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MULTIDIMENSIONAL RESIDUE THEORY

AND THE LOGARITHMIC DE RHAM COMPLEX

A.G. ALEKSANDROV

Abstract. We study logarithmic differential forms with poles along a reducible hyper-
surface and the multiple residue map with respect to the complete intersection given
by its components. Some applications concerning computation of the kernel and image
of the residue map and the description of the weight filtration on the logarithmic de
Rham complex for hypersurfaces whose irreducible components are defined by a regular
sequence of functions are considered. Among other things we give an easy proof of the
de Rham theorem (1954) on residues of closed meromorphic differential forms whose
polar divisor has rational quadratic singularities, and correct some inaccuracies in its
original formulation and later citations.
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Introduction

The term “residue” (together with its formal definition) appeared for the first time in an article by
A. Cauchy (1826), although one can find such a notion as implicit in Cauchy’s prior work (1814) about
the computation of particular integrals which were related with his research towards hydrodynamics.
For the next three-four years, Cauchy developed residue calculus and applied it to the computation of
integrals, the expansion of functions as series and infinite products, the analysis of differential equations,
and so on.

Though it was already transparent in the pioneer work by N. Abel, a major step towards the elabo-
ration of the residue concept was made by H. Poincaré who introduced in 1887 the notion of differential
residue 1-form attached to any rational differential 2-form in C2 with simple poles along a smooth
complex curve. Such rational form can be considered as the simplest prototype of differential forms

called logarithmic in the modern terminology. Subsequently É. Picard (1901), G. de Rham (1932/36),
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A. Weil (1947) obtained a series of important results about residues of meromorphic forms of degree 1
and 2 on complex manifolds; such developments were associated with cohomological ideas, leading to
the formulation of a cohomological residue formula, and therefore to explicit computations of integrals
of rational forms (in the spirit of Cauchy or Abel) along cycles.

Among other things Poincaré has also proved that the residue is, in fact, a holomorphic 1-form. A
simple generalization of his construction to the case of a complex analytical variety M of dimension
m ≥ 2 leads to the following exact sequence of OM -modules

0 −→ ΩmM −→ ΩmM (D)
rés
−−→ Ωm−1

D −→ 0,

where ΩmM (D) is a sheaf of meromorphic differential forms of degree m on M with poles of the first order
on the smooth divisor D ⊂ M, and ΩmM and Ωm−1

D are sheaves of regular holomorphic forms on M and
D of degrees m and m− 1, respectively.

In the fifties further cohomological ideas were pursued by G. de Rham (1954) and J. Leray (1959)
who defined and studied residues of d-closed C∞-regular differential forms on the complement M \ D
with poles of the first order along a smooth hypersurface D in complex manifold M. Thus, for any such
q-form ω there exists locally the following decomposition

(1) ω =
dh

h
∧ ξ + η,

where h is the germ of a holomorphic function determining the smooth hypersurface D, and ξ, η are
germs of regular forms. Moreover, the restriction of ξ to D does not depend on a local equation of the
hypersurface; it is globally and uniquely determined and closed on D. The differential form ξ

∣∣
D

is called

the residue-form denoted by rés(ω). If ω is holomorphic on M \ D, then the differential form ξ
∣∣
D

is
holomorphic on D.

In 1972, J.-B. Poly showed that Leray decomposition (1) as well as the residue form are determined
correctly for the so-called semi-meromorphic forms (not necessarily closed) if both they and their total
differentials have poles of the first order along D (see [16]). Such meromorphic forms were called by
P. Deligne (1969) differential forms with logarithmic poles along D; in fact, he considered the case of
divisors with normal crossings. The corresponding coherent sheaves of OM -modules are denoted by
ΩqM (logD), q ≥ 1. It is not difficult to see that in these notations there are exact sequences of OM -
modules

0 −→ ΩqM −→ ΩqM (logD)
rés
−−→ Ωq−1

D −→ 0,

where Ωq−1
D , q ≥ 1, are sheaves of regular holomorphic differential forms on D.

In 1977, making use of decomposition (1) with a multiplier, K.Saito introduced the notion of residue
res.(ω) for a meromorphic form ω on M with logarithmic poles along a reduced divisor D with arbitrary
singularities (see [19]). Somewhat later the author proved (see [1], [2]) that in this case for all q ≥ 1
there are exact sequences

(2) 0 −→ ΩqM −→ ΩqM (logD)
res.
−−→ ωq−1

D −→ 0,

where ωqD, q ≥ 0, are sheaves of regular meromorphic q-forms on D. Further generalizations of these
results are investigated in [3], [4].

For completeness it should be remarked that the original concept of residue is, in fact, a local notion;
the classical local residue is given by a variant of Cauchy formula for several complex variables. In
the focus of the global theory of residue is the residue formula. For rational differential 1-forms defined
on a compact complex algebraic curve it is one of the fundamental results in the classical analytic and
algebraic geometry (see [21]). In the multidimensional case, that is, for meromorphic differential m-forms
given on an m-dimensional complex manifold many variants of the residue formula in various situations
and different contexts are known (see, for example, [8]). Such a form ω is closed, dω = 0, by reason of
dimension. In this case only meromorphic forms with polar singularities, namely logarithmic differential
m-forms, enter non-trivial contributions in the residue formula.

The paper is organized as follows. In the first two sections some elementary properties of logarithmic
differential forms with simple poles along a divisor are considered. Then in the third and fourth sections
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we discuss properties of multiple residues of logarithmic differential forms with poles along reducible
hypersurfaces. In particular, it is proved that the residue map determines exact sequences similarly
to the above (2) for divisors whose components are defined locally by regular sequences of function
germs. The proof is based essentially on the theory of logarithmic and multi-logarithmic differential
forms and some properties of the multiple residue studied earlier in [1], [2], [3]. In the next two sections
the kernel and image of the multiple residue map are described. Some applications are considered in two
final sections, then the obtained results adapt for computing residues of logarithmic differential forms
of principal type and for description of the weight filtration on the logarithmic de Rham complex for
divisors whose components are defined by a regular sequence of functions. In particular, this allows
to compute the mixed Hodge structure on cohomology of the complement of divisors of certain types
without using theorems on resolution of singularities or the standard reduction to the case of normal
crossings. Among other things in Section 7 we also give an easy proof of the well-known theorem goes
back to de Rham (1954) which asserts that the residues of closed meromorphic differential forms whose
polar divisor has rational quadratic singularities are holomorphic on the divisor, and correct also some
inaccuracies in its original formulation and later citations.

The author thanks the organizing committee, especially Laurentiu Maxim for a complimentary in-
vitation to participate in the conference as well as all colleagues from Mathematical Department of
the University of Science and Technology of China for well provided and excellent organization of this
unforgettable meeting.

1. The logarithmic de Rham complex

Let S be a complex analytical variety of dimension m ≥ 1, and z = (z1, . . . , zm) be a local coordinate
system in a neighborhood U of the distinguished point x ∈ U ⊂ S. Further, suppose that a hypersurface
D ⊂ S is defined by a function h ∈ OU . We will also assume that h has no multiple factors so that the
hypersurface D is reduced, that is, the divisor D does not contain multiple components.

Let ω be a meromorphic differential q-form on U with poles along D. Then ω is called logarithmic or
q-form with logarithmic poles along D if hω and hdω are holomorphic on U.

Let us also denote by S = (S, x) ∼= (Cm, 0) the germ of S at the distinguished point x. For simplifica-
tion in the record identical notations for the spaces and their germs at this point are often used without
additional comments when the sense is clear from the context. Throughout the paper we also use the
term divisor for (locally principal) Cartier divisors D in a manifold.

The localization of the concept of logarithmic forms leads to the definition of OS,x-module ΩqS,x(logD)
which consists of the germs of meromorphic q-forms on S with poles along D such that hω and hdω are
holomorphic at the point x, that is, h · ΩqS,x(logD) ⊆ ΩqS,x and h · dΩqS,x(logD) ⊆ Ωq+1

S,x . Evidently, the

second condition is equivalent to the inclusion dh ∧ ΩqS,x(logD) ⊆ Ωq+1
S,x . The corresponding coherent

analytic sheaves of logarithmic differential forms are denoted by ΩqS(logD), q ≥ 0. It should be remarked
that ΩmS,x(logD) ∼= OS,x(dz1 ∧ . . . ∧ dzm/h). By definition, Ω0

S(logD) ∼= OS , and there are natural
inclusions ΩqS ⊆ ΩqS(logD) for all q ≥ 1 which are, in fact, isomorphisms ΩqS,x

∼= ΩqS,x(logD) for all

x /∈ D.
The family ΩqS(logD), q ≥ 0, endowed with differential induced by the de Rham differentiation d

of Ω•S defines an increasing complex called the logarithmic de Rham complex. Further, the sheaves of
logarithmic differential forms are OS-modules of finite type, and their direct sum ⊕mq=0ΩqS(logD) forms
an OS-exterior algebra closed under the action of d.

