GEOMETRY OF IRREDUCIBLE PLANE QUARTICS AND THEIR QUADRATIC RESIDUE CONICS

HIRO-O TOKUNAGA

Dedicated to Professor Du Plessis on his sixtieth birthday.

Abstract

Let D be an irreducible plane curve in \mathbb{P}^{2}. In this article, we first introduce a notion of a quadratic residue curve $\bmod D$, and study quadratic residue conics $C \bmod$ an irreducible quartic curve Q. As an application, we study a dihedral cover of \mathbb{P}^{2} with branch locus $C+Q$ and give two examples of Zariski pairs as by-products.

Introduction

In this article, we study the geometry of irreducible plane quartic Q and a smooth conic C which is tangent to Q with even order at each point in $C \cap Q$. The geometry of a smooth plane quartic and its bitangent lines is a classical object and well studied by many mathematicians from various points of view. We hope that this article adds another interesting topic to geometry of plane quartics. All varieties throughout this paper are defined over the field of complex numbers, \mathbb{C}. In order to explain our motivation and results on the above subject, let us start with introducing some notions and definitions.

Let Σ be a smooth projective surface. Let $f^{\prime}: Z^{\prime} \rightarrow \Sigma$ be a double cover of Σ, i.e., Z^{\prime} is a normal surface and f^{\prime} is a finite surjective morphism of degree 2 . We denote its canonical resolution by $\mu: Z \rightarrow Z^{\prime}$ (see [7] for the canonical resolution). Note that μ is the identity if Z^{\prime} is smooth. We put $f:=f^{\prime} \circ \mu$. We denote the involution on Z induced by the covering transformation of f^{\prime} by σ_{f}. The branch locus $\Delta_{f^{\prime}}$ of f^{\prime} is the subset of Σ consisting of points x such that f^{\prime} is not locally isomorphic over x. Similarly we define the branch locus Δ_{f} of f. Note that $\Delta_{f^{\prime}}=\Delta_{f}$.

Definition 0.1. Let D be an irreducible curve on Σ. We call D a splitting curve with respect to f if $f^{*} D$ is of the form

$$
f^{*} D=D^{+}+D^{-}+E,
$$

where $D^{+} \neq D^{-}, \sigma_{f}^{*} D^{+}=D^{-}, f\left(D^{+}\right)=f\left(D^{-}\right)=D$ and $\operatorname{Supp}(E)$ is contained in the exceptional set of μ. If the double cover $f: Z \rightarrow \Sigma$ is determined by its branch locus Δ_{f}, i.e., any double cover with branch locus Δ_{f} is isomorphic to Z^{\prime} over Σ, and D is a splitting curve with respect to f, we say that " Δ_{f} is a quadratic residue curve $\bmod D$ ".

Remark 0.1.

- Note that if Σ is simply connected, then any double cover of Σ is determined by its branch locus.
- In our previous results on dihedral covers and their application to the study of the topology of the complements of plane curves, we see that splitting curves play important roles and that it is indispensable to know their properties of them. (see [Z], [[7]], [IV], for example). This is our first motivation to study splitting curves.
- Our terminology comes from elementary number theory. Let m be a square free positive integer, let p be an odd prime with $p \nmid m$ and let $\mathcal{O}_{\mathbb{Q}(\sqrt{m})}$ be the integer ring of $\mathbb{Q}(\sqrt{m})$. It
is well known that the ideal (p) generated by p in $\mathcal{O}_{\mathbb{Q}(\sqrt{m})}$ satisfies the following properties (See [区, Proposition 13.1.3], p.190, for example):
- If m is a quadratic residue $\bmod p$, then $(p)=\mathfrak{p}_{1} \mathfrak{p}_{2}$, where $\mathfrak{p}_{i}(i=1,2)$ are distinct prime ideals.
- If m is not a quadratic residue $\bmod p$, then (p) is a prime ideal.

Suppose that $f: Z \rightarrow \Sigma$ is uniquely determined by Δ_{f}. Likewise the Legendre symbol in elementary number theory, we here introduce a notation to describe if Δ_{f} is a quadratic residue $\bmod D$ or not. For an irreducible curve D on Σ, we put

$$
\left(\Delta_{f} / D\right)=\left\{\begin{array}{cc}
1 & \text { if } \Delta_{f} \text { is a quadratic residue curve } \bmod D \\
-1 & \text { if } \Delta_{f} \text { is not a quadratic residue curve } \bmod D
\end{array}\right.
$$

As \mathbb{P}^{2} is simply connected, any double cover of \mathbb{P}^{2} is just determined by its branch locus. On the other hand, any reduced plane curve B of even degree can be the branch locus of a double cover. Hence for any irreducible plane curve D, one can consider (B / D).

In this article, we consider the case when any point $x \in B \cap D$ is a smooth point of both B and D. For such a case, if the intersection multiplicity at some point in $B \cap D$ is odd, then we infer that $(B / D)=-1$. This leads us to introduce a notion of even tangential curve.
Definition 0.2. Let D_{1} and D_{2} are reduced divisors on a smooth projective surface without any common irreducible component. We say that D_{1} and D_{2} are even tangential or D_{1} (resp. D_{2}) is even tangential to $D_{2}\left(\right.$ resp. $\left.D_{1}\right)$ if
(i) For $\forall P \in D_{1} \cap D_{2}, P \notin \operatorname{Sing}\left(D_{1}\right) \cup \operatorname{Sing}\left(D_{2}\right)$, and
(ii) the intersection multiplicity of D_{1} and D_{2} at $P, I_{P}\left(D_{1}, D_{2}\right)$, is even for $\forall P \in D_{1} \cap D_{2}$. Note that we do not pay attention to $\sharp\left(D_{1} \cap D_{2}\right)$ to define even tangential curves.

Now our basic problem can be formulated as follows:
Problem 0.1. Let B be a reduced plane curve of even degree.
(i) Find an even tangential curve D to B and determine the value of (B / D).
(ii) What can we say about the topology of $\mathbb{P}^{2} \backslash(B+D)$ from the value of (B / D) ?

As a first step, we consider the case when B is a smooth conic C. Suppose that D is an irreducible plane curve which is even tangential to C. We easily see the following:

- If $\operatorname{deg} D=1,2$, we have $(C / D)=1$.
- If $\operatorname{deg} D=3$, we have
(i) $(C / D)=-1$ if D is smooth, and
(ii) $(C / D)=1$ if D is a nodal cubic.

Note that there is no even tangential cuspidal cubic to C.
Hence the case of $\operatorname{deg} D=4$ seems to be the first interesting case. Now let us restate our exact problems which we consider in this article:
Problem 0.2. Fix an irreducible quartic Q.
(i) Find even tangential conics C to Q and determine the value (C / Q).
(ii) Does the value (C / Q) affect the topology of $\mathbb{P}^{2} \backslash(C+Q)$?

In this article, we first consider Problem $\mathbb{D} 2$ (i) and give a formula to determine (C / Q) (see Theorem [2.7). We next count the number of even tangential conics passing through a smooth point x on Q. Now our result is as follows:
Theorem 0.1. Choose a smooth point x of Q and let l_{x} be the tangent line to Q at x. There exist finitely many (possibly no) even tangential conics C to Q through x and we have the following table:

- Ξ_{Q} : the set of types of singularities of Q. Note that Q has at worst simple singularities and we use the notation in [3] in order to describe the type of a singularity.
- $l_{x} \cap Q$: This shows how l_{x} meets Q. We use the following notation to describe it.
$-s: I_{x}\left(l_{x}, Q\right)=2$ or 3 , and l_{x} meets Q transversely at other point(s).
$-b: l_{x}$ is either bitangent line through x or $I_{x}\left(l_{x}, Q\right)=4$.
$-s b: I_{x}\left(l_{x}, Q\right)=2$ and l_{x} passes through a double point of Q.
- ETC: the set of even tangential conics passing through x and \sharp ETC denotes its cardinality.
- QRETC: the set of even tangential conics passing through x with $(C / Q)=1$ and \sharp QRETC denotes its cardinality.
- We omit cases of $\left(\Xi_{Q}, l_{x} \cap Q\right)$ which do not occur. For example, the case of $\left(\Xi_{Q}, l_{x} \cap Q\right)=$ $\left(A_{6}, b\right)$ is omitted, as such a case does not occur.

