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Combinatorial computation of the motivic Poincaré series

E. Gorsky

Abstract

We give an explicit algorithm computing the motivic generalization of the Poincaré
series of a plane curve singularity introduced by A. Campillo, F. Delgado and S. Gusein-
Zade. It is done in terms of the embedded resolution. The result is a rational function
depending of the parameter q, at q = 1 it coincides with the Alexander polynomial of the
corresponding link. For irreducible curves we relate this invariant to the Heegaard-Floer
knot homology constructed by P. Ozsváth and Z. Szabó. Many explicit examples are
considered.
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1 Introduction

In the series of articles (e.g. [3],[4]) A. Campillo, F. Delgado and S. Gusein-Zade proved
that the Alexander polynomial of the link of the plane curve singularity is related to the
generating function arising in the purely algebraic setup.

Let C = ∪ri=1Ci be a germ of a plane curve,

γi : (C, 0)→ (Ci, 0)

are the uniformizations of its components. If f ∈ O = OC2,0 is a germ of a function on
(C2, 0), we define

vi(f) = Ord0f(γi(t)),

and the Poincaré series of the curve C is defined ([4]) as the integral with respect to the Euler
characteristic

PC(t1, . . . , tr) =

∫
PO
tv11 · . . . · trvrdχ, (1)

where PO denotes the projectivization of O as a vector space. For example, if C is irreducible,
we can define the decreasing filtration

O ⊃ J1 ⊃ J2 ⊃ . . . , Jn = {f ∈ O|v1(f) ≥ n}, (2)

and

PC(t) =

∞∑
n=0

tn dim Jn/Jn+1. (3)

Let ∆C(t1, . . . , tn) denote the Alexander polynomial of the intersection of C with a small
sphere centered at the origin. The theorem of Campillo, Delgado and Gusein-Zade says that
if r = 1, then

(1− t)PC(t) = ∆C(t), (4)

and if r > 1, then
PC(t1, . . . , tr) = ∆C(t1, . . . , tr).

In [5] there was proposed the following natural generalization of the Poincaré series. One
can naturally define the motivic measure on the space of functions, and consider the following
motivic integral, generalizing (1):

PCg (t1, . . . , tr) =

∫
PO
tv11 · . . . · trvrdµ. (5)
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If r = 1, we can rewrite (5) as the generalization of (3):

PCg (t) =

∞∑
n=0

tn
qcodimJn − qcodimJn+1

1− q
, (6)

therefore in this case one can deduce Pg(t) from P (t). If r is greater than 1, the situation
becomes more complicated. Nevertheless, the explicit algorithm for the computation of the
motivic Poincaré series is presented in Theorem 3.

Definition: The reduced motivic Poincaré series is the power series

P g(t1, . . . , tr) = (1− qt1) · . . . · (1− qtr) · Pg(t1, . . . , tr). (7)

We prove that the reduced motivic Poincaré series satisfies the following properties.

1. Polynomiality. P g(t1, . . . , tr; q) is a polynomial in variables t1, . . . , tr and q. We give
a bound for its degree on t1, . . . , tr.

2. Reduction to the Alexander polynomial. If n = 1, then

P g(t; q = 1) = ∆(t),

where ∆ denote the Alexander polynomial of the link of the corresponding plane curve
singularity. If n > 1, then

P g(t1, . . . , tr; q = 1) = ∆(t1, . . . , tr) ·
r∏
i=1

(1− ti).

3. Forgetting components. Let C be a curve with r components, and C1 be an irre-
ducible curve. Then

P
C∪C1

g (t1, . . . , tr, tr+1 = 1) = (1− q)PCg (t1, . . . , tr). (8)

If C has only one component, then

P
C

g (t = 1) = 1.

This property is clear from the equation (5), but seems to be curious and, for exam-
ple, does not hold for the Alexander polynomial (we cannot reconstruct the Alexander
polynomial of a sublink from the Alexander polynomial of a link by setting the corre-
sponding variable to 1).

4. Symmetry. Let µα be the Milnor number ([2]) of Cα, let (Cα ◦Cβ) be the intersection
index of Cα and Cβ , let µ(C) be the Milnor number of C. Let

lα = µα +
∑
β 6=α

(Cα ◦ Cβ), δ(C) = (µ(C) + r − 1)/2.
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Remark that
∑r
α=1 lα = 2δ(C).

It is known that the Alexander polynomial is symmetric in a sense that

∆(t−1
1 , . . . , t−1

r ) =

r∏
α=1

t1−lαα ·∆(t1, . . . , tr), r > 1

and
∆(t−1) = t−µ∆(t), r = 1.

In Theorem 4 we prove a generalization of this identities that holds for any r, namely,

P g(
1

qt1
, . . . ,

1

qtr
) = q−δ(C)

∏
α

t−lαα · P g(t1, . . . , tr).

5. Relation to the knot homology. For irreducible curves we prove that P g(t) can
be related by the simple procedure to the Poincaré polynomial of the Heegaard-Floer
knot homology constructed by P. Ozsváth and Z. Szabó. This homology theory is
a ”categorification” of the Alexander polynomial, tightly related with the symplectic
topology and Seiberg-Witten theory. Since the origins of our and their construction are
quite far, the relation between them seems to be interesting. No conceptual proof for
this fact is known, and we just use that both answers are determined by the Alexander
polynomial in the same way.

The paper is organized in the following way. In the section 2 we recall the definition of
the Poincaré series of a plane curve singularity. Then we recall the definition of the motivic
measure on the space of functions and give, following [5], two definitions of the motivic
Poincaré series as a motivic integral and in terms of the multi-index filtration associated
with the curve. We give the simple method of deduction of the motivic Poincaré series from
the ordinary Poincaré series for irreducible curves. In Theorem 2 we recall the formula from
[5] expressing the motivic Poincaré series in terms of the embedded resolution of a curve.
This formula is proved by Campillo, Delgado and Gusein-Zade using thorough analysis of
the geometry of the functional spaces defined by the embedded resolution of a curve.

In the section 3 we apply Theorem 2 to a nonsingular curve and explain step-by-step
the calculation of all sums involved. It turns out to be a curious exercise, and this simplest
example is a toy model for the consequent combinatorial work.

The section 4 contains several steps of the simplification of Theorem 2. In the result
(Lemma 6) the motivic Poincaré series is expressed in terms of some quantities cK(n). In
Lemma 5 the generating function for these quantities is explicitly written in the closed form.
This allows to compute the motivic Poincaré series.

Applying Lemma 6 directly, we get a lot of similar summands which cancel after all
substitutions, but this cancellation is not clear from lemmas 5 and 6. For example, it is not
even clear, that the answer is a polynomial.

Therefore in the rest of section 4 we discuss the analogues of the identity

∞∑
n=0

tnq
n2+3n

2 (q−n − tq) = 1
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arising in the nonsingular case. The result of this investigation is Theorem 3, where we
formulate an explicit algorithm of calculation of the motivic Poincaré series. This algorithm
does not involve infinite sums, and can be implemented as a short Mathematica program.

The algorithm is presented in the same manner as in Lemma 6: the motivic Poincaré
series is expressed in terms of some quantities dP (n), which fit into the explicitly defined
generating function HP (u). This function is generally more complicated than the one from
Lemma 5, but in some examples (Lemma 9) it has more or less compact form.

Section 5 contains a bunch of explicit answers for the curves with resolutions containing
up to 3 divisors.

In the section 6 we prove the symmetry property for the motivic Poincaré series (Theorem
4). It generalizes the known symmetry property for the Alexander polynomial of a link.
From the viewpoint of the algebraic geometry, it is related to the Gorenstein property of
the coordinate ring of a curve ([6]), thus it seems to be related to the Kapranov’s functional
equation ([11],[10]) for the motivic zeta function of a curve.

We prove the symmetry property by proving the analogous statements for all steps of our
algorithm: the function HP (u) is symmetric, what implies some relations for its coefficients
dP (n) and, therefore, for the Poincaré series.

The main result of the section 7 is Theorem 6 describing the surprising relation between
the motivic Poincaré series of an irreducible plane curve singularity and another deformation
of the Alexander polynomial, namely, the Poincaré polynomial for the Heegaard-Floer knot
homology ([18],[19]). The proof is based on the fact that in both cases the Poincaré poly-
nomial (and series) is defined by the Alexander polynomial. We also give some corollaries
from this fact which look more geometric. A filtered complex of Z[U ]-modules analogous to
the Ozsváth-Szabó complex CFL−(K) is constructed. This gives an algebraic model for the
minus- and hat-versions of the Heegaard-Floer complexes for algebraic knots.

We also compare the motivic Poincaré series with the Heegaard-Floer homologies of two-
component links, corresponding to the singularities of type A2n−1.

The motivic Poincaré series has been independently studied by J. Moyano-Fernandez and
W. Zuniga-Galindo in [14]. Their approach is based on the study of the multi-dimensional
semigroup of the singularity instead of its resolution. In particular, they gave alternative
proofs of the Theorems 3 and 4 of this article.
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2 Poincaré series and its generalization

2.1 Poincaré series

Let C = ∪ri=1Ci be a reduced plane curve singularity at the origin in C2, and Ci are its
irreducible components. Let γi : (C, 0)→ (Ci, 0) be the uniformizations of these components.

