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ON DIVISORIAL FILTRATIONS ASSOCIATED WITH NEWTON

DIAGRAMS

W. EBELING AND S. M. GUSEIN-ZADE

Abstract. We consider divisorial filtrations on the rings of functions on hypersurface sin-

gularities associated with Newton diagrams and their analogues for plane curve singularities.
We compute the multi-variable Poincaré series for the latter ones.

Introduction

A multi-index filtration on the ring OV,0 = OCn,0/(f) of functions on a hypersurface singu-
larity (V, 0) = {f = 0} defined by the Newton diagram Γ = Γf of the germ f was considered in
[4]. The initial idea was to look for a filtration corresponding to a Newton diagram for which the
Poincaré series could be computed and compared with the corresponding monodromy zeta func-
tion. This was inspired by the coincidence of Poincaré series and monodromy zeta functions in
some cases (e.g. in [1]) and relations between them in some other cases (e.g. in [3]). A somewhat
natural filtration on the ring OV,0 corresponding to the Newton diagram Γ = Γf is the divisorial
filtration defined by the divisors in a toric resolution of f corresponding to the facets of the
diagram. However, at that moment the divisorial valuation was regarded as being complicated
to treat. The filtration defined in [4] was regarded as a certain “simplification” of the divisorial
one. This seems not to be the case. It is rather complicated to compute the Poincaré series of
that filtration and moreover the assertion of Theorem 1 of [4] for s > 2 appeared to be wrong.
Another filtration corresponding to a Newton diagram was considered in [5].

Here we discuss an analogue of the divisorial valuation corresponding to a Newton diagram,
describe its generalization for plane curve singularities, and compute the Poincaré series of the
latter one.

For a germ (V, 0) of a complex analytic variety, let π : (X ,D)→ (V, 0) be a resolution of (V, 0)
with the exceptional divisor D = π−1(0) being a normal crossing divisor on X . For an irreducible
component E of D and for g ∈ OV,0, let vE(g) be the order of the zero of the lifting g̃ = g ◦ π
of the germ g to the space X of the resolution along E . The function vE : OV,0 → Z≥0 ∪ {+∞}
is called a divisorial valuation on OV,0. One can consider the multi-index filtration defined by a
collection E1, . . . , Er of components of the exceptional divisor:

(1) J(v) = {g ∈ OV,0 : v(g) ≥ v} ,

where v = (v1, . . . , vr) ∈ Zr≥0, v(g) = (v1(g), . . . , vr(g)), vi(g) = vEi(g), v′ = (v′1, . . . , v
′
r) ≥ v

if and only if v′i ≥ vi for i = 1, . . . , r. This filtration is called a divisorial one. The notion of
the Poincaré series of a multi-index filtration was introduced in [2] (see also [1]). In [1] it was
explained that the Poincaré series of a filtration defined by a formula like (1) is equal to the
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integral with respect to the Euler characteristic

(2) P{vi}(t) =

∫
POV,0

tv(g)dχ

over the projectivization POV,0 of OV,0 (t = (t1, . . . , tr), t
v = tv1

1 · · · tvrr ). In this integral, t∞i
has to be assumed to be equal to zero. Also in [1] it was shown that the Poincaré series of the
divisorial filtration corresponding to all the components of the exceptional divisor of a resolution
(uniformization) of a plane curve singularity (C, 0) = {f = 0} ⊂ (C2, 0) (that is to all the
components of the curve (C, 0)) coincides with the Alexander polynomial (in several variables)
of the corresponding link C ∩ S3

ε ⊂ S3
ε , where S3

ε is the sphere of small radius ε centred at the
origin in C2. (The Alexander polynomial becomes the monodromy zeta function of the left hand
side f of the equation of the curve (C, 0) after identification of all the variables.)

For the definition of a multi-index filtration by the formula (1), it is not necessary to assume
that all the vi : OV,0 → Z≥0 ∪ {+∞} are valuations (i.e. that they satisfy the condition
vi(g1g2) = vi(g1)+vi(g2)). It is sufficient to require that all of them are so called order functions.
This means that they satisfy the condition vi(g1 + g2) ≥ min {vi(g1), vi(g2)}, but, in general not
the condition vi(g1g2) = vi(g1) + vi(g2). We shall use order functions to define the filtrations
below.