Recall that OS-module of vector fields logarithmic along D ⊂ S consists of germs of holomorphic
vector fields V ∈ Der(OS) on S such that V(h) belongs to the principal ideal (h) ·OS . In particular, V
is tangent to D at its non-singular points. This module is denoted by DerS(logD). There is a perfect
pairing

DerS(logD)× Ω1
S(logD)→ OS

induced by the contraction of differential forms along vector fields (see [20]).
Let us also remark that in general ΩqS(logD) 6∼=

∧q Ω1
S(logD). However, for all q > 0 there exist

natural inclusions
∧q Ω1

S(logD) → ΩqS(logD). All these inclusions are isomorphisms if Ω1
S(logD) or,
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equivalently, DerS(logD) is locally free. In this case D is called the free hypersurface or Saito free
divisor.

2. Logarithmic forms with poles along reducible hypersurfaces

Let D = D1 ∪ . . . ∪Dk be any irredundant (not necessarily irreducible) decomposition of a reduced
divisor D. It is clear that there are natural inclusions

k∑
i=1

ΩqS(logDi) ↪→ ΩqS(logD), q ≥ 0.

Analogously, if D̂i is the union of all elements of the decomposition excluding Di, that is, D̂i =
D1 ∪ . . . ∪Di−1 ∪Di+1 ∪ . . . ∪Dk, then

k∑
i=1

ΩqS(log D̂i) ↪→ ΩqS(logD),

and ΩqS,x(logDi) ∼= ΩqS,x(logD) are isomorphisms for all x ∈ Di \ (Di ∩ D̂i), and so on.

Claim 1. Assume that divisors Di defined by function germs hi, i = 1, . . . , k, are components of a
locally irredundant decomposition of D. Then there is a natural isomorphism

DerS(logD1) ∩ . . . ∩DerS(logDk) ∼= DerS(logD).

Proof. It is clear, that the left side of the relation is contained in the rightist. Conversely, take

V ∈ DerS(logD). Then V(h) =
∑k
i=1(h1 · · · ĥi · · ·hk)V(hi) = fh, where f ∈ OS . After division by hi the

both part of the latter equality one obtains that the function (h1 · · · ĥi · · ·hk)V(hi)/hi is holomorphic,
that is, hi divides V(hi). Hence, V(hi) ∈ (hi)OS , i = 1, . . . , k. QED.

The following assertion one may consider as a dual variant of the above statement.

Claim 2. Under the same assumptions let us suppose that Ω1
S(logD) is generated by closed forms. Then

one has an isomorphism

Ω1
S(logD1) + . . .+ Ω1

S(logDk) ∼= Ω1
S(logD).

Proof. Due to Theorem 2.9 from [20] the conditions of closeness of generators of Ω1
S(logD) is

equivalent to the isomorphism
∑k
i=1 OS

dhi
hi

+ Ω1
S
∼= Ω1

S(logD). On the other side, dhi
hi
∈ Ω1

S(logDi) and

there is a natural inclusion
∑k
i=1 Ω1

S(logDi) ↪→ Ω1
S(logD). This completes the proof. QED.

Proposition 1. Under assumptions of Claims above there exist natural inclusions

hiΩ
•
S(logD) ⊆ Ω•S(log D̂i), dhi ∧ Ω•S(logD) ⊆ Ω•+1

S (log D̂i), i = 1, . . . , k.

In other words, the external product by total differentials dhi as well as multiplication by functions hi
”dissipates” poles of ω ∈ Ω•S(logD) located on Di.

Proof. Let us first examine the case k = 2. Let us set i = 1, then take x ∈ D1 ∩D2 and show that
h2Ω•S(logD) ⊆ Ω•S(logD1). By assumptions, h1(h2ω) = hω ∈ Ω•S . Further,

dh ∧ (h2ω) = h2dh1 ∧ (h2ω) + h1dh2 ∧ (h2ω) = h2dh1 ∧ (h2ω) + dh2 ∧ (hω).

Since the differential form dh∧ω is holomorphic then dh∧(h2ω) is also a holomorphic form. Analogously,
dh2∧ (hω) ∈ Ω•S and, consequently, h2dh1∧ (h2ω) = h2

2dh1∧ω ∈ Ω•S . Set dh1∧ω = ϑ/h2
2, where ϑ ∈ Ω•S .

Let us note that dh1
h1
∈ Ω•S(logD), so that dh1

h1
∧ ω ∈ Ω•S(logD) in virtue of ∧-closeness. Therefore,

dh1
h1
∧ω = ϑ

h1h
2
2
∈ Ω•S(logD), that is, ϑ

h2
∈ (h)Ω•S(logD) ⊆ Ω•S . Hence, ϑ ∈ (h2)Ω•S and dh1 ∧ω = ϑ′/h2,

where ϑ′ ∈ Ω•S .
Thus, h2(dh1 ∧ω) = dh1 ∧ (h2ω) ∈ Ω•S , that is, dh1 ∧ (h2ω) is a holomorphic form. It does mean that

h2ω ∈ Ω•S(logD1). This completes the proof of the first inclusion.
The second inclusion can be proved in the same style. Really, h1(dh2∧ω) is a holomorphic differential

form because it is equal to the difference dh ∧ ω − h2dh1 ∧ ω, where the first form is holomorphic by
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assumptions, while the holomorphicity of the second form is established similarly to the proof of the
first inclusion. Further,

dh1 ∧ (dh2 ∧ ω) = d(h1dh2 ∧ ω) + h1(dh2 ∧ dω).

Since the form h1dh2 ∧ ω is holomorphic then its total differential is also holomorphic. At last,

h1(dh2 ∧ dω) = dh ∧ dω − h2(dh1 ∧ dω).

The differential form dh∧dω is holomorphic by hypothesis since the external algebra Ω•S(logD) is closed
relative to the de Rham differentiation d, so that dω ∈ Ω•S(logD). As in the proof of the first inclusion
one obtains that h2(dh1∧dω) is a holomorphic form. This implies that h1(dh2∧dω) as well as h1(dh2∧ω)
are holomorphic forms. Thus, dh2 ∧ ω ∈ Ω•S(logD1) as required. The general case k > 2 is considered
analogously. QED.

Remark 1. By the same reasonings one can see that for all j = 1, . . . , k there are inclusion

(h1 · · · ĥi · · ·hk)Ω•S(logD) ⊆ Ω•S(logDi), d(h1 · · · ĥi · · ·hk) ∧ Ω•S(logD) ⊆ Ω•S(logDi).

Similar relations are also valid for divisors obtained by the exclusion of any collection of components of
the decomposition.

Claim 3. Assume that components Di, i = 1, . . . , k, of an irredundant decomposition of a reduced divisor
D are defined locally by elements of a regular OS-sequence (h1, . . . , hk). Then

Ω•S(log D̂1) ∩ . . . ∩ Ω•S(log D̂k) = Ω•S ,

and there is an exact sequence of complexes

0 −→ Ω•S −→ ⊕ Ω•S(log D̂i) −→
∑

Ω•S(log D̂i) −→ 0.

Proof. It is sufficient to prove the first relation. Clearly, the right side of the relation is contained

in the leftist. Conversely, let us take a differential p-form ω from the left side. Then (h1 · · · ĥi · · ·hk)ω ∈
ΩpS , i = 1, . . . , k. Hence, ω ∈

⋂
1

(h1···ĥi···hk)
ΩpS , or, equivalently, hω ∈ (h1)ΩpS ∩ . . .∩ (hk)ΩpS . Elementary

properties of regular sequences imply that the latter intersection is equal to (h1 · · ·hk)ΩpS , that is, ω ∈ ΩpS .
QED.

