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IRREDUCIBILITY CRITERION FOR QUASI-ORDINARY POLYNOMIALS

ABDALLAH ASSI

Abstract. Using the notion of approximate roots and that of generalized Newton sets, we

give a local criterion for a quasi ordinary polynomial to be irreducible. Such a criterion is
useful in the study of singularities of quasi-ordinary hypersurfaces. It generalizes the criterion

given by S.S. Abhyankar for algebraic plane curves.

Introduction

Let K be an algebraically closed field of characteristic zero, and let R = K[[x1, . . . , xe]] = K[[x]]
be the ring of formal power series in x1, . . . , xe over K. Let F = yn + a1(x)yn−1 + . . . + an(x)
be a nonzero polynomial of R[y], and suppose that F is irreducible in R[y]. Suppose that
e = 1 and let g be a nonzero polynomial of R[y], then define the intersection multiplicity
of F with g, denoted int(F, g), to be the x-order of the y resultant of F and g. The set of
int(F, g), g ∈ R[y], defines a semigroup, denoted Γ(F ). It is well known that a set of generators
of Γ(F ) can be computed from polynomials having maximal contact with F (see [1]), namely,
there exist g1, . . . , gh such that n, int(F, g1), . . . , int(F, gh) generate Γ(F ) and for all 1 ≤ k ≤ h,
the Newton-Puiseux expansion of gk coincides with that of F up to a characteristic exponent of
F . In [1], Abhyankar introduced a special set of polynomials called the approximate roots of F .
These polynomials have the advantage that they can be calculated from the equation of F by
using the Tschirnhausen transform. Suppose that e ≥ 2 and that the y-discriminant of f , denoted
by Dy(F ), is of the form xN1

1 . . . . .xNee .u(x1, . . . , xe), where N1, . . . , Ne ∈ N and u is a unit in R
(such a polynomial is called quasi-ordinary polynomial). By the Abhyankar-Jung Theorem (see

[2]), the roots of F (x, y) = 0 are all in K[[x
1
n
1 , . . . , x

1
n
e ]], in particular there exists a power series

y(t1, . . . , te) =
∑
p∈Ne cpt

p1
1 . . . . .t

pe
e ∈ K[[t1, . . . , te]] such that F (tn1 , . . . , t

n
e , y(t1, . . . , te)) = 0 and

the other roots of F (tn1 , . . . , t
n
e , y) = 0 are the conjugates of y(t1, . . . , te) with respect to the nth

roots of unity in K. Given a polynomial g of R[y], we define the order of g to be the leading
exponent with respect to the lexicographical order of the smallest homogeneous component of
g(tn1 , . . . , t

n
e , y(t1, . . . , te)). The set of orders of polynomials of R[y] defines a semigroup, denoted

Γ(F ). It turns out that, as in the curve case, there exists a set of approximate roots of F whose
orders generate Γ(F ) (see [6], [8]). Furthermore,

(*) these approximate roots of F are quasi-ordinary and irreducible
In Section 4. we introduce the notion of generalized Newton set of a polynomial with respect to
a set of polynomials and a set of elements of Ne, and we define the notion of the straightness of
such a set. It turns out that

(**) F is straight with respect to its set of approximate roots and the set of generators of its
semigroup.
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The main result of the paper is that the two properties above, together with some numerical
conditions, characterize irreducible quasi-ordinary polynomials (see Theorem 5.1.).

Note that if e = 1, then any nonzero element of K[[x]][y] is quasi-ordinary, in particular our
results generalize those of Abhyankar given in [3].
The paper is organized as follows: in Section 1 we discuss the main properties of an irreducible
quasi-ordinary polynomial F . In Section 2 we introduce the notion of approximate roots of
a polynomial in one variable over a commutative ring with unity. By [6], the orders of the
approximate roots together with the canonical basis of (nZ)e give a set of generators of the
semigroup of F . We recall this property in Section 3. Sections 4 and 5 are devoted to the
irreducibility criterion: in Section 4 we introduce the notion of generalized Newton polygon,
and we define the notion of straightness of a polynomial with respect to a set of polynomials,
then we use these notions in Section 5 in order to decide if a given quasi-ordinary polynomial is
irreducible. We finally end the paper with some examples in Section 6.

Acknowledgements. The author would like to thank the referee for helpful comments and
suggestions on the original manuscript.

1. The semigroup of a quasi-ordinary polynomial

Let K be an algebraically closed field of characteristic zero, and let R = K[[x1, . . . , xe]] (denoted
by K[[x]]) be the ring of formal power series in x1, . . . , xe over K. Let F = yn+a1(x)yn−1+ . . .+
an(x) be a nonzero polynomial of R[y] and assume, after a possible change of variables, that

a1(x) = 0. Suppose that the discriminant of F is of the form xN1
1 . . . . .xNee .u(x1, . . . , xe), where

N1, . . . , Ne ∈ N and u(x) is a unit in R. We call F a quasi-ordinary polynomial. It follows
from the Abhyankar-Jung Theorem (see [2]) that there exists a formal power series y(t) =
y(t1, . . . , te) ∈ K[[t1, . . . , te]] (denoted by K[[t]]) such that F (tn1 , . . . , t

n
e , y(t)) = 0. Furthermore,

if F is an irreducible polynomial, then we have:

F (tn1 , . . . , t
n
e , y) =

n∏
i=1

(y − y(wi1t1, . . . , w
i
ete))

where (wi1, . . . , w
i
e)1≤i≤n are distinct elements of (Un)e, Un being the group of nth roots of unity

in K.
Suppose that F is irreducible and let y(t) be as above. Write y(t) =

∑
p cpt

p and define

the support of y(t), denoted Supp(y(t)), to be the set {p|cp 6= 0}. Obviously the support of
y(w1t1, . . . , wete) does not depend on w1, . . . , we ∈ Un. We denote it by Supp(F ) and we call it
the support of F . Given a, b ∈ Ne, we say that a ≤ b (resp. a < b) if a ≤ b coordinate-wise (resp.
a ≤ b coordinate-wise and a 6= b). By [9], there exists a finite sequence of elements in Supp(F ),
denoted m1, . . . ,mh, such that

i) m1 < m2 < . . . < mh. .
ii) If p ∈ Supp(F ), then p ∈ (nZ)e +

∑
p∈mi+Ne miZ.

iii) mi /∈ (nZ)e +
∑
j<imjZ for all i = 1, . . . , h.