No.	Ξ_{Q}	$l_{x} \cap Q$	$\sharp \mathrm{ETC}$	$\sharp \mathrm{QRETC}$
1	A_{6}	s	0	0
2	A_{6}	$s b$	0	0
3	E_{6}	s	0	0
4	E_{6}	b	0	0
5	A_{5}	s	1	1
6	A_{5}	b	1	1
7	A_{5}	$s b$	0	0
8	D_{5}	s	1	1
9	D_{5}	b	0	0
10	D_{4}	s	3	3
11	D_{4}	b	0	0
12	$A_{4}+A_{2}$	s	0	0
13	$A_{4}+A_{2}$	$s b$	0	0
14	$A_{4}+A_{1}$	s	0	0
15	$A_{4}+A_{1}$	b	0	0
16	$A_{4}+A_{1}$	$s b$	0	0
17	$A_{4}+A_{1}$	$s b$	0	0
18	$A_{3}+A_{2}$	s	1	1
19	$A_{3}+A_{2}$	$s b$	0	0
20	$A_{3}+A_{2}$	$s b$	1	1
21	$A_{3}+A_{1}$	s	2	2
22	$A_{3}+A_{1}$	b	1	1
23	$A_{3}+A_{1}$	$s b$	1	1
24	$A_{3}+A_{1}$	$s b$	0	0
25	$3 A_{2}$	s	0	0
26	$3 A_{2}$	b	0	0
27	$2 A_{2}+A_{1}$	s	0	0
28	$2 A_{2}+A_{1}$	b	0	0
29	$2 A_{2}+A_{1}$	$s b$	0	0
30	$A_{2}+2 A_{1}$	s	1	1
31	$A_{2}+2 A_{1}$	b	0	0
32	$A_{2}+2 A_{1}$	$s b$	0	0
33	$A_{2}+2 A_{1}$	$s b$	1	1

No.	Ξ_{Q}	$l_{x} \cap Q$	\sharp ETC	\sharp QRETC
34	$3 A_{1}$	s	4	4
35	$3 A_{1}$	b	1	1
36	$3 A_{1}$	$s b$	2	2
37	A_{4}	s	3	0
38	A_{4}	b	1	0
39	A_{4}	$s b$	1	0
40	A_{3}	s	7	1
41	A_{3}	b	2	0
42	A_{3}	$s b$	4	1
43	$2 A_{2}$	s	3	0
44	$2 A_{2}$	b	3	0
45	$2 A_{2}$	$s b$	1	0
46	$A_{2}+A_{1}$	s	6	0
47	$A_{2}+A_{1}$	b	3	0
48	$A_{2}+A_{1}$	$s b$	3	0
49	$A_{2}+A_{1}$	$s b$	2	0
50	$2 A_{1}$	s	13	1
51	$2 A_{1}$	b	6	0
52	$2 A_{1}$	$s b$	7	1
53	A_{2}	s	15	0
54	A_{2}	b	6	0
55	A_{2}	$s b$	10	0
56	A_{1}	s	30	0
57	A_{1}	b	15	0
58	A_{1}	$s b$	20	0
59	\emptyset	s	63	0
60	\emptyset	b	36	0

Note that there exist both quadratic and non-quadratic residue even tangential conics to Q for the cases $40,42,50$ and 52. These cases are interesting when we consider Problem 0.2 (ii). In fact, we study dihedral covers of \mathbb{P}^{2} whose branch loci are $C+Q$, and have the following result (see $\S 3$ for the notations on dihedral covers):

Theorem 0.2. Let Q be an irreducible quartic, let C be an even tangential conic to Q and let $f_{C}: Z_{C} \rightarrow \mathbb{P}^{2}$ be a double cover with $\Delta_{f_{C}}=C$. If there exists a $\mathcal{D}_{2 p}$-cover $\pi: S \rightarrow \mathbb{P}^{2}$ with $\Delta_{\pi}=C+Q$ for an odd prime $p \geq 5$, then we have the following:
(i) $D\left(X / \mathbb{P}^{2}\right)=Z_{C} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, i.e., π is branched at $2 C+p Q$.
(ii) $(C / Q)=1$. Moreover, if we put $f_{C}^{*} Q=Q^{+}+Q^{-}$, then $Q^{+} \sim Q^{-} \sim(2,2)$.

Conversely, if the second condition holds, then there exist $\mathcal{D}_{2 n}$-covers $\pi_{n}: S_{n} \rightarrow \mathbb{P}^{2}$ branched at $2 C+n Q$ for any $n \geq 3$.

Since both of $\operatorname{deg} C$ and $\operatorname{deg} Q$ are even, we infer that there exists a $(\mathbb{Z} / 2 \mathbb{Z})^{\oplus 2}$-cover of \mathbb{P}^{2} with branch locus $C+Q$. Hence, from Theorem $\mathbb{L D}$, we have the following corollaries:

Corollary 0.1. If there exists a $\mathcal{D}_{2 p}$-cover of \mathbb{P}^{2} with $\Delta_{\pi}=C+Q$ for some odd prime $p \geq 5$, then there exists a $\mathcal{D}_{2 n}$-cover \mathbb{P}^{2} with $\Delta_{\pi}=C+Q$ for any $n \geq 2$.

Corollary 0.2. (i) Let p be an odd prime ≥ 5. If there exists an epimorphism from the fundamental group $\pi_{1}\left(\mathbb{P}^{2} \backslash(C+Q)\right.$, *) to $\mathcal{D}_{2 p}$, then $(C / Q)=1$ and $Q^{+} \sim Q^{-}$.
(ii) If there exists an epimorphism $\pi_{1}\left(\mathbb{P}^{2} \backslash(C+Q), *\right)$ to $\mathcal{D}_{2 p}$, then there exists an epimorphism $\pi_{1}\left(\mathbb{P}^{2} \backslash(C+Q), *\right)$ to $\mathcal{D}_{2 n}$ for any $n \geq 2$.

This paper consists of 5 sections. In $\S 1$, we start with preliminaries on theory of elliptic surface. We prove Theroem U. covers. We prove Theorem $\mathbb{L} .2$ in $\S 4$. In $\S 5$, we consider an application of Theorem $\mathbb{0} 2$ and give two examples of Zariski pairs.

Acknowledgement. Most of this article was written during the author's visit to Ruhr Universität Bochum under the support of SFB/TR 12. The author thanks Professor A. Huckleberry for his arrangement and hospitality. The author also thanks the organizers of the symposium "Singularities in Aarhus" for giving the author an opportunity to give a talk on the subject in this article. Finally he thanks the referee for valuable comments on the first version of this article.

1. Preliminaries on elliptic surfaces

1.1. Elliptic surfaces. We review some general facts on elliptic surfaces. For details, we refer to [G], [IIT] and [IT]. Let $\varphi: \mathcal{E} \rightarrow C$ be an elliptic surface over a smooth projective curve C with a section O. Throughout this article, we always assume that
(i) φ is relatively minimal and
(ii) there exists at least one singular fiber.

Let $\operatorname{NS}(\mathcal{E})$ be the Néron-Severi group of \mathcal{E} and let T_{φ} be the subgroup of $\operatorname{NS}(\mathcal{E})$ generated by O and all the irreducible components of fibers of φ. T_{φ} has a canonical basis as follows:
O, a general fiber \mathfrak{f}, and $\left\{\Theta_{v, 1}, \ldots, \Theta_{v, m_{v}-1}\right\}_{v \in R_{\varphi}}$, where

- $R_{\varphi}:=\left\{v \in C \mid \varphi^{-1}(v)\right.$ is reducible. $\}$, and
- we label the irreducible components of $\varphi^{-1}(v)$ as follows: $\Theta_{v, 0}, \Theta_{v, 1}, \ldots, \Theta_{v, m_{v}-1}, \Theta_{v, 0} O=$ 1.

Let $\operatorname{MW}(\mathcal{E})$ be the Mordell-Weil group, the group of sections, of \mathcal{E}, O being the zero sections. Under these circumstances, we have

Theorem 1.1. [14, Theorem 1.3] There is a natural isomorphism

$$
\operatorname{MW}(\mathcal{E}) \cong \operatorname{NS}(\mathcal{E}) / T_{\varphi}
$$

Also in [14], a symmetric bilinear form \langle,$\rangle , called the height pairing, on \operatorname{MW}(\mathcal{E})$ is defined by using the intersection pairing as follows:

For any $s \in \operatorname{MW}(\mathcal{E}),\langle s, s\rangle \geq 0$ and $=0$ if and only if s is a torsion. More explicitly, for $s_{1}, s_{2} \in \operatorname{MW}(\mathcal{E}),\left\langle s_{1}, s_{2}\right\rangle$ is given by

$$
\left\langle s_{1}, s_{2}\right\rangle=\chi\left(\mathcal{O}_{\mathcal{E}}\right)+s_{1} O+s_{2} O-s_{1} s_{2}-\sum_{v \in R_{\varphi}} \operatorname{Corr}_{v}\left(s_{1}, s_{2}\right)
$$

where $\operatorname{Corr}_{v}\left(s_{1}, s_{2}\right)$ is given by

$$
\operatorname{Corr}_{v}\left(s_{1}, s_{2}\right)=\left(s_{2} \Theta_{v, 1}, \ldots, s_{2} \Theta_{v, m_{v-1}}\right)\left(-A_{v}^{-1}\right)\left(\begin{array}{c}
s_{1} \Theta_{v, 1} \\
\cdot \\
s_{1} \Theta_{v, m_{v}-1}
\end{array}\right)
$$

and A_{v} is the intersection matrix $\left(\Theta_{v, i} \Theta_{v, j}\right)\left(1 \leq i, j \leq m_{v}-1\right)$. As for explicit values of $\operatorname{Corr}_{v}\left(s_{1}, s_{2}\right)$, see Table 8.16 in [I4].
1.2. A "reciprocity" between sections and trisections on rational ruled surfaces. Let Σ_{d} be the Hirzebruch surface of degree d (d : even positive integer). We denote its section with self-intersection number $-d$ and its fiber of the ruling by $\Delta_{0, d}$ and F_{d}, respectively. Let Γ_{d} be an irreducible curve on Σ_{d} such that
(1) $\Gamma_{d} \sim 3\left(\Delta_{0, d}+d F_{d}\right)$ and
(2) Γ_{d} has at worst simple singularities.