1. Divisorial filtration corresponding to a Newton diagram

Let Cn be the complex space with the coordinates x1, . . . , xn and let f ∈ OCn,0 be a function
germ non-degenerate with respect to its Newton diagram Γ = Γf . Let p : (X,D) → (Cn, 0) be
a toric resolution of f corresponding to the Newton diagram Γ. The facets of Γ correspond to

some components (say, E1, . . . , Er) of the exceptional divisor D. Let (V, 0) = {f = 0}, let Ṽ be

the strict transform of the hypersurface singularity V , and let Ei := Ṽ ∩ Ei.
For n ≥ 3 the Ei are the irreducible components of the exceptional divisor D = D ∩ Ṽ of

the resolution p|Ṽ : (Ṽ ,D) → (V, 0). Thus one can consider the divisorial valuations vi defined

by these components and the corresponding (multi-index) filtration on OV,0. For n = 2 the
intersections Ei are not, in general, irreducible (if the corresponding facets of Γ have integer
points in their interiors). Therefore for n = 2 the corresponding definition has to be modified.

Let us first reformulate the definition of the divisorial valuations (for n ≥ 3) in terms of the
Newton diagram Γ. Let γ1, . . . , γr be the facets of the diagram Γ and let `i(k̄) = ci be the
reduced equation of the facet γi, i = 1, . . . , r. This means that `i(k̄) = ai1k1 + . . . + ainkn
(k̄ = (k1, . . . , kn)), where ai1, . . . , ain are positive integers with greatest common divisor equal
to 1.

For g ∈ OCn,0[x−1
1 , . . . , x−1

n ], g(x̄) =
∑̄
k

ck̄x̄
k̄ (x̄ = (x1, . . . , xn)), and for i = 1, . . . , r, let

ui(g) := min
k̄:ck̄ 6=0

`i(k̄), and let gγi(x̄) =
∑

k̄:`i(k̄)=ui(g)

ck̄x̄
k̄. For g ∈ OCn,0/(f) (or rather for g ∈

OCn,0) let us define v̂i(g) by

(3) v̂i(g) = sup
h∈OCn,0[x−1

1 ,...,x−1
n ]

ui(g + hf) .

One can see that, for n = 2, v̂i : OCn,0/(f)→ Z≥0 ∪{+∞} is not, in general, a valuation, but
only an order function.

Example. Let f(x, y) = y3 + y2x − x5 and let γ1 be the facet of Γf defined by the equation
2ky + kx = 5. Let g1(x, y) = y + x2, g2(x, y) = y − x2. One has v̂1(gi) = u1(gi) = 2 for i = 1, 2,
but v̂1(g1g2) = u1(g1g2 − x−1f) = u1(−y3x−1) = 5.
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Remark. One can see that this definition resembles the definition used in [4] where similar
order functions were defined by equation (3) with OCn,0[x−1

1 , . . . , x−1
n ] substituted by OCn,0.

Proposition 1. For n ≥ 3, i = 1, . . . , r, and g ∈ OCn,0 one has

v̂i(g) = vi(g) .

Proof. The claim follows from the following statements:

1) vi(g) ≥ v̂i(g);
2) if fγi 6 | gγi , then vi(g) = ui(g);

3) if fγi |gγi , then there exists h ∈ OCn,0[x−1
1 , . . . , x−1

n ] such that ui(g + hf) > ui(g).

Indeed, by iterated applications of 2) and 3) one obtains that either v̂i(g) =∞ or there exists
h ∈ OCn,0[x−1

1 , . . . , x−1
n ] such that vi(g) = ui(g+hf). Therefore v̂i(g) = sup

h∈OCn,0[x−1
1 ,...,x−1

n ]

ui(g+

hf) ≥ vi(g) and 1) implies the assertion.
Statement 1) follows from the facts that: ui(g) is the order of vanishing of the lifting g ◦ π of

g along Ei; vi(g) is the order of vanishing of g ◦ π|Ṽ along Ei ⊂ Ei and therefore vi(g) ≥ ui(g);

vi(g) = vi(g + hf) for any h ∈ OCn,0[x−1
1 , . . . , x−1

n ].

If fγi 6 | gγi , then the intersection ˜{g = 0}∩Ei of the strict transform ˜{g = 0} with the compo-
nent Ei does not contain Ei. Therefore the order of vanishing of g ◦ π|Ṽ along Ei coincides with

the order of vanishing of g ◦ π along Ei, equal to ui(g). This gives 2).
If gγi = hfγi (h ∈ OCn,0[x−1

1 , . . . , x−1
n ]), then (g − hf)γi contains with non-zero coefficients

only monomials x̄k̄ with `i(k̄) > ui(k̄). This gives 3). �

As it was mentioned above, for n = 2 the intersections Ei = Ei ∩ Ṽ may be reducible: i.e.
consist of several points. In this case there is no divisorial valuation associated to Ei. Let us

modify (generalize) the definition of a divisorial valuation in the following way. Let E =
s⋃
j=1

E(j)

be the union of some of the irreducible components of the exceptional divisor D of the resolution

π : (Ṽ ,D)→ (V, 0) and for g ∈ OCn,0 let

vE(g) := min
j=1,...,s

vE(j)(g) .