The set of elements of this sequence is called the set of characteristic exponents of F , or the
m-sequence associated with F .

Let glex be the well-ordering on Ne defined as follows: α <glex β if and only if |α| =
∑e
i=1 αi <

|β| =
∑e
i=1 βi or |α| = |β| and α <lex β (where lex denotes the lexicographical order).

Definition 1.1. Let u =
∑
p cpt

p in K[[t]] be a nonzero formal power series. We denote by

In(u) the initial form of u: if u = ud + ud+1 + . . . denotes the decomposition of u into a sum
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of homogeneous components, then In(u) = ud. We set Ot(u) = d and we call it the t-order
of u. We denote by expglex(u) the greatest exponent of u with respect to glex. We denote by
incoglex(u) the coefficient cexpglex(u), and we call it the initial coefficient of u. We finally set

Mglex(u) = incoglex(u)texpglex(u), and we call it the initial monomial of u.

Remark 1.2. Let u(t) ∈ K[[t]] be a nonzero formal power series, and let In(u) be the initial
form of u. Let ≺ be a well-ordering on Ne and define the leading exponent of u to be the leading
exponent of In(u) with respect to ≺. If ≺ is not the lexicographical order, then we get a different
notion of leading exponent (resp. initial coefficient, resp. initial monomial) of u. Note that if
In(u) is a monomial, then these notions do not depend on the choice of ≺.

Denote by Root(f) the set of n roots of F (tn1 , . . . , t
n
e , y) = 0 introduced above and let y(t) be an

element of this set. We have the following:

Lemma 1.3. (See [9], paragraph 5.) In(y(t)−z(t)) is a monomial for all z(t) ∈ Root(f)−{y(t)}.
Furthermore, {expglex(y(t)− z(t))|z(t) ∈ Root(f)− {y(t)}} = {m1, . . . ,mh}.

Let g be a nonzero element of R[y]. The order of g with respect to F , denoted Oglex(F, g), is
defined to be expglex(g(tn1 , . . . , t

n
e , y(t)). Note that it does not depend on the choice of the root

y(t) of F (tn1 , . . . , t
n
e , y) = 0. The set {Oglex(F, g)|g ∈ R[y], g /∈ (F )} defines a subsemigroup of

Ze. We call it the semigroup associated with F and we denote it by Γ(F ) (see [6], [8],[10], and
[11] for the several definitions of the semigroup of F ).

Let m0 = (m1
0, . . . ,m

e
0) be the canonical basis of (nZ)e. Let Ie be the unit e × e matrix,

and let D1 = ne and for all 1 ≤ i ≤ h, let Di+1 be the gcd of the (e, e) minors of the matrix
(nIe,m1

T , . . . ,mi
T ) (where T denotes the transpose of a matrix). Since mi /∈ (nZ)e+

∑
j<imjZ

for all 1 ≤ i ≤ h, then Di+1 < Di. We call (D1, . . . , Dh+1) the D-sequence associated with F ,
and we denote it by GCDM(m1

0, . . . ,m
e
0,m1, . . . ,mh). We define the sequence (ei)1≤i≤h to be

ei =
Di

Di+1
for all 1 ≤ i ≤ h, and we call it the e-sequence associated with F .

Let F0 = K((x)) and let Fk = Fk−1(x
m1
k
n

1 . . . . .x
mek
n
e ) for all k = 1, . . . , h. In particular we have:

F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fh = F0(x
m1

1
n

1 . . . . .x
me1
n
e , . . . , x

m1
h
n

1 . . . . .x
meh
n
e )

Proposition 1.4. With the notations above, we have the following:

i) If y(x) is a root of F (x, y) = 0, then Fh = K((y(x))).

ii) For all k = 1, . . . , h, Fk is an algebraic extension of degree ek of Fk−1.

iii) For all k = 1, . . . , h, Fk is an algebraic extension of degree ek.ek−1. . . . .e1 of F0.

iv) n = degy(F ) = e1. . . . .eh =
D1

Dh+1
=

ne

Dh+1
. In particular Dh+1 = ne−1.

Proof. . ii), iii), and iv) are obvious. For a proof of i) see [9], Paragraph 5. �

Remark 1.5. (see [9]) Conversely, let N ∈ N∗ and let Y (t) =
∑
p cpt

p ∈ K[[t]], and suppose

that there exists a finite sequence of elements m′1, . . . ,m
′
h′ of Supp(Y (t)) such that the following

holds:
i) m′1 < m′2 < . . . < m′h′ .
ii) If p ∈ Supp(Y (t)), then p ∈ (NZ)e +

∑
p∈m′i+Ne m

′
iZ.

iii) mi /∈ (NZ)e +
∑
j<im

′
jZ for all i = 1, . . . , h′.
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Let F̄ (x, y) be the minimal polynomial of Y (x
1
N ) =

∑
p cpx

p
N . If degy(F̄ ) = N , then F0(Y (x

1
N )) =

F0(x
m′11
N

1 . . . . .x
m′e1
N
e , . . . , x

m′1
h′
N

1 . . . . .x
m′e
h′
N

e ). In particular, for all Z(t) ∈ Root(F̄ ), In(Y (t)−Z(t)) =

ã′.tm
′
k , where ã′ ∈ K∗ and 1 ≤ k ≤ h′. This implies that Dy(F̄ ) = a.xα(1 +u(x)), where a ∈ K∗

and u(0) = 0, i.e. F̄ is a quasi-ordinary polynomial.