3. A decomposition of meromorphic forms along complete intersections

Let D = D1 ∪ . . . ∪ Dk be a reduced reducible hypersurface. We will denote the OS-modules of
meromorphic differential q-forms, q ≥ 1, formed by differential q-forms with simple poles and with poles

of any order on the divisor D̂i = D1∪. . .∪Di−1∪Di+1∪. . .∪Dk, by ΩqS(D̂i) and by ΩqS(?D̂i), i = 1, . . . , k,

respectively. When k = 1 we set D̂1 = ∅, so that ΩqS(D̂1) = ΩqS(?D̂1) = ΩqS .
Let us further assume that the complex analytical space C = D1∩ . . .∩Dk is a complete intersection.

This means that the ideal I defining C ⊂ U is locally generated by a regular OU -sequence (h1, . . . , hk)
and dimC = m − k ≥ 0. We also suppose that C = Cred is a reduced space when dimC > 0. In other
words, the ideal I =

√
I is radical. In particular, these conditions imply that the differential k-form

dh1 ∧ . . .∧ dhk is not identically zero on every irreducible component of C. The following statement and
its proof are slightly changed versions of considerations from [3], [4].

Theorem 1. Suppose that in a neighborhood U of x ∈ C all irreducible components Di, i = 1, . . . , k,
of D are defined by elements of a regular OU -sequence (h1, . . . , hk). Assume also that a meromorphic
differential form ω ∈ ΩqU (D) satisfies the following conditions

(3) dhj ∧ ω ∈
k∑
i=1

Ωq+1
U (D̂i), j = 1, . . . , k.
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Then there is a holomorphic function g, which is not identically zero on every irreducible component
of the complete intersection C, a holomorphic differential form ξ ∈ Ωq−kU and a meromorphic q-form

η ∈
∑k
i=1 ΩqU (D̂i) such that there exists the following representation

(4) gω =
dh1

h1
∧ . . . ∧ dhk

hk
∧ ξ + η.

Proof. In a neighborhood of x ∈ U the differential form ω is represented as follows:

ω =
1

h1 · · ·hk

∑
|I|=q

aI(z)·dzI ,

where I := Iq = (i1, . . . , iq), 1 ≤ i1, . . . , iq ≤ m, is a multiple index, dzI = dzi1 ∧ . . . ∧ dziq , and
aI(z) ∈ OU is the set of coefficients, skew-symmetric relative to I. It is clear that conditions (3) are
equivalent to inclusions

dhj ∧
∑
I

aI(z)·dzI ∈
k∑
`=1

h` Ωq+1
U , j = 1, . . . , k.

These inclusions give us the following system of relations between the coefficients aI and the partial
derivatives of hj :

(5)

q∑
`=1

(−1)`−1 ∂hj
∂zi`

aI\i` = b1jIh1 + . . .+ bkjIhk, j = 1, . . . , k,

with holomorphic functions b1jI , . . . , b
k
jI ∈ OU .

Let us fix a multi-index Jp = (j1, . . . , jp), 1 ≤ j1, . . . , jp ≤ m, 1 ≤ p ≤ k, and denote the corresponding
minor of Jacobian matrix Jac(h1, . . . , hk) = ‖∂hi/∂zj‖ by

∆Jp = δj1...jp = det

∥∥∥∥ ∂hi∂zjr

∥∥∥∥
1≤i, r≤p

We will prove by induction on index p that the following relations are valid:

(6) ∆JpaIq ≡
∑

K⊂Iq, |K|=p

sgn

(
Iq

K, Iq \K

)
∆K a(Jp,Iq\K)

(
mod (I)

)
, p = 1, . . . , k,

where I ⊆ OU is generated by the regular sequence (h1, . . . , hk).
First let us assume that p = 1 and set J1 = j1 = j, I = (j, Iq) = (j, i1, . . . , iq) in formula (5). Then

one gets the following relation

∂h1

∂zj
aIq ≡

q∑
`=1

(−1)`−1 ∂h1

∂zi`
aI\i`

(
mod (I)

)
,

which coincides with relation (6) for p = 1.
Let us suppose that (6) is true for p − 1 and prove it for p as follows. The cofactor expansion of

determinant ∆Jp along the p-th row gives the identity:

∆JpaIq =

p∑
`=1

(−1)p−`
∂hp
∂zj`

∆p−1

j1...ĵ`...jp
aIq .

By the induction hypothesis there is the congruence

∆j1...ĵ`...jp
aIq ≡

∑
K′⊂Iq

|K′|=p−1

sgn

(
Iq

K′, Iq \K′

)
∆K′a(j1...ĵ`...jp, Iq\K′)

(
mod (I)

)
.
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Let us substitute this expression in the previous identity. Changing then the order of summation, one
obtains

∆JpaIq ≡
∑

K′⊂Iq

|K′|=p−1

sgn

(
Iq

K′, Iq \K′

)
∆K′

p∑
`=1

(−1)p−`
∂hp
∂zj`

a(j1...ĵ`...jp, Iq\K′)
(
mod (I)

)
.

The second sum consists of p terms containing in formula (5) with j = p, I = (j1, . . . , jp, I
q \K′).

It is not difficult to rewrite this expression in the form of the sum which contains the remaining
q − p + 1 terms with opposite signs and an element from the ideal (h1, . . . , hk)OU . Hence, one obtains
the congruence modulo I :

(7) ∆JpaIq ≡
∑

K′⊂Iq

|K′|=p−1

sgn

(
Iq

K′, Iq \K′

)
∆K′(−1)p−1

∑
i∈I\K′

(−1)#(i; I\K′) ∂hp
∂zi

a(j1...jp, Iq\K′\i),

where #(i; I \K′) is equal to the number of occurrences of the index i in the set I \K′. At last, let us
put in order all pairs (K′, i) in such a way that the multi-index K′ ∪ {i} coincides with the given one
K ⊂ I. For any such pair the corresponding coefficient a(j1...jp, I\K′\i) is equal to a(J, I\K). Then the
contribution of the above ordered set to relation (7) is equal to the following:

a(Jp, Iq\K)(−1)p−1
∑
i∈K

sgn

(
Iq

K \ i, Iq \K, i

)
(−1)#(i; I\(K\i)) ∂hp

∂zi
∆K\i =

= sgn

(
Iq

K, Iq \K

)
aJp, Iq\K ∆K .

This completes the proof of relation (6) for p ≥ 1.
It remains to show that it is possible to choose the function g in such a way that g 6≡ 0 on each

irreducible component of the complete intersection C. For this we examine ideal G of the ring OU
generated by all minors ∆i1...ik of the maximal order of Jacobian matrix Jac(h1, . . . , hk). Since dh1 ∧
. . . ∧ dhk does not vanish identically on each irreducible component of the complete intersection C,

then the image G̃ of the ideal G in the ring OC,0 is not equal to AnnOC,0. Thus, it is possible to use

Theorem 2.4. (1) from [6] which yields that OC,0-depth of the ideal G̃ is not less than one. Hence, there
is an element g ∈ OC,0 with the property required by Theorem 1. QED.

Remark 2. It is not difficult to verify that formula (6) implies the following identity

∆i1...ik ·
∑
|I|=q

aIdzI = dh1 ∧ . . . ∧ dhk ∧
( ∑
|I′|=q−k

ai1...ikI′ dzI′
)

+ ν,

where ν ∈
∑k
j=1 hjΩ

q−k
U . Therefore, by analogy with the case of hypersurface (see [20], Lemma (2.8))

the maximal minors of Jacobian matrix Jac(h1, . . . , hk) can be considered as universal denominators for
the complete intersection C.

If m = k, that is, dimC = 0 and C is non-reduced then the latter formula implies that there exists
representation (4) with a function g equal to an element of the one-dimensional socle of the local algebra
OC,0 generated over the ground field by the determinant of the Jacobian matrix Jac(h) (see [23]). In
this case the notion of multiple residue of meromorphic differential forms of degree m coincides with
the so-called multidimensional residue; in the context of Grothendieck local duality theory it can be
expressed in terms of projection of elements of a certain finite dimensional vector space to this socle (cf.
[8]).

Corollary 1. Let ω ∈ ΩqS(logD) be a differential form with logarithmic poles along a hypersurface
D and let C = D1 ∩ . . . ∩ Dk be a complete intersection. Then there exists representation (4) with a

differential form η ∈
∑k
i=1 Ω•S(log D̂i).

