). Hence, under assumptions of Proposition 3 one can define a natural morphism α from the complex $\Omega_{X}^{\bullet}(\log D)$ endowed by Hodge filtration F into the same complex with decreasing filtration W given as $W^{n}=W_{-n}$.

Corollary 6. Under the same assumptions the above morphism α is a filtered quasi-isomorphism if $\mathcal{H}^{i}\left(\omega_{\tilde{C}^{(n)}}^{\bullet}\right)=0$ for $i \neq 0$.

Proof. Analogously to the proof of (3.1.8.2) in 7. QED.
Remark 9. Of course, for divisors with normal crossings inclusions 12) are isomorphisms for all $p \geq 1$. A special class of divisors with $\sum_{i=1}^{k} \Omega_{X, x}^{1}\left(\log D_{i}\right) \cong \Omega_{X, x}^{1}(\log D)$ is considered in Theorem 2.9 by [20] (see Section 2)

Remark 10. The vanishing condition of Corollary 6 means that the complex of regular meromorphic forms on the normalization $\widetilde{C}^{(n)}$ is acyclic in positive dimensions. Besides the case of divisors with normal crossings examined in [7], another types of varieties satisfied this condition are known. Among them there are rational normal complete intersections, quotient singularities of smooth varieties with action of a finite group (see [11]), V-varieties (see [22]), and so on.

Remark 11. If two complexes $\Omega_{X}^{\bullet}(\log D)$ and $\Omega_{X}^{\bullet}(\star D)$ endowed with standard Hodge filtration are quasi-isomorphic (see, for example, [10]), then the morphism β from Proposition (3.1.8) of [7] is a quasiisomorphism. If additionally the condition of the previous Corollary 6 is satisfied, then α is also a quasiisomorphism. This means that in all cases mentioned in Remark above there are isomorphisms (3.1.8.2) of (7):

$$
R^{n} j_{*} \mathbf{C} \cong \mathcal{H}^{n}\left(j_{*} \Omega_{X^{*}}^{*}\right) \cong \mathcal{H}^{n}\left(\Omega_{X}^{\bullet}(\log D)\right),
$$

where X is a manifold, $X^{*}=X \backslash D, j: X^{*} \rightarrow X$ is the canonical inclusion.
Further analysis shows that under standard assumptions on the ambient manifold X (smooth, Kähler, complete) the bifiltered complex $\left(\Omega_{X}^{\bullet}(\log D), F, W\right)$ can be used (similarly to [22], p.532) for computation of the canonical mixed Hodge structure on the cohomology of complements $H^{*}(X \backslash D, \mathbb{C})$ as well as on the local cohomology $H_{C}^{*}\left(X, \Omega_{X}^{\bullet}(\log D)\right)$ without the using of resolution theorems or a standard reduction to the case of divisors with normal crossings.

In conclusion we note that the differential d is strictly compatible ([7], (1.1.5)) with filtration W at degree $k+1$, that is,

$$
d \Omega_{X}^{k}(\log D) \cap W_{n}\left(\Omega_{X}^{k+1}(\log D)\right)=d\left(W_{n}\left(\Omega_{X}^{k}(\log D)\right), n \in \mathbb{Z}\right.
$$

Consequently, the weight filtration on the canonically truncated logarithmic de Rham complex

$$
\tau_{\geq k} \Omega_{X}^{\bullet}(\log D)
$$

is also well-defined; in its turn, it induces the weight filtration on the complex of regular meromorphic differential forms on a complete intersection with the help of the multiple residue map.