The function vE : OV,0 → Z≥0 ∪ {+∞} is not, in general, a valuation (for s > 1), but an order

function. The number vE(g) can also be defined as the minimum over all arcs γ on Ṽ at points
of E of the order of g along γ.

One can easily see that this definition gives order functions vi on OV,0 corresponding to the
facets of the Newton diagram Γ = Γf for n = 2 as well so that Proposition 1 also holds in this
case.

2. Plane curve singularities

Here we consider analogues of the order functions vi corresponding to the facets of the Newton
diagram Γ (for n = 2) for plane curve singularities not associated with Newton diagrams (say,
for those whose components may have more than one Puiseux pair). We compute the Poincaré
series of the corresponding filtration and give its specialization for the filtration defined by a
Newton diagram. It seems to be less involved to carry out computations in this way than to
produce them directly by considering Newton diagrams.

Let (C, 0) ⊂ (C2, 0) be a plane curve singularity with an embedded resolution π : (X,D) →
(C2, 0) such that
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1) C is the union of irreducible components C =
⋃
i,j

Cij , where i = 1, . . . , r, j = 1, . . . , si

(si > 0);

2) for each i the strict transforms C̃i1, . . . C̃isi of the components Ci1, . . .Cisi intersect one
and the same component Ei of the exceptional divisor D;

3) for i1 6= i2 the strict transforms C̃i1j1 and C̃i2j2 intersect different components of D (one
can say that E1, . . . , Er are part of the set {Eσ : σ ∈ Σ} of irreducible components of
D).

For an irreducible component Eσ of the exceptional divisor D, σ ∈ Σ, let wσ : OC2,0 \ {0} →
Z≥0 be the corresponding divisorial valuation.

For i = 1, . . . , r, j = 1, . . . , si, let ϕij : (C, 0)→ (C2, 0) be a uniformization of the component
Cij . For g ∈ OC2,0 let vij(g) be the order of vanishing of g ◦ ϕij at the origin. The function
vij(g) : OC2,0 → Z≥0 ∪ {+∞} is a valuation on OC2,0. Let

vi(g) := min
j=1,...,sj

vij(g) .

The function vi : OC2,0 → Z≥0 ∪ {+∞} is, in general, not a valuation, but an order function (if
si > 1).

The order functions v1, . . . , vr define in the usual way an r-index filtration on OC2,0:

(4) J(v) = {g ∈ OC2,0 : v(g) ≥ v} ,
where, as usual, v = (v1, . . . , vr) ∈ Zr≥0, v(g) = (v1(g), . . . , vr(g)). We shall call it the generalized
divisorial filtration.

Let {Eσ : σ ∈ Σ} be the set of all irreducible components of the exceptional divisor D
(Σ ⊃ {1, . . . , r}). Each component Eσ is isomorphic to the complex projective line CP1. For

σ ∈ Σ, let
•
Eσ be the “smooth part” of the component Eσ in the exceptional divisor D, that

is Eσ itself minus the intersection points with all the other components of D, and let
◦
Eσ be

the “smooth part” of the component Eσ in the total transform of the curve C, that is Eσ itself
minus the intersection points with other components of D and also with the strict transform of

the curve C. (One has
◦
Eσ =

•
Eσ for σ /∈ {1, . . . , r}; for σ = i ∈ {1, . . . , r},

◦
Eσ is

•
Eσ minus si

points.)

For σ ∈ Σ, let L̃σ be a smooth arc on the space X of the resolution transversal to Eσ at a

smooth point (i.e. at a point of
•
Eσ). Let the (irreducible) curve Lσ = π(L̃σ) be given by an

equation gσ = 0 (gσ ∈ OC2,0). The curve Lσ (or sometimes the function gσ) is called a curvette
at Eσ. Let mσδ (σ, δ ∈ Σ) be the order of vanishing of gσ along the component Eδ, that is
mσδ = wδ(gσ). One can show that mσδ = mδσ and the matrix (mσδ) is minus the inverse matrix
of the intersection matrix (Eσ ◦ Eδ) of the components Eσ on the manifold X. For σ ∈ Σ, let
mσ := (mσ1, . . . ,mσr) ∈ Zr≥0.