The result of Proposition 1.4. has also the following interpretation: let M0 = (nZ)e and let

Mi = (nZ)e +
∑i
j=1mjZ for all 1 ≤ i ≤ h. Then M0 ⊆ M1 ⊆ · · · ⊆ Mh ⊆ Ze. In particular,

since M0 and Ze are free abelian groups of rank e, then for all 1 ≤ i ≤ h, Mi is a free abelian
group of rank e. Furthermore, ei is the index of the lattice Mi−1 in Mi.
Let 1 ≤ i ≤ h and let v1, · · · , ve be a basis of Mi, and recall that Di+1 is the determinant of the
matrix (vT1 , · · · , vTe ). We have the following:

Proposition 1.6. Let v be a nonzero element of Ze and let D̃ be the gcd of the (e, e) mi-

nors of the matrix (vT1 , . . . , v
T
e , v

T ). Then D̃ is also the gcd of the (e, e) minors of the matrix
(nIe,m

T
1 , · · · ,mT

i , v
T ). With these notations, we have the following:

i) v ∈Mi if and only if D̃ = Di+1.

ii)
Di+1

D̃
.v ∈Mi and if Di+1 > D̃ then for all 1 ≤ k < Di+1

D̃
, k.v /∈Mi.

In particular, since mi+1 /∈ Mi, then Di+2 > Di+1, ei+1mi+1 ∈ Mi, and kmi+1 /∈ Mi for all
1 ≤ k < ei+1.

Proof. . i) For all k = 1, . . . , e, let D̃k be the determinant of the matrix (vT1 , . . . , v
T
k−1, v

T , vTk+1, . . . , v
T
e ).

If D̃ = Di+1 then Di+1 divides D̃k. In particular the Cramer system λ1v1 + . . .+ λeve = v has

the unique solution λk =
D̃k

Di+1
∈ Z. Conversely, if v ∈ Mi, then there exist unique integers

λ1, . . . , λe such that v = λ1v1 + . . . + λeve, but (λ1, . . . , λe) is the unique solution to the (e, e)

system a1v1 + . . . + aeve = v, in particular λk =
D̃k

Di+1
for all k = 1, . . . , e. This proves that

D̃ = Di+1.

ii) Let the notations be as in i) and let 1 ≤ k ≤ Di+1

D̃
. Let D̄ be the gcd of the (e, e) minors

of the matrix [vT1 , · · · , vTe , (k.v)T ]. Clearly D̄ = gcd(kD̃1, · · · , kD̃e, Di+1). If k =
Di+1

D̃
, then

D̄ = gcd(Di+1
D̃1

D̃
, · · · , Di+1

D̃e

D̃
,Di+1) = Di+1, which implies by i) that k.v ∈Mi. Suppose that

Di+1 > D̃ and that 1 ≤ k < Di+1

D̃
. If k.v ∈Mi, then D̄ = Di+1, which implies that Di+1 divides

gcd(kD̃1, · · · , kD̃e, kDi+1) = k.D̃. This is a contradiction because k.D̃ < Di+1.
�

The following result will be used later in the paper:

Corollary 1.7. Let the notations be as in Remark 1.5., i.e. N ∈ N∗, Y (t) =
∑
p cpt

p ∈ K[[t]],

and there exists a finite sequence of elements m′1, . . . ,m
′
h′ of Supp(Y (t)) such that the following

holds:
i) m′1 < m′2 < . . . < m′h′ .
ii) If p ∈ Supp(Y (t)) then p ∈ (NZ)e +

∑
p∈m′i+Ne m

′
iZ.

iii) m′i /∈ (NZ)e +
∑
j<im

′
jZ for all i = 1, . . . , h′.
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Let F (x, y) be the minimal polynomial of Y (x
1
N ) =

∑
p cpx

p
N over K((x)) and suppose that

degyF = N . Let m ∈ Ne,m′h′ <glex m, and let Ȳ (t) = Y (t)+cmt
m, cm ∈ K∗. Let finally F̄ (x, y)

be the minimal polynomial of Ȳ (x
1
N ) over K((x)). We have the following:

1) degy(F̄ ) ≥ N and degy(F̄ ) = N if and only if m ∈Mh′ = (NZ)e +
∑h′

i=1m
′
iZ.

2) If m ∈ m′h′ + Ne, then F̄ is quasi-ordinary.

Proof. . 1) Let (D1 = Ne, . . . , Dh′+1 = Ne−1) be the D-sequence associated with F . We have

degyF̄ ≥ N.[F0(Ȳ (x
1
N )),Fh′ ] ≥ N , and m ∈ Mh′ if and only if Fh′ = F0(Ȳ (x

1
N )), and this

holds if and only if degy(F̄ ) = N .
2) Ifm ∈Mh′ (resp. m /∈Mh′), then Ȳ (x) andm′1, . . . ,m

′
h′ (resp. Ȳ (x) andm′1, . . . ,m

′
h′ ,m

′
h′+1 =

m) satisfy the conditions of Remark 1.5., and F̄ is quasi-ordinary.
�

Let di =
Di

Dh+1
for all 1 ≤ i ≤ h + 1. In particular d1 = n and dh+1 = 1. The sequence

(d1, d2, . . . , dh+1) is called the gcd-sequence of F or the d-sequence associated with F . Let
(r10, · · · , re0) = (m1