We define r integer-valued functions on the space O = OC2,0 by the formula

vi(f) = Ord0(f(γi(t)))

and Zr-indexed filtration
Jv = {f ∈ O|vi(f) ≥ vi}.

Note that Jv are also defined for negative values of v. This filtration is decreasing in a sense
that if v1 ≺ v2, then Jv1 ⊃ Jv2 . Consider the Laurent series

LC(t1, . . . , tr) =
∑
v

tv11 . . . tvrr · dim Jv/Jv+1.

Definition:([6], [3]) The Poincaré series of the curve C is defined by the formula

PC(t1, . . . , tr) =
LC(t1, . . . , tr) ·

∏r
i=1(ti − 1)

t1 · . . . · tr − 1
.

For example, if r = 1, we have

PC(t) =

∞∑
v=0

tv · dim Jv/Jv+1.

One can prove, that PC is always a power series. More geometric meaning of this definition
is given by the following interpretation of the Poincaré series as an integral with respect to
the Euler characteristic.

Proposition.([4]) Let PO denote the projectivization of the functional space O as a vector
space. Then the following equation holds:

PC(t1, . . . , tr) =

∫
PO
tv11 · . . . · tvrr dχ. (9)

On the other hand, consider the link of C – the intersection of C with a small three-
dimensional sphere centred at the origin. We denote its multi-variable Alexander polynomial
by ∆C(t1, . . . , tr). Campillo, Delgado and Gusein-Zade proved the following

Theorem 1 ([4]) If r = 1 then

PC(t)(1− t) = ∆C(t), (10)

and if r > 1 then
PC(t1, . . . , tr) = ∆C(t1, . . . , tr). (11)
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2.2 Motivic measure

Let O = OC2,0 be the space of formal germs of analytic functions at the origin on the plane.
It is the set of formal power series f(x, y) (without degree 0 term). Let On be the space of
n-jets of such arcs, let πn : O → On be the natural projection.

Let K0(V arC) be the Grothendieck ring of complex quasiprojective varieties. It is gen-
erated by the isomorphism classes of complex quasiprojective varieties modulo the relations
[X] = [Y ] + [X \ Y ], where Y is a Zariski locally closed subset of X. Multiplication is given
by the formula [X] · [Y ] = [X × Y ]. Let L = [C] ∈ K0(V arC) be the class of the affine line in
this ring.

The Euler characteristic provides a ring homomorphism

χ : K0(V arC)→ Z.

Consider the ring K0(V arC)[L−1] with the following filtration: Fk is generated by the
elements of the type [X] · [L−n] with n − dimX ≥ k. Let M be the completion of the ring
K0(V arC)[L−1] corresponding to this filtration.

On an algebra of subsets of O Campillo, Delgado and Gusein-Zade ([5]), following the
ideas of Kontsevich, Denef and Loeser ([7]) constructed a measure µ with values in the ring
M.

Definition:([5]) A subset A ⊂ O is said to be cylindric if there exist n and a constructible
set An ⊂ On such that A = π−1

n (An). For the cylindric set A define its motivic measure by
the formula

µ(A) = [An] · L−
(n+1)(n+2)

2 .

Remark that dimOn = (n+1)(n+2)
2 , hence the definition of the motivic measure is in fact

independent on n. In a full analogy with [7], this measure can be extended to an countable-
additive M-valued measure on a suitable algebra of subsets of O.

Definition: A function f : O → G with values in an abelian group G is called simple, if its
image is countable or finite, and for every g ∈ G the set f−1(g) is measurable. Using this
measure, one can define in the natural way the motivic integral for simple functions on O as∫

O
fdµ =

∑
g∈G

g · µ(f−1(g)),

if the right hand side sum converges in G⊗M.

Remark. Note that for cylindric sets the Euler characteristic can be defined by the formula
χ(A) = χ(An). This gives a Z−valued measure on the algebra of cylindric sets. However, it
cannot be extended to the algebra of measurable sets. This measure provides a notion of an
integral with respect to the Euler characteristic for functions on O with cylindric level sets.
It is clear that for such functions

χ(

∫
O
fdµ) =

∫
O
fdχ.
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Using the same construction, one can define the motivic measure on the projectivization
PO of the functional space.

As a direct generalisation of the equation (9) Campillo, Delgado and Gusein-Zade pro-
posed the following

Definition: Motivic Poincaré series is the motivic integral

PCg (t1, . . . , tr) =

∫
PO
tv11 · . . . · tvrr dµ (12)

As above, this definition can be reformulated in terms of the multi-index filtration on the
space of functions. Let q = L−1 be a formal variable. Let h(v) = codimJv, and

Lg(t1, . . . , tr, q) =
∑
v∈Zr

qh(v) − qh(v+1)

1− q
· tv11 . . . tvrr .

Then the following equation holds ([5]):

PCg (t1, . . . , tr; q) =
LCg (t1, . . . , tr) ·

∏r
i=1(ti − 1)

t1 · . . . · tr − 1
. (13)

An example of the calculation of the motivic Poincaré series for the singularities of type
A2n−1 directly from the equation (13) is presented in the section 7.4 below.

2.3 Irreducible case

If r = 1, the equation (13) has a very clear form, since in this case

PCg (t) = LCg (t).

Remark that
codimJv = dimO/J1 + dim J1/J2 + . . .+ dim Jv−1/Jv, (14)

so the series PCg (t) can be reconstructed from the series PC(t).
The functional v(f) = Ord0f(γ(t)) is a valuation on the ring O.The set of values of v

is an integer semigroup S = {σ1, σ2, σ3, . . .}. For example, for the singularity xp = yq (its
link is the torus (p, q) knot) we have x(t) = tq, y(t) = tp, so the corresponding semigroup is
generated by p and q. The coefficient at tv in PC(t) vanishes, if Jv = Jv+1 (or, equivalently,
v does not belong to the semigroup S) , and equals to 1 otherwise. Therefore we have

PC(t) = 1 + tσ1 + tσ2 + tσ3 + . . . .

Now the equation (14) implies the following formula for the motivic Poincaré series:

PCg (t; q) = 1 + qtσ1 + q2tσ2 + q3tσ3 + . . . . (15)

Example. Consider the cusp x2 = y3. Its semigroup is generated by 2 and 3, the Poincaré
series is equal to

P (t) = 1 + t2 + t3 + t4 + . . . ,
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the motivic Poincaré series is equal to

Pg(t) = 1 + qt2 + q2t3 + q3t4 + . . . .

Note that
P (t)(1− t) = 1− t+ t2,

what equals to the Alexander polynomial of the trefoil knot.

2.4 Formula of Campillo, Delgado and Gusein-Zade

In [5] Campillo, Delgado and Gusein-Zade gave a formula for the generalized Poincaré series
in terms of the resolution.

Let π : (X,D)→ (C2, 0) be an embedded resolution where D = ∪si=1Ei is the exceptional
divisor. Let E•i be Ei without intersection points of Ei with other components of D, E◦i
be E•i without intersection points of Ei with the components of the strict transform of our
curve. Let A = (Ei ◦ Ej) be the intersection matrix and M = −A−1.

Let I0 = {(i, j) : i < j,Ei ∩ Ej = pt}, K0 = {1, . . . , r}. For σ ∈ I0, σ = (i, j) let i(σ) = i,
j(σ) = j. For I ⊂ I0, K ⊂ K0 let

NI,K := {n = (ni, n
′
σ, n
′′
σ, ñ
′
k, ñ
′′
k) : ni ≥ 0, i = 1 . . . , s

n′σ, n
′′
σ, σ ∈ I; ñ′k > 0, ñ′′k > 0, k ∈ K}.

For n ∈ NI,K , i = 1, . . . , s, let

n̂i = ni +
∑

σ∈I:i(σ)=i

n′σ +
∑

σ∈I:j(σ)=i

n′′σ +
∑

k∈K:i(k)=i

ñ′k. (16)

Let

F (n) =
1

2
(

s∑
i,j=1

mij n̂in̂j +

s∑
i=1

n̂i(

s∑
j=1

mijχ(E•j ) + 1)) +
∑
k∈K

ñ′′k , (17)

F (n̂) =
1

2
(

s∑
i,j=1

mij n̂in̂j +

s∑
i=1

n̂i(

s∑
j=1

mijχ(E•j ) + 1)),

and

w(n) =

s∑
i=1

n̂imi, vk(n) := wi(k)(n) + ñ′′k .

Theorem 2 ([5])

Pg(t1, . . . , tr, q) =
∑

I⊂I0,K⊂K0

∑
n∈NI,K

qF (n)−
∑s
i=1 ni−|I|−|K| · (1− q)|I|+|K|×

×
s∏
i=1

min{ni,1−χ(E◦i )}∑
j=0

(−1)j
(

1− χ(E◦i )

j

)
qj

 · tv(n).
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We briefly recall the sketch of the proof from [5]. Consider a function f ∈ O and its
pullback π∗f on the space of resolution X. Now let I(f) be the set of intersection points in
D such that there are components of the strict transform of X passing through them, K(f)
is the analogous set of intersection points of strict transform of C with D. Now ni(f) is the
intersection index of the strict transform of f with the smooth part of Ei, n

′
σ and n′′σ are

intersection indices of the component of the strict transform of f passing through σ with
Ei(σ) and Ej(σ) respectively, ñ′k and ñ′′k are intersection indices of the component passing
through the point k with Ei(k) and corresponding component of C respectively.