Theorem 1. The Poincaré series of the generalized divisorial filtration (4) is equal to

(5) P{vi}(t) =
∏
σ∈Σ

(1− tmσ )−χ(
•
Eσ) ·

r∏
i=1

(1− tsimi) .

Example. Let si = 1 for i = 1, . . . , r. In this case χ(
◦
Eσ) = χ(

•
Eσ) for σ /∈ {1, . . . , r} and

χ(
◦
Ei) = χ(

•
Ei)− 1. Therefore one has

P{vi}(t) =
∏
σ∈Σ

(1− tmσ )−χ(
◦
Eσ) .
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This is just the formula from [1].

Let π : (X,D)→ (C2, 0) be a toric resolution corresponding to the Newton diagram Γ = Γf of
a (Γ-non-degenerate) germ f ∈ OC2,0. The dual graph of the resolution π is a chain. The extreme
vertices of this graph correspond to the components of the exceptional divisor intersecting the
strict transforms of the coordinate lines in C2. (Therefore {x = 0} and {y = 0} are curvettes

corresponding to these components.) For these two components one has χ(
•
Eσ) = 1, for all others

χ(
•
Eσ) = 0. Therefore one has

Corollary 1. The Poincaré series of the filtration associated with the Newton diagram Γ and
defined by the order function v̂i corresponding to the facets of Γ is equal to

(6) P{v̂i}(t) =

∏r
i=1(1− tsimi)

(1− tv(x))(1− tv(y))
.

Remark. A function germ f which is non-degenerate with respect to the Newton diagram Γ =

Γf can be represented in the form f = xayb
r∏
i=1

fi where {fi = 0} is the union of the components

of {f = 0} whose strict transforms intersect the component Ei of the exceptional divisor of a
toric resolution. One can see that the number si of irreducible factors in a decomposition of fi is
equal to the integer length of the facet γi (i.e. to the number of integer points in its interior plus
one) and the Newton diagram Γi of fi is just the facet γi of Γ translated to the origin inside the
positive octant as far as possible. Moreover, the jth component of simi is equal to min

k̄∈Γi
`j(k̄).

Proof of Theorem 1. Let JNC2,0 = OC2,0/m
N+1 be the space of N -jets of functions on (C2, 0) (m

is the maximal ideal of OC2,0). One can see that for a function g ∈ OC2,0 with wσ(g) ≤ N for

all σ ∈ Σ, the values wσ(g) and also vi(g) are defined by the N -jet jNg of g. (This follows from

the fact that, for h ∈ mN+1, all wσ(h) and vi(h) are greater than N .) Let ĴN ⊂ JNC2,0 be the

set of N -jets g with wσ(g) ≤ N for all σ ∈ Σ. The equation (2) implies that

P{vi}(t) ≡
∫
PĴN

tv(g)dχ

modulo terms of degree > N . Recall that here t∞i should be assumed to be equal to 0.
Without loss of generality, we can suppose that, for any function g ∈ OC2,0 with wσ(g) ≤ N

for all σ ∈ Σ, the strict transform ˜{g = 0} of the zero level curve of g intersects the exceptional

divisor D only at smooth points, i.e. at points of
•
D =

⋃
σ

•
Eσ. Such a resolution can be obtained,

if necessary, by additional blow-ups of intersection points of the components of D. Each such

blow-up produces an additional component Eσ with χ(
•
Eσ) = 0 and therefore it does not effect

the right hand side of the equation (5).
Let

Y =
∐
{kσ}

(∏
σ

Skσ
•
Eσ

)
=
∏
σ

( ∞∐
k=0

Sk
•
Eσ

)

be the configuration space of all effective divisors on
•
D =

⋃ •
Eσ and let w : Y → Zr≥0 be the

function which maps the component
∏
σ S

kσ
•
Eσ of Y to

∑
σ kσmσ. For a function g ∈ OC2,0

with wσ(g) ≤ N for all σ ∈ Σ, let I(g) ∈ Y be the intersection of the strict transform ˜{g = 0} of
{g = 0} with D, i.e. the collection of the intersection points with multiplicities. One can see that
I(g) only depends on the N -jet of g, (w1(g), . . . , wr(g)) = w(I(g)) and also (v1(g), . . . , vr(g)) =
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w(I(g)) if (and only if) for each i = 1, . . . , r, the effective divisor I(g) does not contain all the
points pi1, . . . , pisi . (If I(g) contains all the points pi1, . . . , pisi , then vi(g) is not determined by
I(g).)