Proof. Since for the logarithmic form ω conditions (3) are fulfilled in virtue of Proposition 1 from

Section 2, then there is decomposition (4) with η ∈
∑k
i=1 ΩqU (D̂i). For the sake of simplicity, let us
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examine the case k = 2. Then η = η1/h1 + η2/h2, where η1, η2 ∈ ΩqU . Taking the external product by
dh of both parts of representation (4), one concludes that the differential form

dh ∧ η = dh ∧
( η1
h1

+
η2
h2

)
= dh2 ∧ η1 + dh1 ∧ η2 + h2

dh1

h1
∧ η1 + h1

dh2

h2
∧ η2

is holomorphic. Hence, the sum of the both last terms is also holomorphic. Now let us reduce all the
terms of the sum to the common denominator. This gives the inclusion

h2
2(dh1 ∧ η1) + h2

1(dh2 ∧ η2) ∈ (h1h2)Ω•S ,

i.e., h2
2α + h2

1β = h1h2γ, where α, β, γ ∈ Ω•S . Therefore, h2
2α + (h1β − h2γ)h1 = 0. Since (h1, h2) is a

regular sequence, then, comparing the coefficients of the corresponding form for every fixed collection of
differentials, one obtains that α = h1α

′, α′ ∈ Ω•S . Hence, dh1∧η1 ∈ (h1)Ω•S , that is, η1/h1 ∈ Ω•S(logD1).
By the same reasonings one can check that η2/h2 ∈ Ω•S(logD2). The general case k > 2 is investigated
analogously. QED.

Corollary 2. Under conditions of Theorem 1 representation (4) exists if and only if there are analytical
subsets Aj ⊂ Dj , j = 1, . . . , k, of codimension not less than 2 such that the germ ω at any point

x ∈
⋃k
j=1(Dj \Aj) belongs to the space

(8)
dh1

h1
∧ . . . ∧ dhk

hk
∧ Ωq−kU,x +

k∑
i=1

ΩqU,x(D̂i).

Proof. Taking Aj = Dj ∩ {g = 0}, j = 1, . . . , k, one obtains the decomposition of Theorem 1 which
implies the desired statement.

The converse is true in view of the following reasonings. If there exists representation (8) for a
meromorphic form ω, then hω is, in fact, holomorphic outside of subsets Ai ⊂ Di, i = 1, . . . , k, of
codimension not less than 2. Consequently, according to Riemann extension Theorem, the differential

form hω is holomorphic everywhere so that hjω ∈ ΩqU (D̂j), j = 1, . . . , k.
Further, dhj ∧ ω is represented as the sum of meromorphic forms ωi, each of which is singular not

more than on k− 1 components of divisor D̂i and on the subset Ai ⊂ Di of codimension not less than 2.

Again, applying Riemann Theorem to (h1 · · · ĥi · · ·hk)ωi, one obtains that the differential form ωi has

singularities only on D̂i. As a result dhj ∧ ω ∈
∑k
i=1 ΩqU (D̂i), j = 1, . . . , k. QED.

Remark 3. If one takes a decomposition of a reducible divisor D of length k = 1, so that C = D,
then representation (4) looks like this

(9) gω =
dh

h
∧ ξ + η, ξ, η ∈ Ω•U ;

it coincides with representation of the basic lemma by K.Saito (see [20], (1.1), iii)).

4. The multiple residue map

Let us now discuss the concept of multiple residues of meromorphic forms which satisfy conditions of
Section 3. In notations of Theorem 1 it is not difficult to see that the function g from representation (4)
is a non-zero divisor in OS,0/(h1, . . . , hk)OS,0 ∼= OC,0. Therefore the restriction of the form ξ/g to the
germ of complete intersection C = D1 ∩ . . . ∩Dk is well-defined.

Definition 1. The restriction of differential form ξ/g to the complete intersection C is called the
multiple residue of the differential form ω; the corresponding map is denoted by ResC , so that

ResC(ω) =
ξ

g

∣∣∣∣
C

.

Remark 4. The multiple residue of ω is contained in the space MC ⊗OC Ωq−kC
∼= MC̃ ⊗O

C̃
Ωq−k
C̃

,

q ≥ k, where C̃ is the normalization of C.

Proposition 2. The multiple residue map is well-defined, that is, its values do not depend on represen-
tation (4).
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Proof. Let us assume that q ≥ k and a differential q-form ω have two local representations

g`ω =
dh1

h1
∧ . . . ∧ dhk

hk
∧ ξ` + η`, ` = 1, 2.

Then

dh1 ∧ . . . ∧ dhk ∧ (g1ξ2 − g2ξ1) = h1 · · ·hk(g1η2 − g2η1) ∈ (h1, . . . , hk)ΩqS .

Consequently,

dh1 ∧ . . . ∧ dhk ∧ (g1ξ2 − g2ξ1) ≡ 0
(
mod (h1, . . . , hk)

)
.

Then the first part of the main Theorem from [18] (the generalized de Rham Lemma) with R = OC,0,
M = Ω1

S,0 ⊗ OC,0, ei = zi, i = 1, . . . ,m, ωj = dhj , j = 1, . . . , k, p = q − k ≥ 0, implies that

G
e(g1ξ2 − g2ξ1) ⊂ dh1 ∧ Ωq−k−1

S,0 + . . .+ dhk ∧ Ωq−k−1
S,0 + (h1, . . . , hk)Ωq−kS,0 , e ∈ Z+,

where the ideal G ⊂ OS,0 is generated by all minors ∆i1...ik of maximal order of Jacobian matrix

Jac(h1, . . . , hk). As in the end of the proof of Theorem 1 we note that the image G̃ of the ideal G in the

ring OC,0 is not equal to AnnOC,0, since the germ C is reduced. Therefore OC,0-depth of the ideal G̃ is

not less than 1. Consequently, there is an element ∆ ∈ G̃, a non-zero divisor in OC,0 such that

∆e(g1ξ2 − g2ξ1) ∈ dh1 ∧ Ωq−k−1
S,0 + . . .+ dhk ∧ Ωq−k−1

S,0 + (h1, . . . , hk)Ωq−kS,0 .

Therefore the class of the element ∆e(g1ξ2 − g2ξ1) in Ωq−kC,0 is equal to zero. It does mean that both

elements
1

g1
ξ1 and

1

g2
ξ2 determine the same class in MC,0 ⊗OC,0 Ωq−kC,0 . QED.

Lemma 1. The kernel of the multiple residue map coincides with the space
∑k
i=1 Ω•S(D̂i).

Proof. It is clear that the kernel contains this sum. It remains to prove the converse inclusion.
Suppose that ResC(ω) = 0 for a certain q-form ω, q ≥ k. Then there exists a function g in representa-
tion (4) of Theorem 1 such that the restriction of meromorphic form ξ/g to C vanishes. Consequently,
ξ = g(

∑
hiξi +

∑
dhi ∧ ξ′i), where ξi, ξ

′
i ∈ Ω•S , and

hω = dh1 ∧ . . . ∧ dhk ∧ (
∑

hiξi) +
1

g
(
∑

hiηi), ηi ∈ Ω•S .

Since hω and the first term in the right side of the identity are holomorphic, then g divides
∑
hiηi in

Ω•S , that is, gη0 =
∑
hiηi, η0 ∈ Ω•S . On the other hand, (h1, . . . , hk) is a regular sequence and g is a

non-zero divisor in OC = OS/(h1, . . . , hk)OS . Therefore, examining coefficients of the differentials dzI
in the coordinate representation of the holomorphic form

∑
hiηi, one obtains that η0 ∈ (h1, . . . , hk)Ω•S .

This yields ω ∈
∑k
i=1 Ω•S(D̂i). QED.

5. Regular meromorphic differential forms

Let M be a complex variety, dimM = m, and let X ⊂M be an analytical subset in a neighborhood
of x ∈ U ⊂M defined by a sequence of functions f1, . . . , fk ∈ OU . We denote by ΩqX , q ≥ 0, the sheaves
of germs of regular holomorphic differential q-forms on X; they are defined as restriction to X of the
quotient module

ΩqX = ΩqU/((f1, . . . , fk)ΩqU + df1 ∧ Ωq−1
U + . . .+ dfk ∧ Ωq−1

U

)∣∣∣
X
.