Let Δ be a section on Σ_{d} such that (i) $\Delta \sim \Delta_{0, d}+d F_{d}$ and (ii) Δ and Γ_{d} are even tangential.
Let $p_{d}^{\prime}: S_{d}^{\prime} \rightarrow \Sigma_{d}$ be the double cover with branch locus $\Delta_{0, d}+\Gamma_{d}$ and $\mu_{d}: S_{d} \rightarrow S_{d}^{\prime}$ be the canonical resolution and put $p_{d}:=p_{d}^{\prime} \circ \mu_{d}$. Since $\Delta_{0, d}+\Gamma_{d}$ meets a general fiber $F_{d} \cong \mathbb{P}^{1}$ in 4 distinct points, one can easily see that S_{d} has an elliptic fibration $\varphi_{d}: S_{d} \rightarrow \mathbb{P}^{1}$ over \mathbb{P}^{1}. Moreover, by its construction, we infer that
(a) φ_{d} is relatively minimal,
(b) the preimage of $\Delta_{0, d}$ gives a section which we denote by O, and
(c) Δ gives rise to two sections s_{Δ}^{+}and s_{Δ}^{-}of φ_{d}.

Let $\operatorname{MW}\left(S_{d}\right)$ be the group of sections, the Mordell-Weil group, of φ_{d}, where O is the zero element. Let $q_{d}: W_{d} \rightarrow \Sigma_{d}$ be a double cover with branch locus $\Delta_{0, d}+\Delta$. Note that q_{d} is uniquely determined by $\Delta_{0, d}+\Delta$ as Σ_{d} is simply connected and that $W_{d} \cong \Sigma_{d / 2}$. Then we have

Theorem 1.2.

$$
\left.\left(\left(\Delta_{0, d}+\Delta\right) / \Gamma_{d}\right)\right)=(-1)^{\varepsilon\left(s_{\Delta}^{+}\right)}
$$

where, for a section $s \in \operatorname{MW}\left(S_{d}\right), \varepsilon(s)$ is defined as follows:

$$
\varepsilon(s)= \begin{cases}0 & \exists s_{o} \in \operatorname{MW}\left(S_{d}\right) \text { such that } s=2 s_{o} \\ 1 & \nexists s_{o} \in \operatorname{MW}\left(S_{d}\right) \text { such that } s=2 s_{o}\end{cases}
$$

Note that $\varepsilon\left(s_{\Delta}^{+}\right)=\varepsilon\left(s_{\Delta}^{-}\right)$as $s_{\Delta}^{+}=-s_{\Delta}^{-}$on $\operatorname{MW}\left(S_{d}\right)$.
Proof. It is enough to show

$$
\left.\left(\left(\Delta_{0, d}+\Delta\right) / \Gamma_{d}\right)\right)=1 \Leftrightarrow s_{\Delta}^{ \pm} \in 2 \operatorname{MW}\left(S_{d}\right)
$$

(\Rightarrow) As we have seen, $W_{d} \cong \Sigma_{d / 2}$. We choose affine open subsets $V \subset W_{d}\left(\cong \Sigma_{d / 2}\right)$, and $U \subset \Sigma_{d}$ as follows:
(i) Both U and V are \mathbb{C}^{2}.
(ii) We choose affine coordinates (t, u) and (\tilde{t}, ζ) of U and V, respectively, in such a way that q_{d} is given by

$$
q_{d}:(\tilde{t}, \zeta) \mapsto(t, u)=\left(\tilde{t}, \zeta^{2}+f(t)\right)
$$

where $f(t)$ is a polynomial of degree $\leq d$. Note that with respect to these coordinates (t, u) and $(\tilde{t}, \zeta), \Delta \cap U: u-f(t)=0, \Delta_{0, d}$ corresponds to the section given by $u=\infty$ and the involution $\sigma_{q_{d}}$ is given by $(\tilde{t}, \zeta) \mapsto(\tilde{t},-\zeta)$.
Since $\left(\left(\Delta_{0, d}+\Delta\right) / \Gamma_{d}\right)=1, q_{d}^{*} \Gamma_{d}$ is of the form $\Gamma^{+}+\Gamma^{-}$. Since $\sigma_{q_{d}}^{*} \Gamma^{+}=\Gamma^{-}, \sigma_{q_{d}}^{*} \Delta_{0, d / 2}=\Delta_{0, d / 2}$ and $\sigma_{q_{d}}^{*} F_{d / 2}=F_{d / 2}, \Gamma^{+} \sim \Gamma^{-} \sim 3\left(\Delta_{0, d / 2}+d / 2 F_{d / 2}\right)$. Hence we may assume

$$
\begin{array}{ll}
\Gamma^{+} & : \quad F(\tilde{t}, \zeta)=\zeta^{3}+a_{1}(\tilde{t}) \zeta^{2}+a_{2}(\tilde{t}) \zeta+a_{3}(\tilde{t})=0 \\
\Gamma^{-} & :-F(\tilde{t},-\zeta)=\zeta^{3}-a_{1}(\tilde{t}) \zeta^{2}+a_{2}(\tilde{t}) \zeta-a_{3}(\tilde{t})=0
\end{array}
$$

where $\operatorname{deg} a_{k}(\tilde{t}) \leq k d / 2$. Since $\zeta^{2}=u-f(t), t=\tilde{t}$, we have

$$
F(\tilde{t}, \zeta)=\left(a_{1}(t) u-a_{1}(t) f(t)+a_{3}(t)\right)+\left(u-f(t)+a_{2}(t)\right) \zeta
$$

As $q_{d}^{*} \Gamma=\Gamma^{+}+\Gamma^{-}$, we may assume that Γ_{d} is given by

$$
-F(\tilde{t}, \zeta) F(\tilde{t},-\zeta)=\left(a_{1}(t) u-a_{1}(t) f+a_{3}(t)\right)^{2}-\left(u-f(t)+a_{2}(t)\right)^{2}(u-f(t))=0
$$

On the other hand, over U is S_{d}^{\prime} is given by

$$
\left.S_{d}^{\prime}\right|_{p_{d}^{\prime-1}}: y^{2}=\left(a_{1}(t) u-a_{1}(t) f+a_{3}(t)\right)^{2}-\left(u-f(t)+a_{2}(t)\right)^{2}(u-f(t))
$$

and the above equation considered as a Weierstrass equation of the generic fiber, $S_{d, \eta}$, of φ_{d}. By our construction, $s_{\Delta}^{ \pm}$is given by

$$
s_{\Delta}^{ \pm}:\left(f(t), \pm a_{3}(t)\right)
$$

Put

$$
s_{o}^{ \pm}:\left(\mp\left(f(t)-a_{2}(t)\right), \pm\left(a_{1}(t) a_{2}(t)-a_{3}(t)\right)\right.
$$