0, · · · ,me
0) be the canonical basis of (nZ)e and define the sequence (rk)1≤k≤h

by r1 = m1 and:
rk+1 = ekrk +mk+1 −mk

for all 1 ≤ k ≤ h−1. We call (r10, · · · , re0, r1, · · · , rh) the r-sequence associated with F . Note that
each of the sequences (mk)1≤k≤h and (rk)1≤k≤h determines the other. More precisely m1 = r1
and rkdk = m1d1 +

∑k
j=2(mj −mj−1)dj (resp. mk = rk−

∑k−1
j=1 (ej − 1)rj) for all 2 ≤ k ≤ h. In

particular Mk = (nZ)e+
∑k
j=1mjZ = (nZ)e+

∑k
j=1 rjZ for all k = 1, . . . , h. It also follows that

GCDM(r10, · · · , re0, r1, · · · , rh) = GCDM(m1
0, · · · ,me

0,m1, · · · ,mh), in particular, the results of
Proposition 1.6. hold if we replace (m1, · · · ,mh) by (r1, · · · , rh).

Corollary 1.8. (see also [6], Lemma 3.3.) Let (r10, · · · , re0, r1, · · · , rh) be the r-sequence associ-
ated with F . For all 1 ≤ k ≤ h− 1, we have:

i) rkdk < rk+1dk+1.
ii) ekrk ∈Mk−1.
iii) For all 1 ≤ i < ek, irk /∈Mk−1.

Proof. . This results from Proposition 1.6. and the equalities above. �

Let φ(t) = (tp1, . . . , t
p
e, Y (t)) and ψ(t) = (tq1, . . . , t

q
e, Z(t)) be two nonzero elements of K[[t]]e+1.

We define the contact between φ and ψ, denoted cglex(φ, ψ), to be the element
1

pq
expglex(Y (tq1, . . . , t

q
e)−

Z(tp1, . . . , t
p
e)).

We define the contact between F and φ, denoted cglex(F, φ), to be the maximal element of

{cglex(φ, (tn1 , . . . , t
n
e , y(t)))|y(t) ∈ Root(f)}.

Let g = ym + b1(x)ym−1 + . . . + bm(x) be a nonzero polynomial of R[y]. Suppose that g
is an irreducible quasi-ordinary polynomial and let ψ(t) = (tm1 , . . . , t

m
e , Z(t)) be a root of

g(tm1 , . . . , t
m
e , y) = 0. We define the contact between F and g, denoted cglex(F, g), to be the

contact between F and ψ. Note that this definition does not depend on the choice of the root
Z(t) of g, and that if F.g is a quasi-ordinary polynomial, then In(F (ψ(t)) = Mglex(F (ψ(t))). In
this case, the contact cglex(F, g) coincides with the notion of contact introduced in [4] and [12].
The following Proposition generalizes a well known result for plane curves. It calculates the
order Oglex(F, g) in terms of the contact cglex(F, g) and the characteristic sequences of F . When
F.g is quasi-ordinary, this result has been proved in [12], Proposition 2.14 and Proposition 5.9.



28 ABDALLAH ASSI

Proposition 1.9. Let g = ym + b1(x)ym−1 + . . . + bm(x) be an irreducible quasi-ordinary
polynomial of R[y] and suppose that m ≤ n. If c = cglex(F, g) then we have the following:

i) If nc <glex m1, then Oglex(F, g) = nmc.
ii) Otherwise, let 1 ≤ q ≤ h − 1 be the smallest integer such that mq ≤glex nc <glex mq+1,

then Oglex(F, g) = (rqdq + (nc−mq)dq+1) · m
n

. In particular Oglex(F, g) <glex rq+1hq+1 ·
m

n
.

Proof. . The proof is technical. It uses the same arguments as in the case of plane curves (see
also [12], Proposition 5.9.). We shall consequently omit the details.

�

2. G-adic expansions

Let S be a commutative ring with unity and let S[y] be the ring of polynomials in y with
coefficients in S. Let f = yn + a1y

n−1 + . . .+ an be a monic polynomial of S[y] of degree n > 0

in y. Let d ∈ N and suppose that d divides n. Let g be a monic polynomial of S[y] of degree
n

d
in y. There exist unique polynomials a1(y), . . . , ad(y) ∈ S[y] such that:

f = gd +

d∑
i=1

ai(y).gd−i

and for all 1 ≤ i ≤ d, degy(ai(y)) <
n

d
= degyg (where degy denotes the y-degree). The equation

above is called the g-adic expansion of f . Assume that d is a unit in S. The Tschirnhausen
transform of f with respect to g, denoted τf (g), is defined to be τf (g) = g + d−1a1. Note that

τf (g) = g if and only if a1 = 0. By [1], τf (g) = g if and only if degy(f − gd) < n− n

d
. If one of

these equivalent conditions is satisfied, then the polynomial g is called a d-th approximate root
of f . By [1], there exists a unique d-th approximate root of f . We denote it by Appd(f).
Let n = d1 > d2 > · · · > dh be a sequence of integers such that di+1 divides di for all 1 ≤ i ≤ h−1,

and set ei =
di
di+1

, 1 ≤ i ≤ h− 1 and eh = +∞. For all 1 ≤ i ≤ h, let gi be a monic polynomial

of S[y] of degree
n

di
in y. Set G = (g1, . . . , gh) and let B = {θ = (θ1, . . . , θh) ∈ Nh, 0 ≤ θi < ei

for all 1 ≤ i ≤ h}. Then f can be uniquely written as f =
∑
θ∈B

aθ.g
θ where gθ = gθ11 . . . . .g

θh
h and

aθ ∈ S for all θ ∈ B. We call this expansion the G-adic expansion of f .