Then the usual differential d endows this family of sheaves with structure of a complex; it is called the
de Rham complex on X and is denoted by (Ω•X , d).

Throughout this section we assume that X is a Cohen-Macaulay space and dimX = n. Then

ωnX = Extm−nOM
(OX ,Ω

m
M )

is called the Grothendieck dualizing module of X.
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Definition 2. For any q ≥ 0 the coherent sheaf of OX -modules ωqX is locally defined as the set of

germs of meromorphic differential forms ω of degree q on X such that ω ∧ η ∈ ωnX for any η ∈ Ωn−qX . In
other words (see [5]),

ωqX
∼= HomOX (Ωn−qX , ωnX) ∼= Extm−nOM

(Ωn−qX ,ΩmM ).

Elements of ωqX are called regular meromorphic differential q-forms on X. There are also other equiv-
alent definitions of such forms in terms of Noether normalization and trace (see [13], [5]), in terms of
residual currents (see [3]), and so on. Here are some useful properties of regular meromorphic differential
forms.

1) ωqX = 0, if q < 0 or q > dimX;
2) ωqX has no torsion, that is, TorsωqX = 0, q ≥ 0;
3) de Rham differential d acting on ωqX is extended on the family of modules ωqX , 0 ≤ q ≤ n, and

endows this family with structure of complex (ω•X , d);
4) there exists an inclusion ωqX ⊆ j∗j

∗ΩqX , where j : X \ Z −→ X is the canonical inclusion and
Z = SingX; moreover, if X is a normal space, then ωqX

∼= j∗j
∗ΩqX ;

5) if π : X̃ → X is a finite morphism of the normalization of X, then the mapping of direct image
π∗ : ω•

X̃
→ ω•X is injective; if moreover the germ of the normalization is smooth and the codimension of

the set of points, in neighborhood of which π is a local isomorphism, is not less than two, then mapping
π∗ is surjective (see [5]). This means that ω•

X̃
and ω•X are isomorphic and, in particular, Ω•

X̃
∼= ω•X .

6) if X is a simple rational singularity of type Ak, Dk, E6, E7 or E8, then the complex (ω•X , d) is
acyclic in positive dimensions (see [11]), that is, ω•X is a resolution of the constant sheaf CX .

Let us now assume that X = C is a complete intersection given by a regular sequence of functions
f1, . . . , fk ∈ OU in a neighborhood U of a point x ∈ C. Then n = m− k and

ωnC,x = ExtkOM,x
(OC,x, ΩmM,x) ∼= OC,x(ω0),

where ω0 is the uniquely (modulo df1, . . . , dfk) determined meromorphic differential n-form in j∗j
∗ΩnC,x

for which there is a representation ω0 ∧ df1 ∧ . . .∧ dfk = dz1 ∧ . . .∧ dzm in j∗j
∗(ΩmM,x ⊗OC,x) with local

coordinates z1, . . . , zm in U. Thus, the dualizing module ωnC is a locally free OC-module of rank one.
Furthermore, there are isomorphisms of OM -modules

ωqC
∼= HomOC (Ωn−qC , OC) ∼= ExtkOM

(Ωn−qC , OM ), 0 ≤ q ≤ n.

Changing by places the arguments of the extension group Extk, one obtains another useful description
of regular meromorphic forms [5].

Lemma 2. Let a subspace C ⊂ M be a complete intersection. Then there is an exact sequence of
OC-modules

(10) 0 −→ ωqC
C−→ ExtkOM

(
OC , Ωq+kM

) E

−−→
(

ExtkOM

(
OC , Ωq+k+1

M

))k
, q ≥ 0,

where ωqC ⊆ j∗j
∗ΩqC , the morphism C is the multiplication by the fundamental class C, and the mapping

E is locally defined by E(e) = (e ∧ df1, . . . , e ∧ dfk).

Corollary 3. Let C = C1 ∪ · · · ∪ Cr be an irredundant decomposition of a complete intersection space
C. Then there is a canonical inclusion of complexes of regular meromorphic forms

ω•C1
⊕ · · · ⊕ ω•Cr

↪→ ω•C .

Proof. It is sufficient to examine the case r = 2. Thus, let C = C′ ∪ C′′ be the union of two sets
which consist of irreducible components of C and have no common elements. One can apply the functor
Ext∗OM

to the short exact sequence

0→ OC → OC′ ⊕ OC′′ → OC′∩C′′ → 0,

then use Lemma 2 and standard properties of functor Ext. QED.
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6. Multiple residues of logarithmic forms

As already mentioned before (cf. Corollary 1) for logarithmic differential forms with poles along
a divisor satisfying assumptions of Section 3, there exists representation (4), and, consequently, the
restriction of multiple residue map ResC to the subspace of such logarithmic forms is well-defined.

Lemma 3. Let ω ∈ ΩqS(logD) be a differential form with logarithmic poles along D and let C =
D1 ∩ . . . ∩ Dk be a complete intersection. Then the multiple residue map commutes with de Rham
differentiation.

Proof. Let us apply differentiation d to representation (4) for ω :

ω =
dh1

h1
∧ . . . ∧ dhk

hk
∧ ξ
g

+
η

g
,

Corollary 1 implies that the form η is logarithmic as well as its total differential dη. Thus, ResC(dω) =

d( ξ
g
)
∣∣
C
. This completes the proof. QED.

The following assertion in the case k = 1 has been obtained in [1] (see also [2]); we give a proof in
general case k > 1 similarly to the proof of Theorem from [3].

Theorem 2. In notations of Section 3 let C = D1∩ . . .∩Dk be a complete intersection. Then for p ≥ k
there is an exact sequence of OS-modules

0 −→
∑k
i=1 ΩpS(log D̂i) −→ ΩpS(logD)

ResC
−−→ ωp−kC −→ 0.

Proof. Let us first compute the kernel of the restriction of the multiple residue morphism ResC to
Ω•S(logD). In view of Claim 3 from Section 2 and Lemma 1 from Section 4 it is sufficient to verify that
for all j = 1, . . . , k one has

Ω•S(logD) ∩ Ω•S(D̂j) = Ω•S(log D̂j).

Since Ω•S(log D̂j) ⊆ Ω•S(logD) then the right side is contained in the leftist. To prove the converse

inclusion we examine in detail the case k = 2. Thus, take ω ∈ Ω•S(D̂1) = Ω•S(D2) ∼= 1
h2

Ω•S , that is,

ω = ξ/h2. If ω ∈ Ω•S(logD), then hω = h1ξ ∈ Ω•S and

dh ∧ ω = dh1 ∧ ξ + dh2 ∧ (h1ω) ∈ Ω•S .

This implies that dh2 ∧ (h1ω) ∈ Ω•S , that is, dh2 ∧ (h1ξ) ∈ (h2)Ω•S . Therefore, h1dh2 ∧ ξ = h2η, where
η ∈ Ω•S . Since h1 and h2 form a regular sequence, then, comparing coefficients of the differential forms
dh2 ∧ ξ and η, one obtains that h1 divides η, and, therefore, dh2 ∧ ξ ∈ (h2)Ω•S , dh2 ∧ ω ∈ Ω•S , that is,

ω ∈ Ω•S(D2) = Ω•S(D̂1) as required. The general case k ≥ 2 is analyzed analogously. QED.
Now we are going to describe the image of morphism ResC , following the scheme of the proof from

[1], § 4. Thus, it suffices to check everything locally. Let us first note that the image of ResC is an

OC-module, since in view of Proposition 1 of Section 2 there are inclusions hjΩ
•
S(logD) ⊆ Ω•S(log D̂j)

for all j = 1, . . . , k. In particular, the ideal I = (h1, . . . , hk) annihilates this image. Further, Remark 2
yields that

∆i1...ik · ResCΩqS(logD)
∣∣
U
⊂ Ωq−kC

∣∣
C∩U ,

for maximal minors ∆i1...ik , (i1, . . . , ik) ∈ [1, . . . ,m] of Jacobian matrix Jac(h1, . . . , hk). Since ωnC,0 ∼=
OC,0(dz1∧ . . .∧dzn+k/dh1∧ . . .∧dhk), then by definition of regular meromorphic forms one obtains that

ResC
(
ΩqS,0(logD)

)
⊆ Ωq−kC,0 . Let now K•(h) be the usual Koszul complex associated with the regular

sequence h = (h1, . . . , hk) :

0→ OS,0〈e0 ∧ . . . ∧ ek−1〉
dk−1

−−→ . . .
d1
−−→

k−1∑
i=0

OS,0〈ei〉
d0
−−→ OS,0

d−1

−−→ OC,0 → 0 ,

where Kk(h) = OS,0〈e0 ∧ . . . ∧ ek−1〉, . . . , K1(h) = OS,0〈e0〉+ . . .+ OS,0〈ek−1〉, K0(h) = OS,0, d0(ei) =
hi+1, i = 0, . . . , k − 1, d−1(1) = 1.