Then $s_{o}^{ \pm} \in \operatorname{MW}\left(S_{d}\right)$ and by the definition of the group law, we have

$$
2 s_{o}^{ \pm}=s_{\Delta}^{ \pm}
$$

(\Leftarrow) We use the affine open subsets of Σ_{d} and W_{d} as before. Suppose that Γ_{d} is given by

$$
\Gamma_{d}: F_{\Gamma_{d}}(t, u)=u^{3}+c_{1}(t) u^{2}+c_{2}(t) u+c_{3}(t)=0
$$

where $c_{k}(t)(i=1,2,3)$ are polynomials of degrees $\leq k d$. Then S_{d}^{\prime} over U is given by $y^{2}=F_{\Gamma_{d}}(t, u)$ and, as we have seen, this equation can be regarded as a Weierstrass equation of the generic fiber $S_{d, \eta}$. Since $s_{\Delta}^{+} O=0$ and $p_{d}\left(s_{\Delta}^{+}\right)=\Delta, s_{\Delta}^{+} \in \operatorname{MW}\left(S_{d}\right)$ is given by

$$
s_{\Delta}^{+}:(u, y)=(f(t), g(t))
$$

where $g(t)$ is a polynomial of degree $\leq 3 d / 2$. Let $s_{o} \in \operatorname{MW}\left(S_{d}\right)$ such that $2 s_{o}=s_{\Delta}^{+}$. Since s_{o} is a $\mathbb{C}\left(\mathbb{P}^{1}\right)(=\mathbb{C}(t))$-rational point of $S_{d, \eta}$, there exist $f_{o}(t), g_{o}(t) \in \mathbb{C}(t)$ such that

$$
s_{o}:(u, y)=\left(f_{o}(t), g_{o}(t)\right)
$$

Since $s_{\Delta}^{+} O=0$, by [$\underline{\underline{g}}$, Theorem 9.1], we infer that $s_{o} O=0$. Therefore $f_{o}(t), g_{o}(t) \in \mathbb{C}[t]$ and $\operatorname{deg} f_{o} \leq d, \operatorname{deg} g_{o} \leq 3 d / 2$. Now let

$$
y=\alpha(t) u+\beta(t), \alpha(t), \beta(t) \in \mathbb{C}(t)
$$

be the tangent line of the elliptic curve $S_{d, \eta}$ over $\mathbb{C}(t)$ at s_{o}. By the definition of the group law on $S_{d, \eta}$, we have

$$
F(t, u)=(\alpha(t) u+\beta(t))^{2}+\left(u-f_{o}(t)\right)^{2}(u-f(t))
$$

As $F(t, u), f, f_{o} \in \mathbb{C}[t, u]$, we infer that $\alpha(t), \beta(t) \in \mathbb{C}[t]$. Thus we may assume that $\Gamma_{d} \cap U$ is given by

$$
(\alpha(t) u+\beta(t))^{2}+\left(u-f_{o}(t)\right)^{2}(u-f(t))=0
$$

As $q_{d}^{*} \Gamma_{d}$ on V is given by

$$
\begin{aligned}
& (\alpha(t) u+\beta(t))^{2}+\left(u-f_{o}(t)\right)^{2} \zeta^{2} \\
= & \left\{(\alpha(t) u+\beta(t))+\sqrt{-1}\left(u-f_{o}(t)\right) \zeta\right\} \times\left\{(\alpha(t) u+\beta(t))-\sqrt{-1}\left(u-f_{o}(t)\right) \zeta\right\}
\end{aligned}
$$

Γ_{d} is splitting with respect to q_{d}, i.e., $\left(\left(\Delta_{0, d}+\Delta\right) / \Gamma_{d}\right)=1$.

Remark 1.1. Theorem \mathbb{L} can be generalized to the case when S_{d} has a hyperelliptic fibration under some restriction. See [i! $]$.
1.3. Double covers of \mathbb{P}^{2} branched along quartics and rational elliptic surfaces. An elliptic surface \mathcal{E} is said to be rational, if \mathcal{E} is a rational surface. Hence it is an elliptic surface over \mathbb{P}^{1}. Analogously to [I7], we associate a rational elliptic surface \mathcal{E}_{x}^{Q} to a reduced quartic Q in \mathbb{P}^{2} with a distinguished smooth point $x \in Q$ as follows:

Let $\nu_{1}: \mathbb{P}_{x}^{2} \rightarrow \mathbb{P}^{2}$ be a blowing-up at x. We denote the proper transform of the tangent line l_{x} at x by $\bar{l}_{x, 1}$, and the exceptional curve of ν_{1} by $E_{x, 1}$. We next consider another blowing up $\nu_{2}: \widehat{\mathbb{P}}^{2} \rightarrow \mathbb{P}_{x}^{2}$ at $\bar{l}_{x, 1} \cap E_{x, 1}$, and denote the proper transforms of $\bar{l}_{x, 1}, E_{x, 1}$ and the exceptional curve of ν_{2} by $\bar{l}_{x}, \bar{E}_{x, 1}$, and $E_{x, 2}$, respectively. Let $f^{\prime}: \mathcal{E}^{\prime} \rightarrow \widehat{\mathbb{P}}^{2}$ be a double cover with branch locus $\bar{E}_{x, 1}$ and \bar{Q}, where \bar{Q} is the proper transform of Q with respect to $\nu_{2} \circ \nu_{1}$. Let $\mu_{x}^{Q}: \mathcal{E}_{x}^{Q} \rightarrow \mathcal{E}^{\prime}$ be the canonical resolution of \mathcal{E}^{\prime} and put $f_{x}^{Q}:=f^{\prime} \circ \mu_{x}^{Q}$. Then we see that \mathcal{E}_{x}^{Q} satisfies the following properties:
(i) The pencil Λ_{x} of lines through x induces a relatively minimal elliptic fibration $\varphi_{x}^{Q}: \mathcal{E}_{x}^{Q} \rightarrow$ \mathbb{P}^{1}.
(ii) The preimage of $\bar{E}_{x, 1}$ gives rise to a section O of φ_{x}^{Q}, and the generic fiber has a group structure, O being the zero element. Moreover the covering transformation of \mathcal{E}_{x}^{Q} coincides with the involution induced by the inversion of the group law.
(iii) The preimages of $E_{x, 2}$ and \bar{l}_{x} in \mathcal{E}_{x}^{Q} are irreducible components of singular fibers. The types of the singular fiber cointainig the preimages of $E_{x, 2}$ and \bar{l}_{x} are as follows:

I_{2}	l_{x} meets Q at x and at another two distinct points.
III	l_{x} is a 3-fold tangent point.
I_{3}	l_{x} is a bitangent line.
IV	l_{x} is a 4-fold tangent point.
$\mathrm{I}_{n}(n \geq 4)$	l_{x} passes through a singular point of type $A_{n}(n \geq 1)$.

We use here Kodaira's notation ([$[\underline{]}]$) in order to describe the types of singular fibers. The following picture describes the case that l_{x} is a 3 -fold tangent line at x.

(iv) Other singular fibers of \mathcal{E}_{x}^{Q} correspond to lines in Λ_{x} not meeting Q at 4 distinct points. We refer to [1], Table 6.2] for details.

Remark 1.2. Note that any rational elliptic surface \mathcal{E} with at least one reducible singular fiber is obtained above. Namely $\mathcal{E}=\mathcal{E}_{x}^{Q}$ for some Q and a smooth point x on Q.
1.4. The Mordell-Weil lattices of \mathcal{E}_{x}^{Q}. In this subsection, we give a table of types of singularities of Q, the relative position of l_{x} and Q, and the Mordell-Weil lattices of \mathcal{E}_{x}^{Q}. We first note that $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$ has no 2-torsion, since we assume that Q is irreducible. Also we omit cases which never occur. As for the structure of the Mordell-Weil lattices for rational elliptic surfaces, we refer to [[I2] and to [[15] for the correction of the misprints in [[I2]. Let us explain notations used in the table.

- Ξ_{Q} and $l_{x} \cap Q$ are the same as those in the table Theorem $0 . d$
- $R_{Q, x}$: the subgroup of $\operatorname{NS}\left(\mathcal{E}_{x}^{Q}\right)$ generated by $\left\{\Theta_{v, 1}, \ldots, \Theta_{v, m_{v}-1}\right\}_{v \in R_{\varphi_{x}^{Q}}}$. Note that $R_{Q, x}$ is isomorphic to a direct sum of root lattices of A-D-E type, and we describe $R_{Q, x}$ as a direct sum of them.
- $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$: the lattice structure of $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$. To describe them, we use the notation in [I2]. Namely •* means the dual lattice of the lattice • and $\langle m\rangle$ denotes a lattice of rank $1, \mathbb{Z} x$ with $\langle x, x\rangle=m$. Also a matrix means the intersection matrix with respect to a certain basis. Note that the lattice structure is determined by $R_{Q, x}$ as $\mathrm{MW}\left(\mathcal{E}_{x}^{Q}\right)$ has no 2-torsion.
- $\mathrm{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right)$: the narrow part of $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$, i.e., the subgroup of $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$ consisting of sections s with $s \Theta_{v, 0}=1$.
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { No. } & \Xi_{Q} & l_{x} \cap Q & R_{Q, x} & \mathrm{MW}\left(\mathcal{E}_{x}^{Q}\right) & \mathrm{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right) \\ \hline 1 & A_{6} & s & A_{6} \oplus A_{1} & \langle 1 / 14\rangle & \langle 14\rangle \\ 2 & A_{6} & s b & A_{8} & \mathbb{Z} / 3 \mathbb{Z} & \{0\} \\ \hline 3 & E_{6} & s & E_{6} \oplus A_{1} & \langle 1 / 6\rangle & \langle 6\rangle \\ 4 & E_{6} & b & E_{6} \oplus A_{2} & \mathbb{Z} / 3 \mathbb{Z} & \{0\} \\ \hline 5 & A_{5} & s & A_{5} \oplus A_{1} & A_{1}^{*} \oplus\langle 1 / 6\rangle & A_{1} \oplus\langle 6\rangle \\ 6 & A_{5} & b & A_{5} \oplus A_{2} & A_{1}^{*} \oplus \mathbb{Z} / 3 \mathbb{Z} & A_{1} \\ 7 & A_{5} & s b & A_{7} & \langle 1 / 8\rangle & \langle 8\rangle \\ \hline 8 & D_{5} & s & D_{5} \oplus A_{1} & A_{1}^{*} \oplus\langle 1 / 4\rangle & A_{1} \oplus\langle 4\rangle \\ 9 & D_{5} & b & D_{5} \oplus A_{2} & \langle 1 / 12\rangle & \langle 12\rangle \\ \hline 10 & D_{4} & s & D_{4} \oplus A_{1} & \left(A_{1}^{*}\right)^{\oplus 3} & A_{1}^{\oplus 3} \\ 11 & D_{4} & b & D_{4} \oplus A_{2} & \frac{1}{6}\binom{1}{1} & 4 \\ & & & & 2 & -2 \\ 12 & A_{4}+A_{2} & s & A_{4} \oplus A_{2} \oplus A_{1} & \langle 1 / 30\rangle & \langle 30\rangle \\ 13 & A_{4}+A_{2} & s b & A_{4} \oplus A_{4} & \mathbb{Z} / 5 \mathbb{Z} & \{0\} \\ \hline 14 & A_{4}+A_{1} & s & A_{4} \oplus A_{1}^{\oplus 2} & 1 & 2 \\ 15 & A_{4}+A_{1} & b & A_{4} \oplus A_{2} \oplus A_{1} & \langle 1 & 10 \\ 16 & A_{4}+A_{1} & s b & A_{4} \oplus A_{3} & \langle 1 / 30\rangle & 6 \\ 17 & A_{4}+A_{1} & s b & A_{6} \oplus A_{1} & \langle 1 / 14\rangle & -20\rangle 4\end{array}\right)$