3. Generators of the semigroup of F

Let the notations be as in Sections 1. and 2., in particular F = yn + a2(x)yn−2 + . . .+ an(x) is
an irreducible quasi-ordinary polynomial of R[y] = K[[x]][y]. We have the following:

Theorem 3.1. (see [6], [8]) Let the notations be as above, and let d1 = n, . . . , dh, dh+1 = 1 be the
gcd-sequence of F . The dk-th approximate root Appdk(F ) is an irreducible quasi-ordinary poly-

nomial for all k = 1, . . . , h. Furthermore, cglex(F,Appdk(F )) =
mk

n
and Oglex(F,Appdk(F )) =

rk.

Let G = (g1, . . . , gh, gh+1) be the dk-th approximate roots of F , 1 ≤ k ≤ h + 1, and recall that
g1 = y, gh+1 = F . Let B(G) = {θ = (θ1, . . . , θh, θh+1) ∈ Nh+1|θh+1 < +∞ and 0 ≤ θk < ek for
all 1 ≤ k ≤ h}.
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Lemma 3.2. (see [8], (2.3)) Given two elements θ1, θ2 ∈ B(G) and two elements γ1, γ2 ∈ Ne,

if θ1h+1 = θ2h+1 and θ1 6= θ2, then
∑e
i=1 γ

1
i r
i
0 +

∑h
k=1 θ

1
krk 6=

∑e
i=1 γ

2
i r
i
0 +

∑h
k=1 θ

2
krk.

Let F̄ (x, y) be a monic polynomial of R[y] and let

F̄ =
∑

θ∈B(G)

cθ(x)gθ11 . . . . .g
θh
h .g

θh+1

h+1

be the G-adic expansion of F̄ . Let SuppG(F̄ ) = {θ ∈ B(G)|cθ 6= 0} and let B′(G) = {θ ∈
SuppG(F̄ )|θh+1 = 0}. Clearly F divides F̄ if and only if B′(G) = ∅. Otherwise, by Lemma

3.2., there is a unique θ0 ∈ SuppG(F̄ ) such that Oglex(F, F̄ ) = Oglex(F,M(cθ0(x))g
θ10
1 . . . . .g

θh0
h ) =

Oglex(F,M(cθ0(x))) +
∑h
i=1 θ

i
0ri. We set MG(F̄ ) = Mglex(cθ0(x))g

θ10
1 . . . . .g

θh0
h and we call it the

G-initial monomial of F̄ . This leds to the following proposition:

Proposition 3.3. (see also [6], [8])With the notations above, r10, . . . , r
e
0, r1, . . . , rh generate Γ(F ).

Lemma 3.4. (see also [6], Prop. 2.3. or [11], Lemmas 7.4. and 7.5.) Let F̄ be a non zero polyno-

mial of R[y]. If degy(F̄ ) <
n

dk
for some 1 ≤ k ≤ h, thenOglex(F, F̄ ) ∈< r10, . . . , r

e
0, r1, . . . , rk−1 >.

More precisely, there are unique θ10, · · · , θe0, θ1, · · · , θk−1 ∈ N such thatOglex(F, F̄ ) =
∑e
i=1 θ

i
0r
i
0+∑k−1

j=1 θjrj where 0 ≤ θj < ej for all 1 ≤ j ≤ k − 1.

Proof. . Let the notations be as above, and let

F̄ =
∑

θ∈B(G)

cθ(x)gθ11 . . . . .g
θh
h .g

θh+1

h+1

be theG-adic expansion of F̄ . Since degy(F̄ ) <
n

dk
, then for all θ ∈ SuppG(F̄ ), θk = · · · = θh = 0.

This implies the result. �

4. Generalized Newton sets

Let n ∈ N, n > 1 and let r0 = (r10, . . . , r
e
0) be the canonical basis of (nZ)e. Let r1 < . . . < rh be

a sequence of elements of Ne. Set D1 = ne and for all 1 ≤ k ≤ h, let Dk+1 be the GCD of the
e× e minors of the e× (e+ k) matrix (nIe, (r1)T , . . . , (rk)T ). Suppose that ne−1 divides Dk for
all 1 ≤ k ≤ h + 1 and that Dh+1 = ne−1, and also that D1 > D2 > . . . > Dh+1, in such a way

that if we set d1 = n and dk =
Dk

ne−1
for all 2 ≤ k ≤ h+ 1, then d1 = n > d2 > . . . > dh+1 = 1.

For all 1 ≤ k ≤ h+1, let gk be a monic polynomial of degree
n

dk
in y and setG = (g1, . . . , gh, gh+1),

r = (r1, . . . , rh). Let H be a nonzero polynomial of R[y], and let

H =
∑

θ∈B(G)

cθ(x)gθ11 . . . . .g
θh
h g

θh+1

h+1

where B(G) = {θ = (θ1, . . . , θh, θh+1)|θh+1 < +∞ and 0 ≤ θi <
di
di+1
∀1 ≤ i ≤ h}, be the G-adic

expansion of H. Let SuppG(H) = {θ ∈ B(G)|cθ 6= 0} and let B′(G) = {θ ∈ SuppG(H)|θh+1 =

0}. Suppose that B′(G) 6= ∅. Given θ ∈ B′(G), if γ
θ

= expglex(cθ(x)), we shall associate with

the monomial cθ(x)gθ11 . . . . .g
θh
h the e-tuple
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< (γ
θ
, θ), (r0, r) >=

e∑
i=1

γθir
i
0 +

h∑
j=1

θjrj .