References

[1] Aleksandrov A.G.: Non-isolated hypersurface singularities. In: Theory of singularities and its applications. Advances in Soviet Mathematics (V.I. Arnold, ed.) 1, 211-246. Amer. Math. Soc., Providence, RI, 1990.
[2] Aleksandrov A.G.: Logarithmic differential forms, torsion differentials and residue. Complex Variables and Appl., 50 (2005), no. 7-11, 777-802.
[3] Aleksandrov A.G., Tsikh A.K.: Théorie des résidus de Leray et formes de Barlet sur une intersection complète singulière. C. R. Acad. Sci. Paris, Ser. I, 333 (2001), no.11, 832-837.
[4] Aleksandrov A.G., Tsikh A.K.: Multi-logarithmic differential forms on complete intersections. J. Siberian Federal University. Mathematics \& Physics 2 (2008), 105-124.
[5] Barlet D.: Le faisceau Ω_{X}^{\bullet} sur un espace analytique X de dimension pure. Lecture Notes in Mathematics 670, Springer-Verlag, 1978, 187-204.
[6] Buchsbaum D.A., Rim D.S.: A generalized Koszul complex. II. Depth and multiplicity. Trans. Amer. Math. Soc. 111 (1964), 197-224. DOI: 10.1090/S0002-9947-1964-0159860-7
[7] Deligne P.: Théorie de Hodge II. Publ. Math. IHES., 40 (1972), 5-57. DOI: 10.1007/BF02684692
[8] Griffiths Ph., Harris J.: Principles of algebraic geometry. Pure and Applied Mathematics. WileyInterscience [John Wiley \& Sons], New York, 1978.
[9] Henkin G.: Jean Leray and several complex variables. In: Selected papers of Jean Leray. Euvres scientifiques, III, Several complex variables and holomorphic partial differential equations/Fonctions de plusieurs variables complexes et équations aux dérivées partielles holomorphes. (P.Malliavin, ed.) Springer-Verlag, Berlin; Societé Mathématique de France, Paris, 1998.
[10] Holland M.P., Mond D.: Logarithmic differential forms and the cohomology of the complement of a divisor. Math. Scand. 83 (1998), No.2, 235-254.
[11] Kersken M.: Reguläre Differentialformen. Manuscripta Math. 46 (1984), No.1, 1-25
[12] Kita M., Noumi M.: On the structure of cohomology groups attached to the integral of certain many-valued analytic functions. Japan. J. Math. 9 (1983), 113-157.
[13] Kunz E.: Holomorphe Differentialformen auf algebraischen Varietäten mit Singularitäten. I. Manuscr. Math. 15 (1975), 91-108. DOI: 10.1007/BF01168881
[14] Leray J.-P.: La calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy. III). Bull. Societé Mathématique de France 87 (1959), 81-180.
[15] Morita K.: On the basis of twisted de Rham cohomology. Hokkaido Math. J. 27 (1998), No.3, 567-603.
[16] Poly J.-B.: Sur un théorème de J.Leray en théorie des résidus. C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A171-A174.
[17] De Rham G.: Sur la division de formes et de courants par une forme linéaire. Comment. Math. Helvet. 28 (1954), 346-352.
[18] Saito K.: On a generalization of de-Rham lemma. Ann. Inst. Fourier (Grenoble) 26 (1976), no. 2, 165-170.
[19] Saito K.: On the uniformization of complements of discriminant loci. In: Hyperfunctions and Linear partial differential equations, RIMS Kōkyūroku 287 (1977), 117-137.
[20] Saito K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo, ser. IA 27 (1980), no. 2, 265-291.
[21] Serre J.-P.: Groupes algébriques et corps de classes. Hermann, Paris, 1959.
[22] Steenbrink J.H.M.: Mixed Hodge structure on the vanishing cohomology. In: Real and Complex Singularities (P.Holm, ed.) Proc. Nordic Summer Sch., Symp. Math., Oslo - 76. Oslo: Sijthoff-Noordhoff Publ., Alphen aan den Rijn, 1977.
[23] Wiebe H.: Über homologische Invarianten lokaler Ringe. Math. Ann. 179 (1969), no. 4, 257-274.
A.G. Aleksandrov

Institute for Control Sciences,
Russian Academy of Sciences,
Profsojuznaja str. 65, B-334, Moscow,
117997, Russian Federation
E-mail address: ag_aleksandrov@mail.ru

[^0]: 2010 Mathematics Subject Classification. 32S25, 14F10, 14F40, 58K45, 58K70.