No.	Ξ_{Q}	$l_{x} \cap Q$	$R_{Q, x}$	$\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$	$\mathrm{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right)$
30	$A_{2}+2 A_{1}$	s	$A_{2} \oplus A_{1}^{\oplus 3}$	$A_{1}^{*} \oplus \frac{1}{6}\left(\begin{array}{cc}2 & 1 \\ 1 & 2\end{array}\right)$	$A_{1} \oplus\left(\begin{array}{cc}4 & -2 \\ -2 & 4\end{array}\right)$
31	$A_{2}+2 A_{1}$	b	$A_{2}^{\oplus 2} \oplus A_{1}^{\oplus 2}$	$\langle 1 / 6\rangle^{\oplus 2}$	$\langle 6\rangle^{\oplus 2}$
32	$A_{2}+2 A_{1}$	$s b$	$A_{4} \oplus A_{1}^{\oplus 2}$	$\frac{1}{10}\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right)$	$\left(\begin{array}{cc}6 & -2 \\ -2 & 4\end{array}\right)$
33	$A_{2}+2 A_{1}$	sb	$A_{3} \oplus A_{2} \oplus A_{1}$	$A_{1}^{*} \oplus\langle 1 / 12\rangle$	$A_{1} \oplus\langle 12\rangle$
34	$3 A_{1}$	s	$A_{1}^{\oplus 4}$	$\left(A_{1}^{*}\right)^{\oplus 4}$	$A_{1}^{\oplus 4}$
35	$3 A_{1}$	s	$A_{2} \oplus A_{1}^{\oplus 3}$	$A_{1}^{*} \oplus \frac{1}{6}\left(\begin{array}{ll} 2 & 1 \\ 1 & 2 \end{array}\right)$	$A_{1} \oplus\left(\begin{array}{cc} 4 & -2 \\ -2 & 4 \end{array}\right)$
36	$3 A_{1}$	$s b$	$A_{3} \oplus A_{1}^{\oplus 2}$	$\left(A_{1}^{*}\right)^{\oplus 2} \oplus\langle 1 / 4\rangle$	$A_{1}^{\oplus 2} \oplus\langle 4\rangle$
37	A_{4}	s	$A_{4} \oplus A_{1}$	$\frac{1}{10}\left(\begin{array}{ccc}3 & 1 & -1 \\ 1 & 7 & 3 \\ -1 & 3 & 7\end{array}\right)$	$\left(\begin{array}{ccc}4 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$
38	A_{4}	b	$A_{4} \oplus A_{2}$	$\frac{1}{15}\left(\begin{array}{ll}2 & 1 \\ 1 & 8\end{array}\right)$	$\left(\begin{array}{cc}8 & -1 \\ -1 & 2\end{array}\right)$
39	A_{4}	$s b$	A_{6}	$\frac{1}{7}\left(\begin{array}{ll}2 & 1 \\ 1 & 4\end{array}\right)$	$\left(\begin{array}{cc}4 & -1 \\ -1 & 2\end{array}\right)$
40	A_{3}	s	$A_{3} \oplus A_{1}$	$A_{3}^{*} \oplus A_{1}^{*}$	$A_{3} \oplus A_{1}$
41	A_{3}	b	$A_{3} \oplus A_{2}$	$\frac{1}{12}\left(\begin{array}{lll}7 & 1 & 2 \\ 1 & 7 & 2 \\ 2 & 2 & 4\end{array}\right)$	$\left(\begin{array}{ccc}2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 4\end{array}\right)$
42	A_{3}	$s b$	A_{5}	$A_{2}^{*} \oplus A_{1}^{*}$	$A_{2} \oplus A_{1}$
43	$2 A_{2}$	s	$A_{2}^{\oplus 2} \oplus A_{1}$	$A_{2}^{*} \oplus\langle 1 / 6\rangle$	$A_{2} \oplus\langle 6\rangle$
44	$2 A_{2}$	b	$A_{2}^{\oplus 3}$	$A_{2}^{*} \oplus \mathbb{Z} / 3 \mathbb{Z}$	A_{2}
45	$2 A_{2}$	$s b$	$A_{4} \oplus A_{2}$	$\frac{1}{15}\left(\begin{array}{cc}2 & 1 \\ 1 & 8\end{array}\right)$	$\left(\begin{array}{cc}8 & -1 \\ -1 & 2\end{array}\right)$
46	$A_{2}+A_{1}$	s	$A_{2} \oplus A_{1}^{\oplus 2}$	$\frac{1}{6}\left(\begin{array}{cccc}2 & 1 & 0 & -1 \\ 1 & 5 & 3 & 1 \\ 0 & 3 & 6 & 3 \\ -1 & 1 & 3 & 5\end{array}\right)$	$\left(\begin{array}{cccc}4 & -1 & 0 & 1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 1 & 0 & -1 & 2\end{array}\right)$
47	$A_{2}+A_{1}$	b	$A_{2}^{\oplus 2} \oplus A_{1}$	$A_{2}^{*} \oplus\langle 1 / 6\rangle$	$A_{2} \oplus\langle 6\rangle$
48	$A_{2}+A_{1}$	$s b$	$A_{4} \oplus A_{1}$	$\frac{1}{10}\left(\begin{array}{ccc}3 & 1 & -1 \\ 1 & 7 & 3 \\ -1 & 3 & 7\end{array}\right)$	$\left(\begin{array}{ccc}4 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$
49	$A_{2}+A_{1}$	$s b$	$A_{4} \oplus A_{1}$	$\frac{1}{12}\left(\begin{array}{lll}7 & 1 & 2 \\ 1 & 7 & 2 \\ 2 & 2 & 4\end{array}\right)$	$\left(\begin{array}{ccc}2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 4\end{array}\right)$
50	$2 A_{1}$	s	$A_{1}^{\oplus 3}$	$D_{4}^{*} \oplus A_{1}^{*}$	$D_{4} \oplus A_{1}$
51 52	$2 A_{1}$ $2 A_{1}$	b $s b$	$\begin{gathered} A_{2} \oplus A_{1}^{\oplus 2} \\ A_{3} \oplus A_{1} \end{gathered}$	$\frac{1}{6}\left(\begin{array}{cccc} 2 & 1 & 0 & -1 \\ 1 & 5 & 3 & 1 \\ 0 & 3 & 6 & 3 \\ -1 & 1 & 3 & 5 \end{array}\right)$	$\left(\begin{array}{cccc} 4 & -1 & 0 & 1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 1 & 0 & -1 & 2 \end{array}\right)$

No.	Ξ_{Q}	$l_{x} \cap Q$	$R_{Q, x}$	$\mathrm{MW}\left(\mathcal{E}_{x}^{Q}\right)$	$\mathrm{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right)$
53	A_{2}	s	$A_{2} \oplus A_{1}$	A_{5}^{*}	A_{5}
54	A_{2}	b	$A_{2}^{\oplus 2}$	$\left(A_{2}^{*}\right)^{\oplus 2}$	$A_{2}^{\oplus 2}$
55	A_{2}	$s b$	A_{4}	A_{4}^{*}	A_{4}
56	A_{1}	s	$A_{1}^{\oplus 2}$	D_{6}^{*}	D_{6}
57	A_{1}	b	$A_{2} \oplus A_{1}$	A_{5}^{*}	A_{5}
58	A_{1}	$s b$	A_{3}	D_{5}^{*}	D_{5}
59	\emptyset	s	A_{1}	E_{7}^{*}	E_{7}
60	\emptyset	b	A_{2}	E_{6}^{*}	E_{6}

2. Proof of Theorem II.

We keep the same notations as before. Our result will be proved case-by-case. Let us start with the following lemma.