We set NG(H) = {< (γ
θ
, θ), (r0, r) >, θ ∈ B′(G)}, and we call it the G-Newton set of H. By

Lemma 3.2., there is a unique θ0 ∈ B′(G) such that if γ
θ0

= expglex(cθ0(x)), then:

< (γ
θ0
, θ0), (r0, r) >= minglex(NG(H))

where minglex means the minimal element with respect to the well-ordering glex. We set
fO(r,G,H) =
< (γ

θ0
, θ0), (r0, r) > and we call it the formal order of H with respect to (r,G). We also

set MG(H) = Mglex(cθ0(x)).g
θ01
1 . . . . .g

θ0h
h and we call it the initial monomial of H with respect to

(r,G). If B′(G) = ∅, then we set fO(r,G,H) = (+∞, . . . ,+∞). Note that this holds if and only
if gh+1 divides H.

Let f = yn + a1(x)yn−1 + . . . + an(x) be a quasi-ordinary polynomial of R[y] and let d ∈
N, d > 1 be a divisor of n. Let g be a monic polynomial of R[y] of degree

n

d
in y and let

f = gd +α1(x, y)gd−1 + . . .+αd(x, y) be the g-adic expansion of f . We associate with f the set
of points:

{(fO(r,G, αk), (d− k)fO(r,G, g)), k = 0, . . . , d} ⊆ Ne × Ne

We denote this set by GNS(f, r,G, g) and we call it the generalized Newton set of f with respect
to (r,G, g) (note that, since α0 = 1, then fO(r,G, α0) = 0 ∈ Ne).

Definition 4.1. We say that f is straight with respect to (r,G, g) if the following holds:
i) fO(r,G, αd) = d.fO(r,G, g) and fO(r,G, αd) << (γ

θ
, θ), (r0, r) > for all θ ∈ NG(αd −

MG(αd)).
ii) For all 1 ≤ k ≤ d− 1, and for all θ ∈ NG(αk), k.fO(r,G, g) ≤< (γ

θ
, θ), (r0, r) >.

We say that f is strictly straight with respect to (r,G, g) if the inequality in ii) is a strict
inequality.

Example 4.2. i) Let f = (y2 − x3)2 − x5y + x10 ∈ K[[x]][y], and let r0 = 4, r1 = 6, r2 = 13,
G = (g1 = y, g2 = y2 − x3, g3 = f), r = (r1, r2): f = g22 − x5g1 is the g2-expansion of f .
Furthermore, fO(r,G, g2) = r2 = 13, fO(r,G, x5g1 + x10) = 5r0 + r1 = 26 < 10r0 = 40.
In particular, GNS(f, r,G, g2) = {(0, 26), (26, 0)}, and f is strictly straight with respect to
(r,G, g2). Note that f is irreducible, and that Γ(f) =< 4, 6, 13 >.

ii) Let f be as in i), and let r0 = 4, r1 = 10, r2 = 13. If G = (g1 = y, g2 = y2−x3, g3 = f) and
r = (10, 13), then GNS(f, r,G, g2) = {(0, 26), (30 = 5r0 + r1, 0)}, in particular, f is not straight
with respect to (r,G, g2).

5. The criterion

Let f = yn + a1(x)yn−1 + . . . + an(x) be a nonzero quasi-ordinary polynomial of R[y] and
assume, after possibly a change of variables, that a1(x) = 0. Let r0 = (r10, . . . , r

e
0) be the

canonical basis of (nZ)e and let D1 = ne, d1 = n. Let g1 = y be the d1-th approximate root
of f and set r1 = expglex(an(x)). Let D2 be the gcd of the (e, e) minors of the e × (e + 1)

matrix (nIe, r1
T ). We set d2 =

D2

ne−1
, g2 = Appd2(f), and e2 =

d1
d2

=
n

d2
. Similarly we shall
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construct rk, gk, dk+1, ek, k ≥ 2 as follows: given (r1, . . . , rk−1) and (d1, . . . , dk), let gk be the
dk-th approximate root of f , and let

f = gdkk + βk2 g
dk−2
k + . . .+ βkdk

be the gk-adic expansion of f . We set rk = fO(rk, Gk, βkdk), where (
r10
dk
, . . . ,

re0
dk

) denotes the

canonical basis of (
n

dk
Z)e, rk = (

r1
dk
, . . . ,

rk−1
dk

) and Gk = (g1, . . . , gk−1). We also set Dk+1 =

the gcd of the (e, e) minors of the matrix [nIe, r
T
1 , . . . , r

T
k ], dk+1 =

Dk+1

ne−1
, and ek =

dk
dk+1

. With

these notations we have the following:

Theorem 5.1. The quasi-ordinary polynomial f is irreducible if and only if the following holds:
i) There is an integer h such that dh+1 = 1.
ii) g1, · · · , gh are irreducible quasi-ordinary polynomials.
iii) For all 1 ≤ k ≤ h− 1, rkdk < rk+1dk+1.

iv) For all 2 ≤ k ≤ h+ 1, gk is strictly straight with respect to (rk, Gk, gk−1).

We shall first prove the following results:

Lemma 5.2. Let c ∈ K∗. The quasi-ordinary polynomial F = yN − cxα1
1 . . . . .xαee is irreducible

in R[y] if and only if gcd(N,α1, . . . , αe) = 1, or equivalently if and only if the gcd of the (e, e)
minors of the matrix (NIe, (α1, . . . , αe)

T ) is Ne−1.