Given these sets and multiplicities, the value of the function t
v1(f)
1 · . . . · tvr(f)

r is equal to
tv(n). Every summand in Theorem 2 is equal to this value multiplied by the motivic measure
of the set of functions providing such set of data.

3 Example: nonsingular curve

Let us check that for the nonsingular curve the complicated expression from Theorem 2
coincides with the expected one.

We have one divisor and one component of the strict transform of the curve. We have
I0 = ∅, K0 = {1}. Also we have χ(E◦) = 1, χ(E•) = 2, hence 1 − χ(E◦) = 0. To sum over
K ⊂ K0, consider two cases:

1) K = ∅. In this case F (n) = 1
2 (n2 + 3n), and we have a sum

∞∑
n=0

tnq
n2+3n

2 · q−n

2) K = {1}. In this case F (n) = 1
2 (n̂2 + 3n̂) + n′′, and we have a sum

∞∑
n̂=1

q
n̂2+3n̂

2 tn̂
n̂−1∑
n=0

q−n−1(1− q)
∞∑

n′′=1

qn
′′
tn
′′

=

∞∑
n̂=1

q
n̂2+3n̂

2 tn̂(q−n̂ − 1) · qt

1− qt
.

Summing these two expressions, we get

1 +

∞∑
n=1

tnq
n2+3n

2 (q−n +
qt

1− qt
(q−n − 1)) = 1 +

1

1− qt

∞∑
n=1

tnq
n2+3n

2 (q−n − qt) =

1 +
1

1− qt
(

∞∑
n=1

tnq
n(n+1)

2 −
∞∑
n=1

tn+1q
(n+1)(n+2)

2 ).

In the last sum all coefficients at tn for n ≥ 2 cancel, therefore

Pg(t; q) = 1 +
tq

1− qt
=

1

1− qt
.
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4 Combinatorics

4.1 Preliminary simplification

Let

Pk,n(q) =

n∑
j=0

(−1)jqj
(
k

j

)
(k can be negative, but n should be non-negative and integer).

Lemma 1 Let SnX denote the nth symmetric power of a space X. Then

[Sn(CP1 − k{pt})] = q−nPk−1,n(q).

Proof . If Y denote the union of k points on C1, then we have

Sm(CP1) = tmi=0S
i(Y )× Sm−i(CP1 \ Y ),

what is equivalent to the following multiplicativity property:

∞∑
n=0

tn[Sn(CP1)] =

∞∑
n=0

tn[Sn(Y )] ·
∞∑
n=0

tn[Sn(CP1 \ Y )].

Since
∞∑
n=0

tn[Sn(CP1)] =

∞∑
n=0

tn[CPn] =
1

(1− t)(1− Lt)
,

we get
∞∑
n=0

tn[Sn(CP1 − k{pt})] =
(1− t)k−1

(1− Lt)
=

∑
a,b

(−1)a
(
k − 1

a

)
taLbtb =

∞∑
n=0

tn
n∑
a=0

(−1)a
(
k − 1

a

)
Ln−a =

∞∑
n=0

tnq−nPk−1,n(q).

�

Let us fix some notations.

Definition: Let
fi(I,K) =

∑
σ∈I:i(σ)=i

1 +
∑

σ∈I:j(σ)=i

1 +
∑

k∈K:i(k)=i

1,

fi(I) =
∑

σ∈I:i(σ)=i

1 +
∑

σ∈I:j(σ)=i

1.

Note that
∑s
i=1 fi(I,K) = 2|I|+ |K|,

∑s
i=1 fi(I) = 2|I|.
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To any divisor Ei we associate the factor

φi(I,K, n̂) = P1−χ(E◦i )−fi(I,K),n̂i−fi(I,K),

and let
G(I,K, n̂) = q|I|(1− q)|I|+|K|

∏
i

φi(I,K, n̂).

Now we can start the simplification of the algorithm proposed in Theorem 2. The next
two lemmas will allow us to reduce the summation over all quadruples (ni, n

′
σ, n
′′
σ, ñ
′
k) to the

summation by a single variable n̂i defined by (16).

Lemma 2 Let us fix n̂i. Then∑
ni,n′σ,n

′′
σ ,ñ
′
k

q−ni−fi(I,K)P1−χ(E◦i ),ni(q) = q−n̂iφi(I,K, n̂). (18)

Proof . By Lemma 1 we have∑
ni,n′σ,n

′′
σ ,ñ
′
k

q−ni−fi(I,K)P1−χ(E◦i ),ni(q) =
∑

ni,n′σ,n
′′
σ ,ñ
′
k

q−fi(I,K)[Sni(E◦i )].

Consider a ni-tuple of points on E◦i , intersection points σ ∈ I such that i(σ) = i with
multiplicities n′σ − 1, intersection points σ ∈ I such that j(σ) = i with multiplicities n′′σ − 1,
intersection points k ∈ K such that i(k) = i with multiplicities ñ′k−1. We get the unordered
n̂i − fi-tuple of points on E◦i ∪ fi(I,K). Thus the sum (18) equals to

q−fi(I,K)[Sn̂i−fi(I,K)(E◦i ∪ fi(I,K))] = q−n̂iP1−χ(E◦i )−fi(I,K),n̂i−fi(I,K)(q).

�

Lemma 3

Pg(t1, . . . , tr, q) =
∑

I⊂I0,K⊂K0

∑
n̂i≥fi(I,K)

tMn̂qF (n̂)
s∏
i=1

q−n̂iφi(I,K, n̂)× (19)

q|I|(1− q)|I|+|K|
∏
k∈K

qtk
1− qtk

.

Proof . First, remark that for every k∑
ñ′′k>0

qñ
′′
k t
ñ′′k
k =

tkq

1− tkq
,

so from now on we can forget about summation over ñ′′k .
We have

q−
∑s
i=1 ni−|I|−|K| = q|I|

s∏
i=1

q−ni−fi(I,K),
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therefore we can reformulate the statement of Theorem 2 in the form

Pg(t1, . . . , tr, q) =
∑

I⊂I0,K⊂K0

q|I|(1− q)−|I|
∑

n̂i≥fi(I,K)

tMn̂qF (n̂)×

s∏
i=1

 ∑
ni,n′σ,n

′′
σ ,ñ
′
k

q−ni−fi(I,K)P1−χ(E◦i ),ni(q)

 .
Now the equation (19) follows from the Lemma 2. �

Definition: By the reduced motivic Poincaré series from now on we mean

P g(t1, . . . , tr) = Pg(t1, . . . , tr) ·
r∏
j=1

(1− tjq).

Lemma 4

∑
un̂G(K, I, n̂) = q|I|(1− q)|I|+|K|

∏
i

u
fi(K,I)
i

1− ui
(1− uiq)1−χ(E◦i )−fi(I,K) (20)

The proof of this lemma can be found in the Appendix.

Definition: Let
cK(n) =

∑
I

∑
K1⊂K

(−1)|K|−|K1|G(K1, I, n),

AK(u) =
∑
n

uncK(n).

The next lemma provides a closed formula for the functionAK(u), which can be considered
as a generating function for the quantities cK(n).

Lemma 5

AK(u) = (−1)|K|
∏
i

(1− uiq)|K∩Ei|−1(1− ui)|K∩Ei|−1
∏
σ

(1− qui(σ) − quj(σ) + qui(σ)uj(σ)).

The proof of this lemma can be found in the Appendix. The next lemma expresses the
reduced motivic Poincaré series in terms of the quantities cK(n).

Lemma 6
P g(t1, . . . , tr, q) =

∑
n

tMnqF (n)−
∑
ni
∑
K

tKq
|K|cK(n). (21)
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Proof . From the equation (19) we get

Pg(t1, . . . , tr, q) =
∑

I⊂I0,K⊂K0

∑
n̂i≥fi(I,K)

tMn̂qF (n̂)
s∏
i=1

q−n̂iφi(I,K, n̂)×

q|I|(1− q)|I|+|K|
∏
k∈K

qtk
1− qtk

=

∑
I⊂I0,K⊂K0

∑
n̂i≥fi(I,K)

tMn̂qF (n̂)
s∏
i=1

q−n̂iφi(I,K, n̂)× q|I|(1− q)|I|+|K|
∏
k∈K

qtk
1− qtk

=

1∏n
i=1(1− qti)

∑
n̂

tMnqF (n)−
∑
ni
∑
K

tKq
|K|
∑
I⊂I0

∑
K1⊂K

(−1)|K|−|K1|G(K1, I, n̂) =

1∏n
i=1(1− qti)

∑
n̂

tMnqF (n)−
∑
ni
∑
K

tKq
|K|cK(n̂).

�

Lemma 6 together with Lemma 5 gives the explicit description of P g(t): it is expressed
in terms of some quantities cK(n), which fit together into the generating function AK(u).
Lemma 5 provides a closed formula for this generating function.