The dual exact sequence implies an isomorphism

ExtkOS,0
(OC,0, Ωq+1

S,0 ) ∼= HomOS,0(Kk(h), Ωq+1
S,0 )/dk−1(HomOS,0(Kk−1(h), Ωq+1

S,0 )
)
.
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Thus, any element from the space ExtkOS,0
(OC,0, Ωq+1

S,0 ) can be represented as a Čzech (k−1)-cochain

(more precisely, as a (k − 1)-cocycle) as follows:

ν

h1 · · ·hk
∈ HomOS,0(Kk(h), Ωq+1

S,0 ) ∼= Ck−1
(k) (Ωq+1

S,0 ),

where ν ∈ Ωq+1
S,0 . Let us consider an element ν ∈ Ωq+1

S,0 such that the meromorphic form

ν

h1 · · ·hk
∧ dhj ∈ ExtkOS,0

(OC,0, Ωq+2
S,0 ), j = 1, . . . , k,

corresponds to the trivial element.
This means that for any j = 1, . . . , k the differential form ν ∧dhj/h1 · · ·hk is determined by a certain

element from the space dk−1
(
HomOS,0(Kk−1(h), Ωq+2

S,0 )
)
. Hence, one gets

ν ∧ dhj ∈
k∑
i=1

hiΩ
q+2
S , j = 1, . . . , k,

or, equivalently,

ω ∧ dhj ∈
k∑
i=1

Ωq+2
S (D̂i), j = 1, . . . , k, where ω =

ν

h1 · · ·hk
.

As a result, the differential form ω satisfies conditions (3) of Theorem 1. It remains to use exact se-
quence (10) of Lemma 2 as follows.

Let ν̃ = C−1(ν/h1 · · ·hk). Then C(ν̃) corresponds to Čzech cocycle ν/h1 · · ·hk such that ν = ν̃ ∧
dh1∧· · ·∧dhk. Making use of the description for ωqC in terms of multiplication by the fundamental class

C ⊂ S in exact sequence (10), one can take v = ν̃, w = ν, since C(v) corresponds to Čzech cocycle w/h
such that w = v ∧ dh1 ∧ · · · ∧ dhk. This implies

ω = ν̃ ∧ dh1

h1
∧ · · · ∧ dhk

hk
, ResC(ω) = ResC

(
ν

h1 · · ·hk

)
= ν̃.

Thus, for any element ν̃ ∈ ωq−k there exists a preimage relatively to the residue map ResC represented
by ω = ν/h1 · · ·hk such that the differential form hω is holomorphic, and dh∧ω = 0. In particular, this
means that ω ∈ Ω•S(logD) as required. QED.

Remark 5. In notations of Remark 3 let us take k = 1, and C = D. Then ResC = ResD; it is, in
fact, the residue map res. introduced by K.Saito [20]. In this case there is (see [1]) an exact sequence

(11) 0 −→ ΩqS −→ ΩqS(logD)
res.
−−→ ωq−1

D −→ 0, q ≥ 1,

supplementing diagram (2.5) of [20] from the right side. Thus, Theorem 2 can be considered as an
extension of this sequence for the multiple residue map.

Corollary 4. Under the same assumptions there is a natural isomorphism

H
p
DR(Ω•S(logD)) ∼= H

p−1
DR (ω•D),

where H∗DR is the functor of cohomologies of complexes endowed with de Rham differentiation d. In
particular, Ω•S(logD) is acyclic in dimensions p > 1 when D is a simple rational singularity of type Ak,
Dk, E6, E7 or E8 of dimension n ≥ 2.

Proof. The residue map is compatible with differentiation d. Hence, exact sequences (11) for all
q ≥ 1 are composed in the exact sequence of the corresponding complexes. This yields the desired
isomorphism. Further, it is known (see [11], Bem. (4.8), (2)) that for rational singularities the complex
(ω•D, d) is acyclic in positive dimensions; this implies the second part of the statement. In addition,
since the dimension of H0

DR(ω•D) is equal to the number of irreducible components of D [loc. cite, (4.1)],
then H1

DR(Ω•S(logD)) ∼= C under our assumptions. For completeness, it should be mentioned that these
results can be also obtained by direct computations (see [10]).
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7. Closed differential forms and the image of the residue map

As was discussed before the image of Poincaré-Leray residue map consists of holomorphic forms on a
smooth hypersurface D; in this case Ω•D and ω•D are naturally isomorphic. Let us prove in the context
of the theory of logarithmic differential forms the following statement for singular hypersurfaces due to
G. de Rham [17] (see also [14], p.83).

Theorem 3. Let D be a hypersurface in a manifold S, dimS = m ≥ 3. Assume that SingD consists of
isolated double quadratic points and ω is a holomorphic d-closed p-form on S \D with a pole of the first
order on D. Then the residue-form resD(ω) is holomorphic at singular points of D if and only if either
p < m, or p = m and the functional coefficient of m-form ω(z)h(z) vanishes on SingD.

Proof. At first remark, that ΩmS (D) ∼= ΩmS (logD), and dω = 0 for all ω ∈ ΩmS (D). By assumptions,
for any p < m the differential p-form ω ∈ ΩpS(D) is closed, dω = 0. Thus, dh∧ω = d(hω) is holomorphic
at x ∈ S. That is, ω is logarithmic, ω ∈ ΩpS,x(logD).

In view of Remark 3 for such differential form ω there exists locally representation (9) with a holo-
morphic function g, a non-zero divisor of OS,x/(h)OS,x, where x ∈ SingD and h is equal to the sum of
squares of local coordinate functions, h = z21 + . . .+ z2m, in a suitable neighborhood of x. Moreover, hω
is a torsion element of ΩpD,x and there is an exact sequence (see [1], [2])

0 −→ ΩpS,x +
dh

h
∧ Ωp−1

S,x −→ ΩpS,x(logD)
·h−→ Tors ΩpD,x −→ 0.

Since m ≥ 3 and SingD consists of isolated double quadratic points, then D is a normal irreducible
hypersurface. Hence, Tors ΩpD,x = 0 for all p < codim(SingD,D) = m − 1, and for such p one has

ω ∈ dh
h
∧ Ωp−1

S,x + ΩpS,x, that is, the function g in representation (9) is invertible at x. Consequently,

resD(ω) = ξ
∣∣
D

is holomorphic on D.

When p = m, then ω = ϕdz1 ∧ . . . ∧ dzm/h, where ϕ is a holomorphic function germ. The vanishing
of ϕ at x ∈ SingD yields that hω = dh ∧ ξ. Hence resD(ω) = ξ

∣∣
D
, where ξ is holomorphic at x ∈ S and

vice versa.
It remains to analyze the case p = m − 1. In this case one has Tors Ωm−1

D,x = ΩmD,x 6= 0. To be more

precise, if z1, . . . , zm is a local coordinate system at x ∈ S, x = 0, then Tors Ωm−1
D,x is generated over C

by the Euler differential form ϑ =
∑

(−1)`−1z` dz1 ∧ . . .∧ d̂z` ∧ . . .∧dzm, the result of contraction of the
canonical generator of Tors ΩmD,x = ΩmD,x ∼= C〈dz1 ∧ . . . ∧ dzm〉 along Euler vector field. The differential
form ϑ/h is not closed, since d(ϑ/h) = (m − 2)dz1 ∧ . . . ∧ dzm/h. Since OD,x is a domain, then all
partial derivatives ∂h/∂z`, ` = 1, . . . ,m, are non-zero divisors. Therefore one can take the multiplier in
representation (9) equal to any z`. Explicit calculations show that for g = z` one has

ξ = 1
2

m∑
j=1, j 6=`

(−1)`+j sgn(j − `) zj dz1 ∧ . . . ∧ d̂z` ∧ . . . ∧ d̂zj ∧ . . . ∧ dzm,

η = (−1)`−1dz1 ∧ . . . ∧ d̂z` ∧ . . . ∧ dzm.