Proof. . Let c̃ be an N -th root of c in K and let d = gcd(n, α1, . . . , αe). If d > 1, then

F =
∏
wd=1(y

N
d −wc̃x

α1
d

1 . . . . .x
αe
d
e ), which is a contradiction. Conversely, let Y = c̃x

α1
N
1 . . . . .x

αe
N
e ∈

K((x
1
N
1 , . . . , x

1
N
e )). Then F is the minimal polynomial of Y over K((x)). In particular it is

irreducible. �

Proposition 5.3. Let F = yN + b2(x)yN−2 + . . . + bN (x) be an irreducible quasi-ordinary
polynomial of degree N in y, and let (m′k)1≤k≤h′ be the set of characteristic exponents of F .
Let also (d′k)1≤k≤h′+1 (resp. (r′k)1≤k≤h′) be the d-sequence (resp. the r-sequence) of F . Let
F ′ be a quasi-ordinary polynomial of R[y] and assume that F ′ is monic of degree N in y. If
r′h′d

′
h′ <glex Oglex(F, F ′), then F ′ is irreducible in R[y].

Proof. . Assume that F ′ is not irreducible and let F̃ ′ be an irreducible component of F ′ in
R[y]. Let C = cglex(F, F̃ ′) be the contact of F with F̃ ′. If m′h′ <glex NC, then degy(F̃ ′) ≥
N = degy(F ′) (see Corollary 1.7.), which is a contradiction. Finally NC ≤glex m′h′ , in particu-

lar, by Proposition 1.9., Oglex(F, F̃ ′) ≤glex r′h′d′h′
degy(F̃ ′)

N
. Since this is true for all irreducible

components of F ′, then Oglex(F,′ F ) ≤glex r′h′d′h′
degy(F ′)

N
= r′h′d

′
h′ , which contradicts the hy-

pothesis. �

Proof of Theorem 5.1. Suppose first that f is irreducible. Condition i) follows from the results
of Section 1, condition ii) follows from Theorem 3.1., and condition iii) is nothing but Corollary
1.8.,i). Now for all 1 ≤ k ≤ h+1, gk is an irreducible quasi-ordinary polynomial and g1, . . . , gk−1
are the approximate roots of gk. In particular, to prove iv), it suffices to prove that f = gh+1 is
strictly straight with respect to (r,G, gh). Let

f = gdhh + βh2 g
dh−2
h + . . .+ βhdh
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be the gh-adic expansion of f and let Γh−1(f) be the semigroup generated by r01, . . . , r
0
e , r1, . . . , rh−1.

We have the following:
- For all 2 ≤ i ≤ h− 1, Oglex(βhi , f) ∈ Γh−1(f) (by Lemma 3.4.).
- For all 0 < a < dh = eh, a.rh /∈ Γh−1(f) (by Corollary 1.8.).

It follows that for all 2 ≤ i ≤ h − 1, Oglex(βhi , f) 6= i.rh and for all 2 ≤ i 6= j ≤ dh −
1, Oglex(βhi , f) + (dh − i)rh 6= Oglex(βhj , f) + (dh − j)rh. Since Oglex(gdhh , f) = rhdh, then

Oglex(βhdh , f) = rhdh and i.rh < Oglex(βhi , f) for all 2 ≤ i ≤ dh − 1. The other assertions follow
by a similar argument.

Conversely suppose that f satisfies the conditions i), ii), iii), and iv). We shall prove by induction
on h that f is irreducible. Suppose that h = 1, then f = yn + a2(x)yn−2 + . . . + an(x),
G = (y, f), and r = r1 = expglex(an(x)). Now condition iv) implies that i.expglex(an(x)) <

expglex(ai(x)) for all 2 ≤ i ≤ n − 1. Furthermore, D2 = ne−1 by condition i). In particular
F = yn+Mglex(an(x)) is irreducible by Lemma 5.2. Since r1d1 < Oglex(F, f) = Oglex(f −F, f),
then f is irreducible by Proposition 5.3.
Let h > 1 and assume that gk is an irreducible quasi-ordinary polynomial for all 1 ≤ k ≤ h. Let
m1

0 = r10, · · · ,me
0 = re0,m1 = r1 and for all 2 ≤ i ≤ h, let:

mi = ri −
i−1∑
k=1

(ek − 1)rk

Let f = gdhh + βh2 g
dh−2
h + . . . + βhdh be the gh-adic expansion of f and let Y (t) =

∑
p Ypt

p be a

root of gh(t
n
dh
1 , . . . , t

n
dh
e , y) = 0. Since the quasi-ordinary polynomial gh is irreducible, then the

m-sequence associated with gh is (
m1

0

dh
, . . . ,

me
0

dh
,
m1

dh
, · · · , mh−1

dh
). In particular,

GCDM(
m1

0

dh
, . . . ,

me
0

dh
,
m1

dh
, · · · , mh−1

dh
) = ((

n

dh
)e,

d2
dh

(
n

dh
)e−1, · · · , dh−1

dh
(
n

dh
)e−1, (

n

dh
)e−1).

Note that, by Corollary 1.7., since degygh < n, then Ymh
dh

= 0.

Let λ be an indeterminate and let

y(t, λ) =
∑
p

Ypt
dh·p + λtmh = Y (tdh) + λtmh .

Let F (x, y, λ) be the minimal polynomial of y(x
1
n , λ) over K(λ)((x)). Conditions i) and iii)

imply that the polynomial F is an irreducible quasi-ordinary polynomial of K(λ)[[x]][y], of
degree n in y. Furthermore, the m-sequence (resp. the r-sequence) associated with F is
(m1

0, . . . ,m
e
0,m1, · · · ,mh) (resp. (r10, . . . , r

e
0, r1, · · · , rh)), and

GCDM(m1
0, . . . ,m

e
0,m1, · · · ,mh−1,mh) = (ne, d2n

e−1, · · · , dh−1ne−1, dhne−1, ne−1).