Nevertheless, as the model example with a nonsingular curve shows, lots of summands in
the sum (21) have the same power in t, and for n large enough we have a huge number of
cancellations.

4.2 Cancellations

We say that a subset K ⊂ K0 is proper everywhere, if for all i K ∩ Ei is a proper subset of
K0 ∩ Ei. We denote the set of proper everywhere subsets by P. For any K ⊂ K0 let E(K)
be the set of divisors such that for i ∈ E(K) the set K ∩ Ei is empty. Sometimes we will
write i ∈ P , if i /∈ E(P ).

Using these notations, every subset K ⊂ K0 can be presented (uniquely) in the following
way: we fix a proper everywhere subset P (K) and a set of divisors E ⊂ E(P (K)) where all
intersection points with K0 belong to K.

For a set E of divisors let ∆(E) be the number of pairs of intersecting divisors from E.
Let µi(E) = 1, if i ∈ E and µi(E) = 0 otherwise.

Lemma 7 For a proper everywhere set P let

H̃P (u1, . . . , us) =
∑

E⊂E(P )

(−1)|K0∩E|
∏

u
−

∑
aijµj

i ·q∆(E)
∏
i∈E

(q−ui)ki−1
∏

i/∈(P∪E)

(1−qui)ki−1

(22)

×
∏
σ

(1− q1−µi(σ)(E)ui(σ) − q1−µj(σ)(E)uj(σ) + q1−µi(σ)(E)−µj(σ)(E)ui(σ)uj(σ)).

Then the polynomial H̃P is divisible by
∏
i∈E(P )(1− ui).
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The proof of this lemma can be found in the Appendix.
The next lemma explains the relation of the function H̃P (u1, . . . , us) (which is a modifi-

cation of the function AK(u)) to the coefficients cK(n) defined above. It is the main technical
instrument in the study of the cancellations.

Lemma 8∑
n

un
∑

E⊂E(P )

q−
∑
i∈E ni−∆(E)−

∑
i∈E aii−|E|q|K0∩E| × cP∪E(ni +

∑
aijµj(E)) =

(−1)|P |
∏
i∈P

[(1− qui)ki−pi−1(1− ui)pi−1] · 1∏
i∈E(P )(1− ui)

H̃P (u1, . . . , us).

The proof of this lemma can be found in the Appendix.

Definition: For a proper everywhere set P define the quantities dP (n) by the equation

HP (u) =
∑
n

dP (n)undP (n) =

∏
i∈P [(1− qui)ki−pi−1(1− ui)pi−1]∏

i∈E(P )(1− ui)
H̃P (u1, . . . , us). (23)

Remark that by Lemma 7 the function HP (u) is polynomial in u, so we have only finite
number of non-zero coefficients dP (n).

Combining the statements of Lemma 6 and Lemma 8, we get the following result.

Theorem 3 Then

P g(t1, . . . , tr) =
∑
P∈P

(−1)|P |q|P |tP ×
∑
n

dP (n)tMnqF (n)−
∑
ni .

Proof . From Lemma 6 we have

P (t) =
∑
n1

tMn1qF (n1)−
∑
ni
∑
K⊂K0

tKq
|K|cK(n1) =

∑
P∈P

q|P |tP
∑
n1

tMn1qF (n1)−
∑
ni

∑
E⊂E(P )

tEq
|K0∩E|cP∪E(n1).

Let us collect the coefficient at tMn. We have

Mn1 +
∑

µj(E) = Mn, n1 = n+
∑

aijµj(E).

and

(F (n)−
∑

ni)− (F (n1)−
∑

n1i) =
1

2
[−2

∑
mijniajsµj(E)

−
∑

mijaisµs(E)ajlµl(E)−
∑

mijχ(E•i )ajsµs(E) +
∑

aijµj(E)].

Remark that ∑
i 6=j

aij = 2− χ(E•j ),
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hence
(F (n)−

∑
ni)− (F (n1)−

∑
n1i) =

∑
i∈E

ni + ∆(E) +
∑
i∈E

aii + |E|.

Thus

P (t) =
∑
P∈P

q|P |tP
∑
n

tMnqF (n)−
∑
ni

∑
E⊂E(P )

q−
∑
i∈E ni−∆(E)−

∑
i∈K aii−|E|

×q|K0∩E|cP∪E(n+
∑

aijµj(E)).

Now we apply Lemma 8.
�

Corollary 1 The power series P g(t1, . . . , tr) is a polynomial.

4.3 The algorithm

If every line Ei is intersected by the one component of the strict transform, any proper
everywhere set should be empty. Therefore we get the following statement as a corollary of
Theorem 3.

Lemma 9 Suppose that each divisor Ei is intersected by exactly one component of the strict
transform of the curve. Then the reduced motivic Poincaré series can be computed using the
following algorithm.

1. Consider the polynomial

A(u1, . . . , ur) =
∏
σ

(1− qui(σ) − quj(σ) + qui(σ)uj(σ)).

2. Consider the Laurent polynomial

H̃(u1, . . . , ut) =
∑
K⊂K0

(−1)|K|q∆(K)
∏

u
−

∑
aijµj

i ·A(u1q
−µ1(K), . . . , urq

−µr(K)).

3. This polynomial is divisible by
∏

(1− ui). Let

H(u1, . . . , ur) =
H̃(u1, . . . , ur)∏r

i=1(1− ui)
.

4. Expand this polynomial:

H(u1, . . . , ur) =
∑

dnu
n,

and now
P g(t1, . . . , tr) =

∑
dnt

MnqF (n)−
∑
ni .
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5 Examples

5.1 One divisor

We consider the singularity
xk0 − yk0 = 0,

which is geometrically a union of k0 pairwise transversal lines. Its minimal resolution has one
divisor and k0 components of the strict transform intersecting it. In particular, for k0 = 1 we
get a non-singular case considered above. For 0 < k < k0 let the numbers ck(n) be defined
by the equation

Ak(u) =

∞∑
n=0

unck(n) = (1− uq)k0−k−1(1− u)k−1,

and for k = 0 let the numbers c0(n) be defined by the equation

A0(u) =

∞∑
n=0

unc0(n) =
(1− uq)k0−1 − u(u− q)k0−1

1− u
.

The polynomials Ak(u) have degree k0 − 2 for k > 0, A0(u) has degree k0 − 1, so we have a
finite number of non-zero ck(n).

From the Theorem 3 we conclude that

P g(t1, . . . , tk0) =
∑

K⊂ 6=K0

(−1)|K|q|K|tK

∞∑
n=0

c|K|(n)(t1 . . . tk0)nq
n(n+1)

2 .

For example, if k0 = 2,

A1(u) = 1, A0(u) =
1− uq − u(u− q)

1− u
= 1 + u,

so
P g(t1, t2) = 1− qt1 − qt2 + qt1t2.

If k0 = 3,

A1(u) = 1− qu,A2(u) = 1− u,A0(u) = 1 + (1− 2q − q2)u+ u2,

so

P g(t1, t2, t3) = 1− q(t1 + t2 + t3) + q2(t1t2 + t1t3 + t2t3) + q(1− 2q − q2)t1t2t3+

q3t1t2t3(t1 + t2 + t3)− q3t1t2t3(t1t2 + t1t3 + t2t3) + q3t21t
2
2t

2
3.

This answer can be rewritten as

P g(t1, t2, t2) = (1− qt1)(1− qt2)(1− qt3)− q3t1t2t3(1− t1)(1− t2)(1− t3) + q(1− q)2t1t2t3.
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5.2 Two divisors

Suppose that the second divisor is intersected by two components of the strict transform,
and the first one by one component. This corresponds to the singularity

x · (y − x2) · (y + x2) = 0.

The matrix M is equal to

M =

(
1 1
1 2

)
,

χ(E•1 ) = χ(E•2 ) = 1,

so

F (n1, n2) =
1

2
(n2

1 + 2n1n2 + 2n2
2 + 2n1 + 3n2).

If P = ∅, we get

H̃∅(u1, u2) = (1− qu1 − qu2 + qu1u2)(1− qu2)− (1− u1 − qu2 + u1u2)(1− qu2)u2
1u
−1
2

+(1− qu1 − u2 + u1u2)(q − u2)u−1
1 u2 − q(1− u1 − u2 + q−1u1u2)(1− qu2)u1 =

1

u1u2
(1− u1)(1− u2)(−u3

1 + u1u2 + u2
1u2 − qu2

1u2 − q2u2
1u2 + qu3

1u2

+qu2
2 + u1u

2
2 − qu1u

2
2 − q2u1u

2
2 + u2

1u
2
2 − u3

2),

if P is one point on the second divisor, we get

H̃pt(u1, u2) = (1− qu1 − qu2 + qu1u2)− (1− u1 − qu2 + u2)u2
1u
−1
2 =

− 1

u2
(1− u1)(u2

1 − u2 − u1u2 + qu1u2 − u2
1u2 + qu2

2).