For a component Eσ of D let gσq = gσq(x, y) be an analytic family of functions such that
{gσq = 0} is a curvette corresponding to the component Eσ and its strict transform passes

through the point q ∈
•
Eσ. (One can take two functions gσ,q′ and gσ,q′′ with the described

properties for two different points q′ and q′′ from
•
Eσ and define gσq as λgσ,q′ + µgσ,q′′ with

appropriate λ and µ.)
If A = B

∐
C, then

∞∐
k=0

SkA =

( ∞∐
k=0

SkB

)
×

( ∞∐
k=0

SkC

)
.

This permits to rewrite Y as Y ′ × Y ′′, where

Y ′ =
∏
σ

( ∞∐
k=0

Sk
◦
Eσ

)
, Y ′′ =

∏
i

( ∞∐
k=0

SkPi

)
,

where Pi is the set {pi1, . . . , pisi} consisting of si points.

For y ∈ Y , y =
∑
σ,j `

′
σjqσj +

∑r
i=1

∑si
j=1 `

′′
ijpij , where qσj are points of

◦
Eσ, let

gy :=
∏
σ,j

g
`′σj
σqσj ·

r∏
i=1

si∏
j=1

f
`′′ij
ij ,

where gσqσj is the curvette corresponding to Eσ through the point qσj . One can see that
I(gy) = y.

For an element g ∈ ĴN with I(g) = y, one has I(g) = I(gy), i.e. the strict transforms of
{g = 0} and {gy = 0} intersect the exceptional divisor D at the same points with the same
multiplicities. This means that the ratio gy ◦ π/g ◦ π of the liftings of g and gy is regular (has
no zeros and poles) on D and therefore it is constant (say, equal to a) on it. If g 6= gy, let
hλ := gy + λ(ag − gy) for λ ∈ C∗. One can see that wσ(hλ) and vi(hλ) do not depend on λ. In

this way we decompose the space of elements of PĴN different from all gy into C∗-families with
constant values of v. Since the Euler characteristic of C∗ is equal to zero, this means that the
integral (with respect to the Euler characteristic) of tv over the complement of {gy} is equal to
zero and therefore (up to terms of degree > N)

P{vi}(t) ≡
∫
Y

t v(gy)dχ.

For y ∈ Y , vi(gy) is finite if and only if y does not contain all the points pi,1, . . . , pi,si . If, for
each i, y does not contain all the points pi,1, . . . , pi,si , one has v(gy) = w(y). Therefore

(7)

∫
Y

t v(gy)dχ =

∫
Y ′

tw(y′)dχ ·
∫
Y ′′0

tw(y′′)dχ ,

where Y ′′0 ⊂ Y ′′ is the set of elements
r∑
i=1

sj∑
j=1

`ijpij such that for each i at least one of the

coefficients `ij is equal to zero.
One has ∫

Y ′

tw(y′)dχ =
∏
σ∈Σ

( ∞∑
k=0

χ(Sk
◦
Eσ)t kmσ

)
.
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Due to the equation
∞∑
k=0

χ(SkZ)tk = (1− t)−χ(Z)

one has

(8)

∫
Y ′

tw(y′)dχ =
∏

(1− tmσ )−χ(
◦
Eσ) .

(This is just the computation from [1].)
For the second factor in (7) one has∫

Y ′′0

tw(y′′)dχ =

r∏
i=1

 ∑
(`i1,...,`isi )∈Z

si
≥0
\Zsi>0

t (
∑
`ij)mi


=

r∏
i=1

 ∑
(`i1,...,`isi )∈Z

si
≥0

t (
∑
`ij)mi −

∑
(`i1,...,`isi )∈Z

si
>0

t (
∑
`ij)mi

(9)

=

r∏
i=1

[
(1− tmi)−si − t simi(1− tmi)−si

]
=

r∏
i=1

(1− tmi)−si(1− t simi) .

Since χ(
•
Eσ) = χ(

◦
Eσ) + si, the equations (7), (8), and (9) imply (5). �

Remark. Here, in contrast to [1], we make computations of integrals with respect to the Euler
characteristic not over POC2,0, but over a subspace of PJNC2,0 since the set of functions {gy|y ∈ Y }
is not measurable in POC2,0 (i.e. its Euler characteristic is not defined).
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