It is clear that z` does not divide ξ; hence, the differential (m − 2)-form resD(ϑ/h) = ξ
g

∣∣
D

is not

holomorphic on D. Let us describe conditions under which a logarithmic form ω = η1 + dh
h
∧ ξ1 + ϕϑ

h

with holomorphic η1, ξ1 and ϕ, has a holomorphic residue on D. Without loss of generality one can
suppose that the above differential forms and functions are homogeneous at the distinguished point
x. If ϕ is invertible at x, then resD(ϑ/h) = − ξ1

ϕ

∣∣
D

is holomorphic at x; this contradicts to the above

computations. Moreover, in such a case ω is not closed. Otherwise, if dω = 0, then there is an identity

dη1 −
dh

h
∧ dξ1 + (m− 2)ϕ

dz1 ∧ . . . ∧ dzm
h

= 0,

or, equivalently,
hη1 − dh ∧ dξ1 + (m− 2)ϕdz1 ∧ . . . ∧ dzm = 0.

However, it is impossible, since h and dh vanish at x, while ϕ is invertible. Finally, let suppose that ϕ
is not invertible, that is, ϕ is contained in the maximal ideal of OD,x. In this case ϕϑ

h
is contained in

Ωm−1
S,x + dh

h
∧Ωm−2

S,x in view of the above calculations. As a result, ω has a holomorphic residue on D. In
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particular, we also obtain that all closed logarithmic (m− 1)-forms are contained in Ωm−1
S,x + dh

h
∧Ωm−2

S,x ,
and, obviously, their residues are holomorphic on D. QED.

Remark 6. It is useful to examine also the case m = 2 separately. Thus, h = z2 +w2, that is, D is a
node; it is a divisor with normal crossing in a plane. The module Ω1

S(logD) is generated by differential
forms dh/h and ϑ/h, where ϑ = −wdz + zdw. It is not difficult to verify that d(ϑ/h) = 0 in contrast
with the case m ≥ 3 considered in the above Theorem. Furthermore, resD(ϑ/h) = −w

z

∣∣
D

= z
w

∣∣
D

is
not holomorphic on D. Simple considerations show that this residue is, in fact, a weakly holomorphic

function on D, that is, it is holomorphic only on the normalization D̃ of D. Really, changing coordinate
system, one gets h = zw, and Ω1

S(logD) is generated by two closed differential forms dz/z and dw/w

whose residues are holomorphic on D̃, but not on D (see [18], (2.11)). In fact, this phenomenon occurs
not only for divisors with normal crossings (see [loc.cite, Th. (2.9)]). Curiously that in the original
formulation of the theorem as well as in its later citations the restriction m ≥ 3 is omitted (cf. [14], pp.
84, 103, or [9], § 5).

More generally, in a similar style one can describe the image of the multiple residue map for divisors
with normal crossings. In this case this map coincides with the multidimensional Poincaré residue
considered in [7], (3.1.5). To be more precise, residues of logarithmic p-forms along the union of any
collection Di1 ∪ . . . ∪ Di` of irreducible components of D consist of restrictions to the intersection
Di1 ∩ . . . ∩Di` of differential (p − `)-forms holomorphic on the ambient space. Hence they are regular
holomorphic on the intersection as well as on its normalization since the map of direct image π∗ is an
isomorphism in view of property 5) of Section 5.

The next example is a simple modification of the above. By definition, OS-modules of logarithmic
differential p-forms of principal type ΩpS〈D〉, p ≥ 0, are defined as follows:

Ω0
S〈D〉 = OS , Ω1

S〈D〉 =

k∑
i=1

OS
dhi
hi

+ Ω1
S , ΩpS〈D〉 =

p∧
Ω1
S〈D〉, p ≥ 2.

One can easily verify that the family ΩpS〈D〉, p ≥ 0, forms a subcomplex of the logarithmic de Rham
complex Ω•S(logD) closed under the external differentiation and external product by dhi/hi, 1 ≤ i ≤ k.
Clearly, for divisors with normal crossings the equality ΩpS〈D〉 = ΩpS(logD) holds for all p ≥ 0. Further,
any logarithmic form of principal type has decomposition (4) of Theorem 1 with an invertible multiplier
g. Similarly to the case of divisors with normal crossings, multiple residues of such forms are holomorphic
on the corresponding complete intersection.

More generally, if D is a divisor such that there is an isomorphism ΩpS〈D〉 ∼= ΩpS(logD) for certain
p ≥ k, then the image of the multiple residue map can be characterized as above. A special class of
such divisors considered in cohomology theory of the ”twisted” de Rham complex can be described as
follows (another examples are also studied in [15]).

Let hj , j = 1, . . . , `, be non-constant homogeneous polynomials on S. Denote the ideal generated by
all minors ∆i1...ir of maximal order of Jacobian matrix Jac(hi1 , . . . , hir ) and polynomials hi1 , . . . , hir
by Gi1...ir ⊂ OS,0.

Claim 4. Assume that for any 1 ≤ r ≤ min{`,m − 1}, the algebraic set defined by the ideal Gi1...ir
is either empty or the origin, and hi1 , . . . , his is a regular sequence for 1 ≤ s ≤ min{`,m}. Then any
logarithmic differential p-form, 0 ≤ p ≤ m − 2, has decomposition (4) of Theorem 1 with an invertible
multiplier g, and there are isomorphisms ΩpS〈D〉 ∼= ΩpS(logD).

Proof. It is a slightly modified version of considerations from [12] or [15]. QED.

8. The weight filtration

The concept of weight filtration on the logarithmic de Rham complex for divisors with normal cross-
ings on manifolds was introduced by P.Deligne [7] for computation of the mixed Hodge structure on
the cohomologies of the complement. The case of divisors with normal crossings on V -varieties was
examined by J.Steenbrink [22]. In this section we construct the weight filtration on the logarithmic de
Rham complex for divisors whose components are defined by a regular sequence of functions. In partic-
ular, this allows to compute the mixed Hodge structure on cohomology of the complement of divisors
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of certain types without using theorems on resolution of singularities or the standard reduction to the
case of normal crossings.

Let X be an analytical manifold, D ⊂ X be a reduced divisor with irreducible decomposition D =
D1 ∪ . . . ∪ Dk. It is also assumed that D has no components with self-intersections. For any ordered
collection I = (i1 · · · in), 1 ≤ i1 < . . . < in ≤ k, of length n = #(I), let us consider the following germs:

DI = D(i1···in) = Di1 ∪ . . . ∪Din , CI = C(i1···in) = Di1 ∩ . . . ∩Din .

We denote by C(n) an analytical subspace of X given by the union of C(i1···in) for all permissible
collections so that C(1) = D, C(k) = C(i1···ik) = C, and so on. Let us also set D0 = C0 = ∅.

Definition 3. The weight filtration, or filtration of weights W on the logarithmic de Rham complex
ΩpX(logD) is locally defined as follows:

Wn(ΩpX,x(logD)) =



0, n < 0;

ΩpX,x, n = 0;∑
#(I)=p

ΩpX,x(logDI), n ≥ p, 0 < p < kx,∑
#(I)=n

ΩpX,x(logDI), otherwise,

where kx is the number of irreducible components of D passing through the point x ∈ X.

First non-trivial elements of the weight filtration in the case k = 3.