Finally we get the following answer (t0 corresponds to the first divisor):

P g(t0, t1, t2) = 1− qt0 − qt1 + q2t0t1 − qt2 + q2t0t2 + q2t1t2 + qt0t1t2 − q2t0t1t2 − q3t0t1t2

−q2t0t
2
1t2 + q3t0t

2
1t2 − q2t0t1t

2
2 + q3t0t1t

2
2 + q2t0t

2
1t

2
2 − q3t0t

2
1t

2
2 − q4t0t

2
1t

2
2 + q4t20t

2
1t

2
2

+q4t0t
3
1t

2
2 − q4t20t

3
1t

2
2 + q4t0t

2
1t

3
2 − q4t20t

2
1t

3
2 − q4t0t

3
1t

3
2 + q4t20t

3
1t

3
2.

This answer can be rewritten as

P g(t0, t1, t2) = (1− qt0)(1− qt1)(1− qt2)− q4t0t
2
1t

2
2(1− t0)(1− t1)(1− t2)

+(1− q)qt0t1t2(1− qt1 − qt2 + qt1t2).

If q = 1, we get the known Alexander polynomial:

P g(t0, t1, t2; q = 1) = (1− t0)(1− t1)(1− t2)(1− t0t21t22).

If t2 = 1, we get the known answer for A1 singularity:

P g(t0, t1, 1) = (1− q)(1− qt0 − qt1 + qt0t1).

65



If t0 = 1, we get the answer for A3 singularity:

P g(1, t1, t2) = (1− q)(1− qt1 − qt2 + qt1t2 + q2t1t2 − q2t21t2 − q2t1t
2
2 + q2t21t

2
2),

so
P
A3

g (t1, t2) = (1− qt1)(1− qt2) + qt1t2(1− qt1 − qt2 + qt1t2) =

(1− qt1)(1− qt2) + q2t1t2(1− t1)(1− t2) + (1− q)qt1t2.

This answer agrees with the general answer for the singularities of type A2n−1 in the
section 7.5.

5.3 Three divisors

For simplicity we assume that each divisor is intersected by one component of the strict
transform. This corresponds to the singularity

x · y · (x2 − y3) = 0.

Matrix M is equal to

M =

1 1 2
1 2 3
2 3 6

 ,

χ(E•1 ) = χ(E•2 ) = 1, χ(E•3 ) = 0,

so

F (n1, n2, n2) =
1

2
(n2

1 + 2n2
2 + 6n2

3 + 2n1n2 + 4n1n3 + 6n2n3 + n1 + 2n2 + 4n3).

Now
A(u1, u2, u3) = (1− qu1 − qu3 + qu1u3)(1− qu2 − qu3 + qu2u3),

so

E(u1, u2, u3) =
1

u1u2u2
3

(u2
3u3u1 − u1

3u3
2q + u1

4u3u2 − u1
2u2

2u3
2 − u2

2u3
2u1+

u1
4u2

3u3 − u3
3u1

2q − u1
3u2u3

2 + u1
3u2

3u3 + u1
2u2

3u3 − u3
3qu2−

u1
3u2

2u3
2 − u3

3u1q − u2
2u3

2q − u1
2u2u3

2 − u3
2u1u2 + u2

2u1
4u3 − u1

3u2
3qu3+

u2
2u3

2u1
2q − u1

4u3u2
2q − u1

4u3
2u2q − u2

3u3
2u1q − u2

3u3u1
2q + u3

3u1q
2u2+

u2
2u3

2u1q
2 + u1

3u2
2u3q

2 + u1
3u3

2u2q
2 − u1

4u2
3 + u1

2u3
3 + u3

3u1 + u3
2u1

2u2q+

u1
3u3

3 + u3
3u2

2 + u3
3u2 + u3

3 − u3
4),

and

P g(t1, t2, t3) = 1− t3q + t1
2t2

3t3
7q7 + t1

2t2
2t3

5q5 + t1t2t3
3q3 + t1t2

2t3
4q4 − t12t2

4t3
7q7+

t2t3q
2 − t1t2t33q2 + t1t2q

2 − t1t22t3
4q3 − t12t2

2t3
5q4 − t1t22t3

2q2 − t12t2
3t3

5q5−
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t1
3t2

3t3
7q7 − t13t2

4t3
6q7 + t1

2t2
3t3

5q4 + t1
2t2

2t3
4q3 + t1

2t2
2t3

3q4 − t12t2
2t3

3q3+

t1
2t2

3t3
4q5 + t1

2t2
4t3

6q7 + t1t2
2t3

2q3 − t12t2
3t3

6q7 − t12t2
2t3

4q5 − t1t22t3
3q4−

t1t2t3q
3 + t1t2

2t3
3q2 − t2q + t1t3q

2 − t1t2t32q2 + t1
3t2

4t3
7q7+

t1t2t3
2q − t1q − t12t2

3t3
4q4 + t1

3t2
3t3

6q7.

It can be rewritten as

P g(t1, t2, t3) = (1− t1q)(1− t2q)(1− t3q)− t12t2
3t3

6q7(1− t1)(1− t2)(1− t3)−

t1t2t
2
3q(q − 1)(1− t2q)(1− t3q)− t21t22t43q4(q − 1)(1− t2)(1− t3)−

t1t
2
2t

3
3q

2(q − 1)(1− t1q) + t1t
2
2t

4
3q

3(q − 1)(1− t1).

In this presentation the symmetry of P g is clear, since every line in the right hand side
is invariant under the change ti ↔ q−1t−1

i .
If we set q = 1, we get

P g(t1, t2, t3, q = 1) = (1− t21t32t63)(1− t1)(1− t2)(1− t3).

If we consider only singularity of type A2, we set t1 = t2 = 1, t3 = t, and

P g(1, 1, t) = (1− q)2(1− tq + t2q),

so

Pg(1, 1, t) =
1− tq + t2q

1− tq
= 1 +

∞∑
k=2

tkqk−1.

This answer coincides with the one obtained in the section 2.3.

6 Symmetry

In this section we prove the symmetry property for the reduced motivic Poincaré series
(Theorem 4). The strategy of the proof passes along the lines of the computation described
in Lemma 6: namely, we prove the symmetry property for the generating function AK(u) in
Lemma 10, deduce from it a certain relations on its coefficients cK(n) in Lemma 11. Since we
can express the motivic Poincaré series in terms of cK(n), we can finish the proof by fitting
this relations to the statement of Theorem 4.

Lemma 10

AK(
1

qu1
, . . . ,

1

qus
) = q1−|K|

s∏
i=1

u
χ(E◦i )
i ·AK(u1, . . . , us).
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Proof .

AK(
1

qu
) = (−1)|K|

∏
i

(1− 1

ui
)|K∩Ei|−1(1− 1

uiq
)|K∩Ei|−1

∏
σ

(1− 1

ui(σ)
− 1

uj(σ)
+

1

qui(σ)uj(σ)
) =

AK(u)
∏
i

u
1−|K∩Ei|
i u

1−|K∩Ei|
i q1−|K∩Ei|

∏
σ

(qui(σ)uj(σ))
−1 =

AK(u)qs−|K|−|I0|
∏

u
2−|K0∩Ei|+χ(E•i )−2
i .

It rests to note that |I0| = s− 1 and χ(E◦i ) = χ(E•i )− |K0 ∩ Ei|. �

Lemma 11

cK(n1, . . . , ns) = q1−|K|+ncK(−χ(E◦1 )− n1, . . . ,−χ(E◦s )− ns),

where n =
∑s
i=1 ni.

Proof .

AK(
1

qu1
, . . . ,

1

qus
) =

∑
n

cK(n1, . . . , ns)u
−nq−n = q1−|K|

∏
u
χ(E◦i )
i

∑
z

cK(z1, . . . , zs)u
z.

We have
zi + χ(E◦i ) = −ni, zi = −χ(E◦i )− ni.

�

Theorem 4 Let µα be the Milnor number of Cα, and (Cα ◦ Cβ) is the intersection index
of Cα ◦ Cβ, µ(C) is the Milnor number of C. Let lα = µα +

∑
β 6=α(Cα ◦ Cβ) and δ(C) =

(µ(C) + r − 1)/2. Then

P g(
1

qt1
, . . . ,

1

qtr
) = q−δ(C)

∏
α

t−lαα · P g(t1, . . . , tr).

The theorem follows from Lemma 11 describing the symmetry of the coefficients cK(n) and
Lemma 6 describing P g(t1, . . . , tr) in terms of cK(n). The detailed proof is rather technical
and can be found in the Appendix.

Corollary 2 The degree of the polynomial P g(t1, . . . , tr) with respect to the variable ti is

equal to li. The greatest monomial in it equals to qδ(C)
∏r
i=1 t

li
i .

Alternative proof of the symmetry property for the motivic Poincaré series can be found in
[14], where it is deduced from the theorem of Campillo, Delgado and Kiyek on the symmetry
of the multi-variable Poincaré series of a plane curve singularity.
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7 Relation to the Heegaard-Floer knot homology

7.1 Heegaard-Floer homology

In the series of articles (e.g. [18],[19],[20],[22], see also [23]) P. Ozsváth and Z. Szabó con-
structed new powerful knot invariants, Heegaard-Floer knot (and link) homology. To each

link L = ∪ri=1Ki they assign the collection of homology groups ĤFLd(L, h), where d is an
integer and h belongs to some r-dimensional lattice. Their original description was based
on the constructions from the symplectic topology, later ([12],[13]) there were elaborated
combinatorial models for them. All of these homologies are invariants of the link L, and they
have the following properties ([19], [13]).