Lemma 2.1. Let C be an even tangential conic to Q through x. The preimage of C in \mathcal{E}_{x}^{Q} consists of two sections s_{C}^{+}and s_{C}^{-}such that
(i) $\left\langle s_{C}^{+}, s_{C}^{+}\right\rangle=\left\langle s_{C}^{-}, s_{C}^{-}\right\rangle=2$
(ii) $s_{C}^{+} O=s_{C}^{-} O=0$
(iii) $s_{C}^{+} \Theta_{v, 0}=s_{C}^{-} \Theta_{v, 0}=1$ for all $v \in R_{\varphi_{x}^{Q}}$, i.e, $s_{C}^{ \pm} \in \operatorname{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right)$.

Coversely, for any section s in $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$ satisfying two of the above three properties, the image of s in \mathbb{P}^{2} is an even tangential conic to Q.

Proof. We first note that two of the properties $(i),(i i)$ and (iii) imply the remaining. This follows from the formula

$$
\langle s, s\rangle=2+2 s O-\sum_{v \in R_{\varphi}} \operatorname{Corr}_{v}(s, s)
$$

for the rational elliptic surface \mathcal{E}_{x}^{Q} and $s \in \operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$.
Let \bar{C} be the proper transform of C in $\widehat{\mathbb{P}}^{2}$. Since \bar{C} is tangent to \bar{Q} at each intersection point and $\bar{C} \cap \bar{E}_{x, 1}=\emptyset$, the preimage of \bar{C} in \mathcal{E}_{x}^{Q} consists of 2 irreducible components s_{C}^{+}and s_{C}^{-}so that $s_{C}^{ \pm} O=0$. Since \bar{C} meets the proper transform of a general member in Λ_{x} at one point, both s_{C}^{+} and s_{C}^{-}are sections of $\varphi_{x}^{Q}: \mathcal{E}_{x}^{Q} \rightarrow \mathbb{P}^{1}$. The property (iii) follows from the fact that \bar{C} meets $E_{x, 2}$ and \bar{C} does not pass through singularities of \bar{Q}. Now the property (i) is straightforward from the explicit formula for \langle,$\rangle .$

Conversely, suppose that we have a section s satisfying two of the properties $(i),(i i)$ and (iii). Let C_{s} be the image of s in \mathbb{P}^{2}. By our construction of \mathcal{E}_{x}^{Q}, we infer that C_{s} is a conic tangent to Q at x. Since C_{s} is also the image of $\sigma_{f_{x}^{Q}}^{*} s$, we infer that C_{s} is an even tangent conic to Q.

Theorem 2.1. Let C be an even tangential conic to Q and let s_{C}^{+}be the section as above.

$$
(C / Q)=(-1)^{\varepsilon\left(s_{C}^{+}\right)}
$$

where the symbol $\varepsilon\left(s_{C}^{+}\right)$is the same as that defined in Theorem 1.9.
Proof. Let $\widehat{\mathbb{P}}^{2}$ as before. Since \bar{l}_{x} is a (-1) curve, by blowing down \bar{l}_{x}, we obtain Σ_{2} with the following properties:
(i) The image of \bar{Q} is a trisection $\Gamma_{Q} \sim 3\left(\Delta_{0, d}+2 F\right)$.
(ii) Singularities of Γ_{Q} are the same as those of Q except the A_{1} singularity caused by blowing down \bar{l}_{x}.
(iii) The image of $\bar{E}_{x, 1}=\Delta_{0, d}$.
(iv) The image of \bar{C} is a section Δ_{C} such that $\Delta_{C} \sim\left(\Delta_{0, d}+2 F\right)$ and Δ_{C} is even tangent to Γ_{Q}.
Let $f_{o}: Z_{o} \rightarrow \Sigma_{2}$ be the induced double cover by $f_{C}: Z_{C} \rightarrow \mathbb{P}^{2}$, i.e., the $\mathbb{C}\left(Z_{C}\right)$-normalization of Σ_{2}. One easily see that $\Delta_{f_{o}}=\Delta+\Delta_{C}$.

Since Δ_{C} is the image of \bar{C}, it is also the image of $s_{C}^{ \pm}$. Hence we infer that

$$
(C / Q)=1 \Leftrightarrow\left(\Delta_{0, d}+\Delta_{C} / \Gamma_{Q}\right)=1
$$

Hence by Theorem [.2, we infer that $(C / Q)=1$ if and only if $s_{C}^{+} \in 2 \operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$.
Remark 2.1. Suppose that $s_{C}^{+} \in 2 \operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$. Let s_{o} be an element in $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$ such that $2 s_{o}=s_{C}^{+}$. By Lemma [.] (i), we have $\left\langle s_{o}, s_{o}\right\rangle=1 / 2$. Hence if MW $\left(\mathcal{E}_{x}^{Q}\right)$ has no section s with $\langle s, s\rangle=1 / 2$, there is no quadratic residue even tangential conic to Q through x.
Lemma 2.2. Let \widetilde{Q} be the normalization of Q and we denote the genus of \widetilde{Q} by $g(\widetilde{Q})$.
(i) No even tangential conic to Q is quadratic residue $\bmod Q$ if $g(\widetilde{Q}) \geq 2$.
(ii) All even tangential conic to Q are quadratic residue $\bmod Q$ if $g(\widetilde{Q})=0$.

Proof. (i) Let C be an even tangential conic to Q and suppose that $(C / Q)=1$. Let $f_{C}: Z_{C} \rightarrow \mathbb{P}^{2}$ be a double cover with $\Delta_{f_{C}}=C$. Then $f_{C}^{*} Q$ is of the form $Q^{+}+Q^{-}$. Since $Z_{C}=\mathbb{P}^{1} \times$ $\mathbb{P}^{1}, \operatorname{Pic}\left(Z_{C}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$ and the covering transformation induces an involution $(a, b) \mapsto(b, a)$ on $\operatorname{Pic}\left(Z_{C}\right)$, we infer that $Q^{+} \sim Q^{-} \sim(2,2)$. Since Q^{+}, Q^{-}and Q are birationally equivalent, we have $g(\widetilde{Q}) \leq 1$ and the result follows.
(ii) Since the induced double cover on \widetilde{Q} is unramified, $(C / Q)=1$.

Now we easily have the following theorem:
Theorem 2.2. Let Q be an irreducible quartic. Choose a smooth point $x \in Q$ and let \mathcal{E}_{x}^{Q} be the rational elliptic surface as in §1. Then we have the following:
(i) Let ETC be the set of conics passing through x. Then

$$
\begin{aligned}
\sharp \mathrm{ETC} & =\sharp\left\{s \in \operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right) \mid\langle s, s\rangle=2, s O=0\right\} / 2 \\
& =\sharp\left\{s \in \operatorname{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right) \mid\langle s, s\rangle=2\right\} / 2
\end{aligned}
$$

(ii) Let QRETC be the set of even tangential conics passing through x with $(C / Q)=1$. Then

$$
\begin{aligned}
\sharp \mathrm{QRETC} & =\sharp\left\{s \in 2 \operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right) \mid\langle s, s\rangle=2, s O=0\right\} / 2 \\
& =\sharp\left\{s \in 2 \operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right) \cap \operatorname{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right) \mid\langle s, s\rangle=2\right\} / 2
\end{aligned}
$$

Proof. Our statements (i) and (ii) are immediate from Lemma 2.1$]$ and Theorem [2.7.
We now prove Theorem [.] case-by-case. We first compute \sharp ETC. By Lemma [..I], it is enough to see the number of sections s in the narrow part $\mathrm{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right)$ of $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$ with $\langle s, s\rangle=2$.