W0 Ω1
X Ω2

X Ω3
X Ω4

X

↓ ↓ ↓ ↓ ↓
W1

∑
Ω1
X(logDi)

∑
Ω2
X(logDi)

∑
Ω3
X(logDi)

∑
Ω4
X(logDi)

↓ ↓ ↓ ↓ ↓
W2

∑
Ω1
X(logDi)

∑
Ω2
X(log(Di ∪Dj))

∑
Ω3
X(log(Di ∪Dj))

∑
Ω4
X(log(Di ∪Dj))

↓ ↓ ↓ ↓ ↓
W3

∑
Ω1
X(logDi)

∑
Ω2
X(log(Di ∪Dj))

∑
Ω3
X(logD)

∑
Ω4
X(logD)

↓ ↓ ↓ ↓ ↓
· · · · · · · · · · · · · · ·

Thus, Wn(ΩpX,x(logD)) = ΩpX,x(logD), if n ≥ p ≥ kx. Further, W is an increasing filtration and, in

view of d- and ∧-closeness of Ω•X(logD), there exist the following natural inclusions

d(Wn(Ω•X(logD))) ⊂ Wn(Ω•X(logD)),

Wn(ΩpX(logD))
∧
W`(Ω

q
X(logD)) ⊂ Wn+`(Ω

p+q
X (logD))

for all entire numbers p, q, n, `. It should be remarked that for any n ≤ p the module Wn(ΩpX,x(logD))

contains all differential forms of principal type from ΩnX〈D〉 considered in Section 7 :

dhi1
hi1
∧ · · · ∧ dhi`

hi`
∧ Ωp−`X,x, 1 ≤ i1 < . . . < i` ≤ k, 1 ≤ ` ≤ n,

where hi1 , . . . , hi` are local equations of the corresponding components of divisor D passing through the
point x ∈ X. In general,

ΩnX,x〈D〉 ∧ Ωp−nX,x ⊆Wn(ΩpX,x(logD)) ⊆ ΩnX,x(logD) ∧ Ωp−nX,x , n ∈ Z, p ≥ n.

For divisors with normal crossings two complexes Ω•X〈D〉 and Ω•X(logD) are equal. Therefore, both
inclusions in the latter formula are, in fact, equalities and the weight filtration on the complex Ω•X〈D〉
is given as follows:

Wn(ΩpX〈D〉) = ΩnX〈D〉 ∧ Ωp−nX , n ∈ Z.
The following assertion can be considered as a generalization of isomorphism (3.1.5.2) from [7] valid

for divisors with normal crossings to the case of divisors whose components are given by a regular
sequence of functions.
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Let π : C̃(n) → C(n) be a morphism of normalization so that C̃(n) coincides with the non-connected

sum of normalizations C̃(i1···in) for all possible collections of length n ≥ 1. We denote by ι the projection

C̃(n) in X, so that ι = i ◦ π, where i : C(n) → X is a natural inclusion.

Proposition 3. Let us assume that a divisor D satisfies assumptions of Theorem 1 and the morphism
of normalization induces an isomorphism of complexes π∗ : ω•

C̃(n)
∼= ω•

C(n) . Then the multiple residue
map

Res•n : Wn(Ω•X(logD)) −→ ι∗ω
•
C̃(n) [−n],

induces an isomorphism of complexes of OX-modules

GrWn (Ω•X(logD)) ∼= ι∗ω
•
C̃(n) [−n].

Proof. Let firstly note that the morphism of normalization induces the isomorphism of direct image
π∗ if condition 5) from Section 5 is fulfilled. Furthermore, it suffices to prove our assertion locally, for
the germ (X,x) and for all n ≤ p.

For any ordered collection I = (i1 · · · in), 1 ≤ i1 < . . . < in ≤ kx, accordingly Theorem 2 with
D = DI there exists an exact sequence of complexes of OX,x-modules

0 −→
n∑
`=1

Ω•X,x(log(D̂I)i`) −→ Ω•X,x(logDI)
ResCI

−−→ ω•CI ,x[−n] −→ 0.

From basic properties of regular meromorphic differential forms it follows that ω•
C̃(n) is isomorphic to

the direct sum ω•
C̃I taking through all permissible collections I = (i1 · · · in). Further, any differential

form ω ∈ Wn(Ω•X(logD)) is decomposed into the sum of elements ωI ∈ Ω•X(logDI). Let us denote the
sum of ResCI (ωI) by ResC(n)(ω). One then obtains an exact sequence of OX -modules

0 −→Wn−1(Ω•X(logD)) −→Wn(Ω•X(logD))
ResC(n)

−−→ ι∗ω
•
C̃(n) [−n] −→ 0.

This yields the existence of required isomorphisms. QED.

Corollary 5. Under conditions of Proposition 3 there are natural isomorphisms of cohomology spaces

H
i(GrWn (Ω•X(logD))) ∼= H

i(ω•
C̃(n))[−n],

where i ≥ 1 and 1 ≤ n ≤ k.

Proof. Since the normalization π is finite and, therefore it is an affine morphism then

H
i(π∗ω

•
C̃(n)) ∼= H

i(ω•
C̃(n)), i ≥ 1,

and the desired assertion follows from Proposition above. QED.
Remark 7. Analyzing a more general situation where complexes ω•

C̃(n) and ω•
C(n) are non-isomorphic,

the corresponding isomorphisms in the formulation of Proposition 3 should be replaced by epimorphisms.
Remark 8. Suppose that a (finite) group G acts on a manifold X. Then it is not difficult to verify

that the residue mapping ResC is compatible with the action of this group in the usual sense. In this
case the complex of regular meromorphic forms ω•X/G on the quotient variety X/G is a resolution of

constant sheaf [11]. Making use of simplest properties of sheaves ΩpX(logD), ΩqC and the corresponding
subsheaves invariant relative to action of G, one obtains the isomorphism of Lemma (1.19) from [22] for
divisors with normal crossings on a V -variety.

Let us examine a simple application. The canonical decreasing Hodge filtration F on the logarithmic
de Rham complex ΩpX(logD) is defined as follows:

Fn(ΩpX(logD)) =

{
ΩpX(logD), n ≤ p,

0, n > p.

Suppose now that D is a reduced divisor as before and the natural inclusions

(12)
∑

#(I)=p

ΩpX,x(logDI) −→ ΩpX,x(logD)
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are isomorphisms for all 1 ≤ p < kx. Then Wn(ΩpX(logD)) ∼= ΩpX(logD) for all n ≥ p similarly to
the classical case of divisors with normal crossings (see (3.1.8) in [7]). Hence, under assumptions of
Proposition 3 one can define a natural morphism α from the complex Ω•X(logD) endowed by Hodge
filtration F into the same complex with decreasing filtration W given as Wn = W−n.

Corollary 6. Under the same assumptions the above morphism α is a filtered quasi-isomorphism if
Hi(ω•

C̃(n)) = 0 for i 6= 0.

Proof. Analogously to the proof of (3.1.8.2) in [7]. QED.
Remark 9. Of course, for divisors with normal crossings inclusions (12) are isomorphisms for all

p ≥ 1. A special class of divisors with
∑k
i=1 Ω1

X,x(logDi) ∼= Ω1
X,x(logD) is considered in Theorem 2.9

by [20] (see Section 2.)
Remark 10. The vanishing condition of Corollary 6 means that the complex of regular meromorphic

forms on the normalization C̃(n) is acyclic in positive dimensions. Besides the case of divisors with
normal crossings examined in [7], another types of varieties satisfied this condition are known. Among
them there are rational normal complete intersections, quotient singularities of smooth varieties with
action of a finite group (see [11]), V -varieties (see [22]), and so on.

Remark 11. If two complexes Ω•X(logD) and Ω•X(?D) endowed with standard Hodge filtration are
quasi-isomorphic (see, for example, [10]), then the morphism β from Proposition (3.1.8) of [7] is a quasi-
isomorphism. If additionally the condition of the previous Corollary 6 is satisfied, then α is also a quasi-
isomorphism. This means that in all cases mentioned in Remark above there are isomorphisms (3.1.8.2)
of [7]:

Rnj∗C ∼= H
n(j∗Ω

∗
X∗) ∼= H

n(Ω•X(logD)),

where X is a manifold, X∗ = X \D, j : X∗ → X is the canonical inclusion.
Further analysis shows that under standard assumptions on the ambient manifold X (smooth, Kähler,

complete) the bifiltered complex (Ω•X(logD), F,W ) can be used (similarly to [22], p.532) for computation
of the canonical mixed Hodge structure on the cohomology of complements H∗(X \ D,C) as well as
on the local cohomology H∗C(X,Ω•X(logD)) without the using of resolution theorems or a standard
reduction to the case of divisors with normal crossings.

In conclusion we note that the differential d is strictly compatible ([7], (1.1.5)) with filtration W at
degree k + 1, that is,

dΩkX(logD) ∩Wn(Ωk+1
X (logD)) = d(Wn(ΩkX(logD)), n ∈ Z.

Consequently, the weight filtration on the canonically truncated logarithmic de Rham complex

τ≥k
Ω•X(logD)

is also well-defined; in its turn, it induces the weight filtration on the complex of regular meromorphic
differential forms on a complete intersection with the help of the multiple residue map.
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