First, they give a ”categorification” of the Alexander polynomial of L: if r = 1, then∑
h

χ(ĤFL∗(L, h))th = ∆s(t),

where ∆s(t) = t− deg ∆/2∆(t) is a symmetrized Alexander polynomial of L. If r > 1, then

∑
h

χ(ĤFL∗(L, h))th =

r∏
i=1

(t
1/2
i − t−1/2

i ) ·∆s(t1, . . . , tr).

Second, they have the symmetry extending the symmetry of the Alexander polynomial:

ĤFLd(L, h) ∼= ĤFLd−2H(L,−h),

where H =
∑r
i=1 hi.

These properties are similar to the ones of the polynomials P g(t), and one could be
interested in comparison of these objects. It turns out, that for knots (of course, P g(t) is
defined only for the algebraic ones) this comparison can be done.

In [22] for the relatively large class of knots, containing all algebraic knots, the following
statement was proved.

Theorem 5 ([22]) Let the symmetrized Alexander polynomial have the form

∆s(t) = (−1)k +

k∑
i=1

(−1)k−i(tni + t−ni)

for some integers 0 < n1 < n2 < . . . < nk. Let n−j = −nj , n0 = 0. For −k ≤ i ≤ k let us
introduce the numbers δi by the formula

δi =


0, if i=k

δi+1 − 2(ni+1 − ni) + 1, if k-i is odd

δi+1 − 1, if k-i> 0 is even.

Then ĤFL(K, j) = 0, if j does not coincide with any ni, and ĤFL(K,ni) = Z belongs
to the homological grading δi.
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In what follows we will need more detailed algebraic structure of the Heegaard-Floer
homology which can be described in the following way ([19]).

Consider the ring
R = Z[U1, . . . , Ur].

For every r-component link L there exists a Zr-filtered chain complex CFL−(S3, L) of R-
modules, whose filtered homotopy type is an invariant of the link L. Filtrations naturally
correspond to the components of the link L. The operators Ui lowers the homological grading
by 2 and the filtration level by 1. The homologies of the associated graded object are denoted
as HFL−(S3, L). If one sets U1 = U2 = . . . = Ur = 0, he gets a new Zr-filtered chain complex

of Z-modules, which will be denoted as ĈFL(L). The homology of the associated graded

object are denoted as ĤFL(L), and they are the homology discussed above.
The filtration on the second complex is compatible with the forgetting of components

(proposition 7.1 in [19]). Namely, let M be the two-dimensional graded vector space with
one generator in grading 0 and one in grading −1.

Proposition. Let L be an oriented, r-component link in S3 and distinguish the first com-

ponent K1. Consider the complex ĈFL(L) viewed as a Zn−1-filtered chain complex where
the filtration corresponding to the first component is omitted. The filtered homotopy type

of this complex is identified with ĈFL(L−K1)⊗M .

If we forget all components of L, we get either the complex

ĈF (S3)⊗Mr−1,

where ĈF (S3) has one-dimensional homology in grading 0 or

CF−(S3) = Z[U ],

where all Ui acts by the multiplication by U .
This proposition is a direct analogue to the equation (8).

The three-manifolds with simplest Heegaard-Floer homology are the rational homology
spheres Y , for which the rank of the Heegaard-Floer homology is equal to the order of the
first (singular) homology, i.e.

rk ĤF (Y ) = |H1(Y ;Z)|.

These manifolds are called L-spaces, for example, lens spaces are L-spaces. In the case that
some positive surgery on K gives an L-space, we call K an L-space knot. It was proved by
M. Hedden in [9] that all algebraic knots (i.e. links of irreducible plane curve singularities)
belong to the class of L-space knots.

It was proved in [22], that for the L-space knot K and any filtration level n

rk H∗(CFL−(K,n)/U1(CFL−(K,n))) = 1. (24)

This is a key geometric ingredient in the proof of Theorem 5.
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7.2 Matching the answers

Consider the Poincaré polynomial for the Heegaard-Floer homologies:

HFL(t, u) =
∑

udts dim ĤFLd,s(K).

It categorifies the Alexander polynomial in the sense that

HFL(t,−1) = t− deg ∆/2∆(t).

Remark that the coefficients in P g(t, q) are always equal to 0 or to ±1. It can be proved
from the equation (15).

Theorem 6 Take P g(t, q) and let us make a following change in it: tαqβ is transformed to

tαu−2β, and −tαqβ is transformed to tαu1−2β . We get a polynomial ∆̃g(t, u). Then

∆̃g(t
−1, u) = t− deg ∆/2HFL(t, u). (25)

Example. For (3, 5) torus knot we have

Pg(t, q) = 1 + qt3 + q2t5 + q3t6 +
q4t8

1− qt
,

P g(t, q) = 1− qt+ qt3 − q2t4 + q2t5 − q4t7 + q4t8,

∆̃g(t, q) = 1 + u−1t+ u−2t3 + u−3t4 + u−4t5 + u−7t7 + u−8t8,

and
HFL(t, u) = t4 + u−1t3 + u−2t+ u−3t0 + u−4t−1 + u−7t−3 + u−8t−4.

Proof . To prove (25) we match Theorem 5 with the equation (15).
In the notation of Theorem 5 the non-symmetrized Alexander polynomial equals to

∆ =

−k∑
i=k

(−1)k−itnk−ni =

2k∑
i=0

(−1)itnk−nk−i ,

P (t) =
∆

1− t
=

k−1∑
i=0

nk−nk−2i−1−1∑
j=nk−nk−2i

tj +
t2nk

1− t
.

Note that for i > 0

δk−2i = δk−2i+1 − 1 = δk−2(i−1) − 2(nk−2i+2 − nk−2i+1),

so

Pg(t, q) =

k−1∑
i=0

nk−nk−2i−1−1∑
j=nk−nk−2i

q(j−nk+nk−2i)−δk−2i/2tj +
t2nkqnk

1− qt
,
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P g(t, q) =

k−1∑
i=0

(q−δk−2i/2tnk−nk−2i − q−δk−2i−1/2tnk−nk−2i−1) + t2nkqnk .

Now

∆̃g(t, u) =

k−1∑
i=0

(uδk−2itnk−nk−2i + uδk−2i−1tnk−nk−2i−1) + t2nku−2nk ,

tnk∆̃g(t
−1, u) =

k−1∑
i=0

(uδk−2itnk−2i + qδk−2i−1tnk−2i−1) + t2nku−2nk =

k∑
i=−k

uδitni = HFL(t, u).

�

7.3 Comparing filtered complexes

In this section we try to describe the relation between the knot filtration on the Heegaard-
Floer complexes and the filtration on the space of functions defined by a curve.

To be more close to the algebraic setup, we reverse all signs for filtrations and for the
homological (Maslov) grading as well (so we get cohomology groups). The Alexander grading
is also changed to get the non-symmetrized Alexander polynomial. In another words, the
Poincaré polynomial of the resulting cohomology coincides with ∆̃g(t, u

−1). The operator U
will now increase the homological grading by 2.

Consider a Z≥0-indexed filtration Jn by vector subspaces (with finite codimensions) on a
infinite-dimensional complex vector space J0. It induces a filtration by projective subspaces
PJn on PJ0 = CP∞:

PJ0
j1←↩ PJ1

j2←↩ PJ2
j3←↩ . . . ,

so we have a sequence of corresponding Gysin maps in cohomology:

H∗(PJ0)
(j1)∗←↩ H∗−2·codimJ1PJ1

(j2)∗←↩ H∗−2·codimJ2PJ2

(j3)∗←↩ . . . .

We get a Z≥0-indexed filtration

Fk = (jk)∗(H
∗(PJk))

in H∗(CP∞) = Z[U ], which is compatible with the multiplication by U . If we also know (as
for the filtration defined by the orders on the curve), that dim Jk/Jk+1 ≤ 1, we conclude that
U increase the filtration level at least by 1.

The motivic Poincaré series in this setup can be written as

Pg(t, q) =
∑
k,n

tkqn/2 dimHn(Fk/Fk+1).

The situation is similar to the Heegaard-Floer complexes, but U may increase the filtration
level more that by 1. To avoid this problem, we should modify the complex.

Example. Consider the following filtered complex T : it has generators Uka0, Uka1 and
Uka2. The homological degree of U laj equals to 2l+ j and its filtration level equals to l+ j.
The differential is defined as

d(a1) = a2 + Ua0.
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One can check that∑
k,n

tkun dimHn(Tk/Tk+1) = 1 + u2t2 + u4t3 + u6t4 + . . .

(so this complex corresponds to minus-version of the Heegaard-Floer homology of the trefoil

knot) and rkH∗(Tk/UTk) = 1 for all k. Remark that if T̂ k = Tk/UTk−1, then∑
k,n

tkun dimHn(T̂k/T̂k+1) = 1 + ut+ u2t2,

what is the Poincaré polynomial for the hat-version of the Heegaard-Floer homology of the
trefoil.