For the lattices of A-D-E types, it is nothing but the number of roots, and the following table is well known (see [6])

A_{n}	$D_{n}(n \geq 4)$	E_{6}	E_{7}
$n(n+1)$	$2 n(n-1)$	72	126

From the above table and that in $\S 2$, our statement on \sharp ETC is straightforward except for the cases $11,14,30,32,35,37,38,39,41,45,46,48,49,51$. For the rank 2 cases among the exceptional cases, our statement follows easily by direct computation. For the cases of rank >2, we make use of [[12, Lemma 3.8], which is as follows:

$$
\begin{aligned}
\left(\begin{array}{ccc}
4 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right) & \cong A_{1}^{\perp} \text { in } A_{4}, \quad\left(\begin{array}{cccc}
4 & -1 & 0 & 1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
1 & 0 & -1 & 2
\end{array}\right) \cong A_{1}^{\perp} \text { in } A_{5} \\
& \left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right) \cong A_{2}^{\perp} \text { in } D_{5}
\end{aligned}
$$

where the terminology $\bullet \perp$ in \square means that we embed a lattice \bullet into \square and $\bullet \perp$ is the orthogonal complement of \bullet in $■$. Also, by [[2 , Lemma 3.8], the embedding is determined up to isomorphism. Hence we just count the number of roots which are orthogonal to the embedded lattices. To be more precise, we explain the case A_{1}^{\perp} in A_{5}. We first consider the realization of A_{5} as follows:

$$
A_{5}=\left\{\left(x_{1}, \ldots, x_{6}\right) \mid \sum_{i} x_{i}=0, x_{i} \in \mathbb{Z}\right\} \subset \mathbb{R}^{6}
$$

and the pairing is induced from the Euclidean metric $\sum_{i} x_{i}^{2}$ in \mathbb{R}^{6}. Under these circumstances, the roots are given by a vector $(1,-1,0,0,0,0)$ and those obtained by permutations of the coordinates. We fix an embedding of A_{1} given by $\mathbb{Z}(1,-1,0,0,0,0) \subset A_{5}$. Then roots in A_{1}^{\perp} are

$$
\begin{array}{lll}
(0,0, \pm 1, \mp 1,0,0) & (0,0, \pm 1,0, \mp 1,0) & (0,0, \pm 1,0,0, \mp 1) \\
(0,0,0, \pm 1, \mp 1,0) & (0,0,0, \pm 1,0, \mp 1) & (0,0,0,0, \pm 1, \pm 1)
\end{array}
$$

Since the remaining cases are similar, we omit them. Thus we have a list for \sharp ETC.
We now go on to compute $\sharp \mathrm{QRETC}$. We first note that $\sharp \mathrm{QRETC}=0$ if $\sharp E T C=0$. In the following, we only cosider the case of $\sharp \mathrm{ETC} \neq 0$.

Since Q is irreducible, $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$ has no 2-torsion. Hence for each $s \in 2 \mathrm{MW}\left(\mathcal{E}_{x}^{Q}\right)$, there exists a unique $s_{o} \in \operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$ such that $2 s_{o}=s$. For distinct $C_{1}, C_{2} \in \operatorname{QRETC}, s_{C_{1}}^{+}$and $s_{C_{2}}^{+}$are distinct in $\mathrm{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right)$. Hence it is enough to compute

$$
\sharp\left\{s_{o} \in \operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right) \mid\left\langle s_{o}, s_{o}\right\rangle=1 / 2,2 s_{o} \in \operatorname{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right)\right\}
$$

Now Theorem follows from the following claim:
Claim. Suppose that $\sharp \mathrm{ETC} \neq 0$. If $\mathrm{MW}\left(\mathcal{E}_{x}^{Q}\right)$ has an A_{1}^{*} as a direct summand, then two generators $\pm \tilde{s}$ of A_{1}^{*} are sections such that $\langle\tilde{s}, \tilde{s}\rangle=1 / 2,2 \tilde{s} \in \mathrm{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right)$. Conversely if there exists $s_{o} \in \operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$ such that $\left\langle s_{o}, s_{o}\right\rangle=1 / 2,2 s_{o} \in \operatorname{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right)$, then $\mathbb{Z} s_{o}\left(\cong A_{1}^{*}\right)$ is a direct summand of $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$.

Proof of Claim. Suppose that A_{1}^{*} is a direct summand of $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$ and let \tilde{s} be a section such that $\mathbb{Z} \tilde{s}=A_{1}^{*}$. Then $\langle\tilde{s}, \tilde{s}\rangle=1 / 2$ and $2 \tilde{s} \in \operatorname{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right)$ by [14, Theorem 9.1].

We now go on to show the converse. Let s_{o} be a section with $\left\langle s_{o}, s_{o}\right\rangle=1 / 2,2 s_{o} \in \operatorname{MW}^{0}\left(\mathcal{E}_{x}^{Q}\right)$. As for the dual lattices of A-D-E type, we have the following table:

Type	A_{n}^{*}	$D_{n}^{*}(n \geq 4)$	E_{6}^{*}	E_{7}^{*}
Minimum norm	$\frac{n}{(n+1)}$	1	$\frac{4}{3}$	$\frac{3}{2}$

Hence we easily see that $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$ has an A_{1}^{*} direct summand except for the cases $37,38,39$, $41,45,46,48,49$ and 51 . We see that there is no section s with $\langle s, s\rangle=1 / 2$ for these exceptional cases.

Cases 38, 39 and 45. In these cases, the paring \langle,$\rangle takes its value in 1 / 15 \mathbb{Z}$ (Cases 38 and 45), and $1 / 7 \mathbb{Z}$ (Case 39), where $1 / m \mathbb{Z}=\{a / m \mid a \in \mathbb{Z}\}$. Hence there is no section s with $\langle s, s\rangle=1 / 2$.

Cases 37 and 48. Let s be any element of $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$. In these cases,

$$
\langle s, s\rangle=2(1+s O)-\frac{k_{1}\left(5-k_{1}\right)}{5}-\frac{1}{2} k_{2}
$$

where $k_{1} \in\{0,1,2,3,4\}, k_{2} \in\{0,1\}$. Hence we infer that there is no s with $\langle s, s\rangle=1 / 2$.
Cases 41 and 49. Let s be any element of $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$. In these cases,

$$
\langle s, s\rangle=2(1+s O)-\frac{k_{1}\left(4-k_{1}\right)}{4}-\frac{2}{3} k_{2}
$$

where $k_{1} \in\{0,1,2,3\}, k_{2} \in\{0,1\}$. Hence we infer that there is no s with $\langle s, s\rangle=1 / 2$.
Cases 46 and 51. Let s be any element of $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$. In these cases,

$$
\langle s, s\rangle=2(1+s O)-\frac{2}{3} k_{1}-\frac{1}{2} k_{2}-\frac{1}{2} k_{3},
$$

where $k_{1}, k_{2}, k_{3} \in\{0,1\}$. Hence we infer that there is no s with $\langle s, s\rangle=1 / 2$.
After checking each case we see that s_{o} generates an A_{1}^{*} direct summand.

3. Preliminaries from theory of Galois covers

3.1. Galois covers. In this subsection, we summarize some facts and terminologies on Galois covers. For details, see [[$1, \S 3]$. Let X and Y be normal projective varieties. We call X a cover if there exists a finite surjective morphism $\pi: X \rightarrow Y$. Let $\mathbb{C}(X)$ and $\mathbb{C}(Y)$ be rational function fields of X and Y, respectively. If X is a cover of Y, then $\mathbb{C}(X)$ is an algebraic extension of $\mathbb{C}(Y)$ with $\operatorname{deg} \pi=[\mathbb{C}(X): \mathbb{C}(Y)]$. Let G be a finite group. A G-cover is a cover $\pi: X \rightarrow Y$ such that $\mathbb{C}(X) / \mathbb{C}(Y)$ is a Galois extension with $\operatorname{Gal}(\mathbb{C}(X) / \mathbb{C}(Y)) \cong G$. For a cover $\pi: X \rightarrow Y$, the branch locus Δ_{π} of π is a subset of Y as follows:

$$
\Delta_{\pi}=\{y \in Y \mid \pi \text { is not locally isomorphic over } y\}
$$

If Y is smooth, Δ_{π} is an algebraic subset of pure codimention 1 ([[21$\left.]\right)$. Let $\pi: X \rightarrow Y$ be a G-cover of a smooth projective variety Y. Let $\Delta_{\pi}=\Delta_{\pi, 1}+\ldots+\Delta_{\pi, r}$ denote the irreducible decomposition of Δ_{π}. We say that $\pi: X \rightarrow Y$ is branched at $e_{1} \Delta_{\pi, 1}+\ldots+e_{r} \Delta_{\pi, r}\left(e_{i} \geq 2, i=1, \ldots, r\right)$ if the ramification index along $\Delta_{\pi, i}$ is e_{i} for each i.

Let B be a reduced divisor on a smooth projective variety Y and $B=B_{1}+\ldots+B_{r}$ denote its irreducible decomposition. It is known that the existence of a G-cover $\pi: X \rightarrow Y$ at $\sum_{i} e_{i} B_{i}$ can be characterized as follows:

Theorem 3.1. There exists a G-cover of Y branched at $\sum_{i} e_{i} B_{i}$ if and only if there exists an epimorphism $\phi: \pi_{1}(Y \backslash B, *) \rightarrow G$ such that for each meridian γ_{i} of B_{i}, the image of its class $\left[\gamma_{i}\right], \phi\left(\left[\gamma_{i}\right]\right)$, has order e_{i}.
3.2. Dihedral covers. Let $\mathcal{D}_{2 n}$ be the dihedral group of order $2 n(n \geq 3)$ given by $\langle\sigma, \tau| \sigma^{2}=$ $\left.\tau^{n}=(\sigma \tau)^{2}=1\right\rangle$. In [[7]], we developed a method to deal with $\mathcal{D}_{2 n}$-covers, and some variants of the results in [17] have been studied since then. We summarize here some results which we need later. Let us start with introducing some notation in order to explain them.