Now an easy calculation shows that cglex(F, gh) =
mh

n
, hence Oglex(F, gh) = rh. Furthermore,

if we denote by Y1(t) = Y (t), Y2(t), · · · , Y n
dh

(t) the set of roots of gh(t
n
dh
1 , · · · , t

n
dh
e , y) = 0, then

we have:

Mglex(y(t, λ)− Yk(tdh1 , · · · , tdhe )) =

{
λtmh if k = 1

akt
dhexpglex(Y1−Yk), ak 6= 0 if k > 1.
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In particular, expglex(gh(tn1 , · · · , tne , y(t, λ)) = mh+dhexpglex(Dy(gh)) = mh+
∑h−1
k=1(ek−1)rk =

rh, finally, if a = a2 · · · a n
dh

, then:

gh(tn1 , · · · , tne , y(t, λ)) = a.λtrh .u(t, λ)

where u(t, λ) is a unit in K(λ)[[t]]. Let MGh(βhdh) = c.xθ0 .gθ11 . . . . .g
θh−1

h−1 , where Gh = (g1, . . . , gh)
and c ∈ K∗. We have:

Oglex(MGh(βhdh), F ) =

e∑
i=1

θi0r
i
0 +

h−1∑
k=1

θkrk

which is rhdh by condition iv). By the same condition, the following hold:
- βdh(tn1 , · · · , tne , Y (t, λ)) = c̄trhdh(1 + ū(t, λ)), where ū(0, λ) = 0 and c̄ 6= 0.

- rhdh < expglex(βig
dh−i
i (tn1 , · · · , tne , Y (t, λ))).

In particular f(tn1 , · · · , tne , y(t, λ)) = (c̄ + λ)trhdh .u1(t, λ), where u1(t, λ) is a unit in K(λ)[[t]].
Finally rhdh < Oglex(F (x, y,−c̄), f), which implies by Proposition 5.3. that f is irreducible.

6. Examples

Example 1: Let f = y8 − 2x1x2y
4 + x21x

2
2 − x31x22 ∈ K[[x1, x2]][y]. Then we have:

- D1 = n2 = 82 = 64, d1 = n = 8, r10 = (8, 0), r20 = (0, 8), g1 =Appd1(f) = y, and r1 =
O(f, g1) = (2, 2).

-D2 is the gcd of the 2×2 minors of the matrix (8·Ie, (2, 2)T ), thenD2 = 16 = 8.2, in particular

d2 = 2. Since f = (y4−x1x2)2−x31x22, then g2=Appd2(f) = y4−x1x2. Let r2 = (
r10
d2
,
r20
d2
,
r1
d2

) =

((4, 0), (0, 4), (1, 1)) and G2 = (g1), then r2 =fO(r2, G2, x31x
2
2) = 3(4, 0) + 2(0, 4) = (12, 8).

- D3 is the gcd of the 2 × 2 minors of the matrix (8I2, (2, 2)T , (12, 8)T ), then D3 = 8, in
particular d3 = 1.

- Now GNP(g2, r
2, G2) = {((0, 0), 4.(1, 1)), ((4, 4), (0, 0))} and GNP(f, r3 = (r10, r

2
0, r1, r2), G3 =

(g1, g2)) = {((0, 0), 2.(12, 8)), ((24, 16), (0, 0))}, then the strict straightness condition is verified.
Since g1 = y is irreducible, then so is g2, but g2 is quasi-ordinary and r1d1 < r2d2, then f is
irreducible. Note that m2 = r2−(d1d2−1)r1 = (12, 8)−3(2, 2) = (6, 2)) is the second characteristic
exponent of f .

Example 2: Let f = y8 − 2x1x2y
4 + x21x

2
2 − x41x22 − x51x32 ∈ K[[x1, x2]][y]. Then we have:

- D1 = n2 = 82 = 64, d1 = n = 8, r10 = (8, 0), r20 = (0, 8), g1 =Appd1(f) = y, and r1 = (2, 2).
- D2 is the gcd of the 2 × 2 minors of the matrix (8I2, (2, 2)T ), then D2 = 16 = 8.2, in

particular d2 = 2. Since f = (y4 − x1x2)2 − x41x22 − x51x32, then g2=Appd2(f) = y4 − x1x2. Let

r2 = (
r10
d2
,
r20
d2
,
r1
d2

) = ((4, 0), (0, 4), (1, 1)) and G2 = (g1), then r2 =fO(r2, G2, x41x
2
2) = 4(4, 0) +

2(0, 4) = (16, 8).
- D3 is the gcd of the 2 × 2 minors of the matrix (8 · I2, (2, 2)T , (16, 8)T ), then D3 = 16, in

particular d3 = d2 = 2. In particular f is not irreducible. Note that in this example the strict
straightness condition is verified for f and g2.

Example 3: Let f = y8 − 2x1x2y
4 + x31x

2
2 − x1y5 ∈ K[[x1, x2]][y]. Then we have:

- D1 = n2 = 82 = 64, d1 = n = 8, r10 = (8, 0), r20 = (0, 8), g1 =Appd1(f) = y, and r1 = (3, 2).
- D2 is the gcd of the 2 × 2 minors of the matrix (8I2, (3, 2)T ), then D2 = 8, in particular

d2 = 1.
- GNP(f, r2 = (r10, r

2
0, r1), G2 = (g1)) = {((0, 0), 8.(3, 2)), ((8, 0), 5.(3, 2)), ((8, 0)+(0, 8), 4.(3, 2)),

(3.(8, 0) + 2.(0, 8), (0, 0))} = {((0, 0), (24, 16)), ((8, 0), (15, 10)), ((8, 8), (12, 8)), ((24, 16), (0, 0))}.
Here the strict straightness is not verified, then f is not irreducible.
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