Let us turn to the general case. Consider the complex

C0 = F0[U1] + (F0[1])[U1] (26)

with the filtration
Cn =

⊕
k+l=n

U l1Fk ⊕
⊕

k+l=n−1

U l1Fk[1]

and the natural action of the operator U1 of homological degree 2. The differential is given
by the equation

d(x) = U1 · x+ Ux.

One can check that this differential preserves the filtration Cn and commutes with U1.

Lemma 12
H∗(Cn/Cn+1) = Fn/Fn+1, rk H∗(Cn/U1(Cn)) = 1.

Proof . We have

Cn/Cn+1 =
⊕
k+l=n

U l1(Fk/Fk+1)⊕
⊕

k+l=n−1

U l1(Fk/Fk+1)[1].

Since the U1-increasing component of the differential

d1(U l1x[1]) = U l+1
1 x

gives the isomorphism
d1 : U l1(Fk/Fk+1)→ U l+1

1 (Fk/Fk+1),

we have
H∗(Cn/Cn+1) = Fn/Fn+1.

Also we have

Cn/U1(Cn) = F0 ⊕ F0[1]
⊕

k+l=n,l>0

U l1(Fk/Fk+1)⊕
⊕

k+l=n−1,l>0

U l1(Fk/Fk+1)[1],
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and up to the isomorphisms d1 we have the complex F0 ⊕ F0[1] with the differential

d2(x[1]) = Ux,

so
rk H∗(Cn/U1(Cn)) = 1.

�

The properties of the complex C0 are similar to the ones of the complex CFL−(K). More
precisely, the calculations of [22] (lemma 3.1 and lemma 3.2) imply the following

Proposition. Suppose that a cochain complex C has a filtration Ck, k ≥ 0 and an injective
operator U of homological degree 2 acting on it such that

1)U(Ck) ⊂ Ck+1 and U−1(Ck) ⊂ Ck−1 (this means that U increase the level of filtration
exactly by 1)

2)H∗(Ck/U(Ck)) has rank 1 for all k.

Then
3) For all k the rank of H∗(Ck/Ck+1) is at most 1.

Let {0, σ1, σ2, . . .} is the set of k such that this rank is 1. Then
4) H∗(Cσk/Cσk+1) belongs to degree 2k.

Let

Q(t, q) =

∞∑
k=0

qktσk , Q(t, q) = Q(t, q)(1− qt).

Let us make a following change in Q: tαqβ is transformed to tαu2β , and −tαqβ is transformed
to tαu2β−1.

5) The result is equal to∑
k,n

tkun dimHn(Ck/(Ck+1 + UCk−1)).

The second condition is analogous to the equation (24) for the Heegaard-Floer homology
of the L-space knots.

The last result can be reformulated as follows. Consider the complex Ĉk = Ck/UCk−1,

then the last homology is the homology of the associated graded object Ĉk/Ĉk−1. The mul-
tiplication by 1− qt corresponds to the exact sequence

0→ Ck−1/Ck
U→ Ck/Ck+1 → Ĉk/Ĉk+1 → 0.

As a corollary we get that the series Q(t, 1) determines completely all discussed cohomol-
ogy. Since for the filtered complexes C and CFL− we have Q(t, 1) = ∆(t)/(1 − t) for both,
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we have the equality of the cohomology of the associated graded objects and the more clear
proof of the Theorem 6. As an another corollary, we get the equation

H∗(CFL−(S3)/CFL−s (S3,K)) ∼= H∗(P(O/Js)), (27)

which looks more geometric than the Theorem 6.

Remarks.
1. It would be interesting to construct the analogous Zn-filtered complex of Z[U1, . . . , Un]

for multi-component links which would carry the information about the Poincaré series of
the corresponding multi-index filtration.

2. It would be also interesting to compare these results with the ones of [15], [16] and [17]
computing the Seiberg-Witten and Heegaard-Floer invariants of links of surface singularities.

7.4 Example: A2n−1 singularities

Since the algorithm of computation of the (reduced) motivic Poincaré series is quite com-
plicated, it is useful to have a series of answers where the motivic Poincaré series and the
Heegaard-Floer link homology can be computed.

Proposition. Consider the singularity of type A2n−1 given by the equation

y2 = x2n.

From the topological viewpoint this corresponds to the 2-component link, whose components
are unknotted, all intersections are positive and the linking number of the components equals
to n. Then

Pg(t1, t2) = 1 + qt1t2 + . . .+ qn−1tn−1
1 tn−1

2 +
qn(1− q)tn1 tn2

(1− t1q)(1− t2q)
.

Proof . For the proof we use the equation (13). Parametrisations of the components are

(x(t1), y(t1)) = (t1, t
n
1 ), and (x(t2), y(t2)) = (t2,−tn2 ),

so
xayb|C1 = ta+bn

1 , xayb|C2 = (−1)bta+bn
2 .

If a < n, then every function with order a on C1 has a form xa + . . ., so its order on C2 is
also equal to a.

For every a, b ≥ n consider the function xa−n(xn + y) + xb−n(xn − y). Its restrictions on
C1 and C2 are respectively equal to 2ta1 and 2tb2, therefore

dim Ja,b/Ja+1,b = dim Ja,b/Ja,b+1 = 1.

The codimensions h(v1, v2) are equal to v1 + v2−n, if v1, v2 ≥ n, to v2, if v1 < n, v2 ≥ n,
to v1, if v2 < n, v1 ≥ n, and to max(v1, v2), if 0 ≤ v1, v2 < n. We have

LA2n−1
g (t1, t2, q) =

∑
0≤max(v1,v2);min(v1,v2)<n

tv11 t
v2
2 q

max(v1,v2) + (1 + q)

∞∑
v1,v2=n

tv11 t
v2
2 q

v1+v2−n,
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hence

LA2n−1
g (t1−1)(t2−1) = −1+(1− q)t1t2 + . . .+(qn−2− qn−1)tn−1

1 tn−1
2 + qn−1(1− q+ q2)tn1 t

n
2

+
qn+1tn+1

1 tn2 (q − 1)

1− qt1
+
qn+1tn1 t

n+1
2 (q − 1)

1− qt2
+
qntn+1

1 tn+1
2 (1 + q)(1− q)2

(1− qt1)(1− qt2)
,

and

PA2n−1
g =

L
A2n−1
g (t1 − 1)(t2 − 1)

t1t2 − 1
= 1 + qt1t2 + . . .+ qn−1tn−1

1 tn−1
2 +

qn(1− q)tn1 tn2
(1− qt1)(1− qt2)

.

�

Corollary 3

P
A2n−1

g (t1, t2) = [1 + (q + q2)t1t2 + . . .+ (qn−1 + qn)tn−1
1 tn−1

2 + qntn1 t
n
2 ] (28)

−(t1 + t2)[q + q2t1t2 + . . .+ qntn−1
1 tn−1

2 ].

In [19] Ozsváth and Szabó computed the Heegaard-Floer homology of the corresponding
links. In their notation the answer has the following form (everywhere we write the Poincaré
polynomials of the corresponding complexes). Let

Y l(d)(t1, t2, u) = ud(tl1 + tl−1
1 t2 + . . .+ tl2) + ud−1(tl−1

1 + . . .+ tl−1
2 ),

B(d)(t1, t2, u) = ud + (t1 + t2)ud+1 + ud+2t1t2.

Then

HFLA2n−1
(t1, t2, u) = Y 0

(0)t
n/2
1 t

n/2
2 + Y 1

(−1)t
n/2−1
1 t

n/2−1
2 +

n∑
i=2

B(−2i)t
n/2−i
1 t

n/2−i
2 .

Since Y 0
(0) = 1 and Y 1

(−1) = u−1(t1 + t2) + u−2 one can simplify this as

HFLA2n−1
(t1, t2, u) = t

n/2
1 t

n/2
2 + (u−1(t1 + t2) + u−2)t

n/2−1
1 t

n/2−1
2

+

n∑
i=2

(u−2i + (t1 + t2)u−2i+1 + u−2i+2t1t2)t
n/2−i
1 t

n/2−i
2 ,

so
t
n/2
1 t

n/2
2 HFLA2n−1(t−1

1 , t−1
2 , u) = 1 + (u−1(t1 + t2) + u−2t1t2)

+

n∑
i=2

(u−2iti1t
i
2 + (t1 + t2)u−2i+1ti−1

1 ti−1
2 + u−2i+2ti−1

1 ti−1
2 ) =

[1 + 2u−2t1t2 + . . .+ 2u−2n+2tn−1
1 tn−1

2 + u−2ntn1 t
n
2 ]

−(t1 + t2)[u−1 + u−3t1t2 + . . .+ u−2n+1tn−1
1 tn−1

2 ].

The last expression is similar to (28) in analogy with the Theorem 6.
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8 Appendix

Proof of Lemma 4.
We have∑

un̂iφi(I,K, n̂) =
∑
j

∞∑
n̂=j+fi(K,I)

un̂i(−1)j
(

1− χ(E◦i )− fi(I,K)

j

)
qj =

ufi(K,I)

1− u
∑
j

(−1)j
(

1− χ(E◦i )− fi(I,K)

j

)
(uq)j =

ufi(K,I)

1− u
(1− uq)1−χ(E◦i )−fi(I,K),

and ∑
un̂G(K, I, n̂) = q|I|(1− q)|I|+|K|

∏
i

u
fi(K,I)
i

1− ui
(1− uiq)1−χ(E◦i )−fi(I,K).

�
Proof of Lemma 5

AK(u) =
∑
I

q|I|(1− q)|I|
∑
K1

(−1)|K|−|K1|(1− q)|K1|
∑
n

un
∏
i

φi(I,K1, n).

We have ∑
n

un
∏
i

φi(I,K1, n) =
∏
i

u
fi(K,I)
i (1− uiq)1−χ(E◦i )−fi(I,K)

1− ui
.

Now ∑
K1i⊂(K∩Ei)

(−1)|K∩Ei|−|Ki1|(1− q)|K1i| 1

1− ui
u
fi(K1,I)
i (1− uiq)1−χ(E◦i )−fi(I,K1) =

1

1− ui
u
fi(K,I)
i (1− uiq)1−χ(E◦i )−fi(K,I)×∑

K1i

(−1)|K∩Ei|−|K1i|(1− q)|K1i|u
|K1i|−|K∩Ei|
i (1− uiq)|K∩Ei|−|K1i| =

1

1− ui
u
fi(K,I)
i (1− uiq)1−χ(E◦i )−fi(K,I)(1− q − 1− uiq

ui
)|K∩Ei| =

1

1− ui
(−1)|K∩Ei|u

fi(K,I)−|K∩Ei|
i (1− uiq)1−χ(E◦i )−fi(K,I)(1− ui)|K∩Ei|.

Remark that fi(K, I)− |K ∩ Ei| = fi(I) and

χ(E◦i ) + fi(K, I) = χ(E•i )− |K0 ∩ Ei|+ |K ∩ Ei|+ fi(I),

hence the last expression can be rewritten in a form

(−1)|K∩Ei|u
fi(I)
i (1− uiq)1−χ(E•i )+|K∩Ei|−fi(I)(1− ui)|K∩Ei|−1.

77



Also∑
I

q|I|(1−q)|I|
∏
i

u
fi(I)
i (1−uiq)−fi(I) =

∏
σ

(1+q(1−q)ui(σ)uj(σ)(1−ui(σ)q)
−1(1−uj(σ)q)

−1) =

∏
i

(1− uiq)χ(E•i )−2
∏
σ

(1− qui(σ) − quj(σ) + qui(σ)uj(σ)).

Therefore
AK(u) = (−1)|K|

∏
i

(1− uiq)1−χ(E•i )+|K∩Ei|(1− ui)|K∩Ei|−1×

×
∏
i

(1− uiq)χ(E•i )−2
∏
σ

(1− qui(σ) − quj(σ) + qui(σ)uj(σ)) =

(−1)|K|
∏
i

(1− uiq)|K∩Ei|−1(1− ui)|K∩Ei|−1
∏
σ

(1− qui(σ) − quj(σ) + qui(σ)uj(σ)).

�
Proof of Lemma 7
We have to prove that H̃P = 0 at uβ = 1 for β ∈ E(P ). Suppose that Eβ is intersected

by Eα1
, . . . , Eαk . For every set E of divisors not containing Eβ let us compare the summands

corresponding to E and to E ∪ Eβ .
For E at uβ = 1 we have∏

i 6=β

u
−

∑
aijµj

i (−1)|K0∩E|q∆(E)
∏
i∈E

(q − ui)ki−1(1− q)kβ−1
∏

i/∈(P∪E)

(1− qui)ki−1

×
∏
σ/∈Eβ

(1− q1−µi(σ)(E)ui(σ) − q1−µj(σ)(E)uj(σ) + q1−µi(σ)(E)−µj(σ)(E)ui(σ)uj(σ)) · (1− q)k.

For E ∪ E1 at uβ = 1 we have

k∏
j=1

uαj
∏
i 6=β

u
−

∑
aijµj

i (−1)kβ+|K0∩E|q∆(E∪E1)(q − 1)kβ−1
∏
i∈E

(q − ui)ki−1
∏

i/∈(E∪P )

(1− qui)ki−1

×
∏
σ/∈Eβ

(1−q1−µi(σ)(E)ui(σ)−q1−µj(σ)(E)uj(σ)+q
1−µi(σ)(E)−µj(σ)(E)ui(σ)uj(σ))·

k∏
j=1

(1−q)q−µαj (E)uαj .

It rests to note that ∆(E ∪ Eβ)−∆(E) =
∑k
j=1 µαj (E).

�
Proof of Lemma 8.

∑
n

un
∑

E⊂E(P )

q−
∑
i∈E ni−∆(E)−

∑
i∈E aii−|E|q|K0∩E| × cP∪E(ni +

∑
aijµj(E)) =

∑
E⊂E(P )

∏
u
−

∑
aijµj(E)

i · q
∑
aijµi(E)µj(E) · q−∆(E)−

∑
i∈I aii+|K0∩E|−|E|
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×
∑
n1

∏
i

(uiq
−µi(E))n1i · cP∪E(n1) =

∑
E⊂E(P )

∏
u
−

∑
aijµj(E)

i ·AP∪E(uiq
−µi(E))q∆(E)+|K0∩E|−|E| =

(−1)|P |
∑

E⊂E(P )

∏
u
−

∑
aijµj(E)

i · (−1)|K0∩E|q∆(E)+|K0∩E|−|E|
∏
i∈E

[(1− ui)−1(1− uiq−1)ki−1]

×
∏
i∈P

[(1− qui)ki−pi−1(1− ui)pi−1]
∏

i/∈(P∪E)

[(1− qui)ki−1(1− ui)−1]

×
∏
σ

(1− q1−µi(σ)(E)ui(σ) − q1−µj(σ)(E)uj(σ) + q1−µi(σ)(E)−µj(σ)(E)ui(σ)uj(σ)) =

(−1)|P |
∏
i∈P

[(1− qui)ki−pi−1(1− ui)pi−1] · 1∏
i∈E(P )(1− ui)

×
∑

E⊂E(P )

(−1)|K0∩E| ·
∏

u
−

∑
aijµj(E)

i · q∆(E)
∏
i∈E

(q − ui)ki−1
∏
i/∈E

(1− qui)ki−1

×
∏
σ

(1− q1−µi(σ)(E)ui(σ) − q1−µj(σ)(E)uj(σ) + q1−µi(σ)(E)−µj(σ)(E)ui(σ)uj(σ)).

�
Proof of Theorem 4.
Let ki = |K0 ∩ Ei|. From Lemma 6 we get

P g(
1

qt1
, . . . ,

1

qtr
) = (t1 · . . . · tr)−1

∑
n

t−Mnq−
∑
mijkinjqF (n)−

∑
ni
∑
K

tKcK(n) =

t−1−Mχ(E◦)
∑
n

tM(χ(E◦)−n)q−
∑
mijkinjqF (n)−

∑
ni

×
∑
K

q1−|K|+n · tK · cK(−χ(E◦i )− ni). (29)

Let
ξi = −χ(E◦i ), n1 = ξ − n.

Then

F (n)−
∑

ni =
1

2
[
∑

mijninj +
∑

mijniχ(E•j )−
∑

ni],

so
2[F (n1)−

∑
n1i − F (n) +

∑
ni] =∑

mij(ξi − ni)(ξj − nj) +
∑

mij(ξi − ni)χ(E•j )−
∑

(ξi − ni)

−
∑

mijninj −
∑

mijniχ(E•j ) +
∑

ni =

−2
∑

mij(ξi + χ(E•i ))nj + 2
∑

nj + 2(F (ξ)−
∑

ξi) =
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−2
∑

mijkinj + 2
∑

nj + 2(F (ξ)−
∑

ξi).

Thus (29) is equal to

t−1−Mξq−F (ξ)+
∑
ξiq1−|K0|

∑
tMn1qF (n1)−

∑
n1i

∑
K

tKq
|K|cK(n1).

It rests to compute the powers of tα and of q.
Remark that

∑
ξi = |K0| − 2, so

∑
ξi + 1− |K0| = −1.

Also
2F (ξ) =

∑
mijkikj − 2

∑
mijkiχ(E•j ) +

∑
mijχ(E•i )χ(E•j )+∑

mijkiχ(E•j )−
∑

mijχ(E•i )χ(E•j ) +
∑

ξi =∑
mijkikj −

∑
mijkiχ(E•j ) + |K0| − 2.

The formula of A’Campo ([1]) says that

1− µ =
∑

mχ(Sm) =
∑

χ(E◦i )mijkj =
∑

mij(χ(E•i )− ki)kj ,

so
2F (ξ) = µ− 1 + |K0| − 2 = 2δ − 2.

Thus −F (ξ)− 1 = −δ.
Also for every α one has

1− µα =
∑
j 6=i(α)

mi(α)jχ(E•j ) +mi(α),i(α)(χ(E•i(α))− 1),

and for β 6= α
Cα ◦ Cβ = mi(α),i(β),

so ∑
β 6=α

Cα ◦ Cβ =
∑
j 6=i(α)

mi(α),jkj +mi(α),i(α)(ki(α) − 1)

and
1− µα − Cα ◦ Cβ =

∑
j

mi(α),jχ(E◦j ).

�
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