Let $\pi: X \rightarrow Y$ be a $\mathcal{D}_{2 n}$-cover. By its definition, $\mathbb{C}(X)$ is a $D_{2 n}$-extension of $\mathbb{C}(Y)$. Let $\mathbb{C}(X)^{\tau}$ be the fixed field by τ. We denote the $\mathbb{C}(X)^{\tau}$ - normalization by $D(X / Y)$. We denote the induced morphisms by $\beta_{1}(\pi): D(X / Y) \rightarrow Y$ and $\beta_{2}(\pi): X \rightarrow D(X / Y)$. Note that X is a $\mathbb{Z} / n \mathbb{Z}$-cover of $D(X / Y)$ and $D(X / Y)$ is a double cover of Y such that $\pi=\beta_{1}(\pi) \circ \beta_{2}(\pi)$:

Generic $\mathcal{D}_{2 n}$-covers. A $\mathcal{D}_{2 n}$-covers $\pi: S \rightarrow \Sigma$ is said to be generic if $\Delta(\pi)=\Delta\left(\beta_{1}(\pi)\right)$. As for conditions for the existence of generic $\mathcal{D}_{2 n}$-covers with prescribed branch loci, we have the following:

Let B be a reduced divisor on Σ with at worst simple singularities. Suppose that there exists a double cover $f_{B}^{\prime}: Z_{B}^{\prime} \rightarrow \Sigma$ with branch locus B and let $\mu_{B}: Z_{B} \rightarrow Z_{B}^{\prime}$ be the canonical resolution. We define the subgroup R_{B} of $\operatorname{NS}\left(Z_{B}\right)$ as follows:

$$
R_{B}:=\oplus_{b \in \operatorname{Sing}(B)} R_{b}
$$

where R_{b} is the subgroup in $\operatorname{NS}\left(Z_{B}\right)$ generated by the exceptional divisor of the singularity $f_{B}^{\prime-1}(x)$. Then we have the following result:

Theorem 3.2. [$\left[\right.$, Theorem 3.27] Let p be an odd prime and suppose that Z_{B} is simply connected. There exists a generic $\mathcal{D}_{2 p}$-cover $\pi: S \rightarrow \Sigma$ with branch locus B if and only if $\operatorname{NS}\left(Z_{B}\right) / R_{B}$ has p-torsion.

Let $R_{b}^{\vee}=\operatorname{Hom}_{\mathbb{Z}}\left(R_{b}, \mathbb{Z}\right)$. R_{b} can be regarded as a subgroup of R_{b}^{\vee} by using the intersection pairing. Since the torsion subgroup of $\operatorname{NS}\left(Z_{B}\right) / R_{B}$ can be considered as a subgroup of $\oplus_{b \in \operatorname{Sing}(B)} R_{b}^{\vee} / R_{b}$, we have the following corollary:

Corollary 3.1. If there exists no b such that p $\mid \sharp\left(R_{b}^{\vee} / R_{b}\right)$, then there exists no generic $\mathcal{D}_{2 p}$-cover with branch locus B.

Non-generic $\mathcal{D}_{2 n}$-covers. A $\mathcal{D}_{2 n}$-cover is said to be non-generic if $\Delta\left(\beta_{1}(\pi)\right)$ is a proper subset of $\Delta(\pi)$. We consider a non-generic $\mathcal{D}_{2 n}$-cover of Σ under the following setting:

Let $B=B_{1}+B_{2}$ be a reduced divisor on Σ such that:
(i) there exists a double cover $f_{B_{1}}^{\prime}: Z_{B_{1}}^{\prime} \rightarrow \Sigma$ with $\Delta_{f_{B_{1}}^{\prime}}=B_{1}$, and
(ii) B_{2} is irreducible.

Let $f_{B_{1}}: Z_{B_{1}} \rightarrow \Sigma$ be the canonical resolution of $Z_{B_{1}}^{\prime}$.
Proposition 3.1. [\square, Proposition 3.31] Suppose that Σ is simply connected and the preimage of the strict transform of B_{2} consists of two distinct irreducible components B_{2}^{+}and B_{2}^{-}. If there exist an effective divisor D and a line bundle \mathcal{L} on $Z_{B_{1}}$ satisfying conditions
(i) $D=B_{2}^{+}+D^{\prime}$; D^{\prime} and $\sigma_{f_{B_{1}}}^{*} D^{\prime}$ have no common components,
(ii) $\operatorname{Supp}\left(D^{\prime}+\sigma_{f_{B_{1}}}^{*} D^{\prime}\right)$ is contained in the exceptional set of $\mu_{f_{B_{1}}^{\prime}}$ and
(iii) $D-\sigma_{f_{B_{1}}}^{*} D \sim n \mathcal{L}(n \geq 3)$, where \sim denotes linear equivalence,
then there exists a $\mathcal{D}_{2 n}$-cover $\pi: S \rightarrow \Sigma$ branched at $2 B_{1}+n B_{2}$ such that $\Delta_{\beta_{1}(\pi)}=B_{1}$.
Corollary 3.2. If $\sigma_{f_{B_{1}}}^{*} B_{2}^{+} \sim B_{2}^{-}$and there exists a $\mathcal{D}_{2 n}$-cover of Σ branched at $2 B_{1}+n B_{2}$ for any $n \geq 3$.
Proposition 3.2. [\mathbb{I}, Proposition 3.32] Under the notation above, if a $\mathcal{D}_{2 n}$-cover $\pi: S \rightarrow \Sigma$ branched at $2 B_{1}+n B_{2}$ exists, then the following holds:
(i) $D(S / \Sigma)=Z_{B_{1}}^{\prime}$. The preimage of the porper transform of B_{2} in $Z_{B_{1}}$ consists of two irreducible components, $B_{2}^{ \pm}$.
(ii) There exist effective divisors D_{1} and D_{2}, and a line bundle \mathcal{L} on $Z_{B_{1}}$ such that

- $\operatorname{Supp}\left(D_{1}+\sigma_{f_{B_{1}}}^{*} D_{1}+D_{2}\right)$ is contained in the exceptional set of μ,
- D_{1} and $\sigma_{f_{B_{1}}}^{*} D_{1}$ have no common components,
- if $D_{2} \neq \emptyset$, then n is even, D_{2} is reduced, and $D^{\prime}=\sigma_{f_{B_{1}}}^{*} D^{\prime}$ for each irreducible component D^{\prime} of D_{2}, and
- $\left(B_{2}^{+}+D_{1}+\frac{n}{2} D_{2}\right)-\left(B_{2}^{-}+\sigma_{f_{B_{1}}}^{*} D_{1}\right) \sim n \mathcal{L}$.

Corollary 3.3. If a $\mathcal{D}_{2 n}$-cover $\pi: S \rightarrow \Sigma$ branched at $2 B_{1}+n B_{2}$ exists, then B_{2} is a splitting curve with respect to $f_{B_{1}}$.

4. Proof of Theorem [I.2

We first note that there are 3 possibilities for $\beta_{1}(\pi): D\left(S / \mathbb{P}^{2}\right) \rightarrow \mathbb{P}^{2}$:
Case 1. $D\left(S / \mathbb{P}^{2}\right)=Z_{C}, \beta_{1}(\pi)=f_{C}$.
Case 2. $D\left(S / \mathbb{P}^{2}\right)=Z_{Q}^{\prime}, \beta_{1}(\pi)=f_{Q}^{\prime}$.
Case 3. $D\left(S / \mathbb{P}^{2}\right)=Z_{C+Q}^{\prime}, \beta_{1}(\pi)=f_{C+Q}^{\prime}$.
Note that $f_{\bullet}^{\prime}: Z \bullet \rightarrow \mathbb{P}^{2}$ denotes a double cover with branch locus •. We show that our statements (i) and (ii) hold for Case 1 and neither Cases 2 nor 3 occur.

Case 1. In this case, π is branched at $2 C+p Q$. Hence, by Corollary [3.3, we infer that $(C / Q)=1$. Put $f_{C}^{*} Q=Q^{+}+Q^{-}$. By Proposition [2, $Q^{+}-Q^{-}$is p-divisible in $\operatorname{Pic}\left(Z_{C}\right)$. Since $Q^{+}+Q^{-} \sim(4,4), Q^{+}$is linearly equivalent to either $(3,1),(1,3)$ or $(2,2)$. Hence, $Q^{+} \sim Q^{-} \sim$ $(2,2)$ if $p \geq 3$.

Case 2. Let Σ_{2}, Δ_{C} and Γ_{Q} be the Hirzebruch surface of degree 2 and the divisors obtained as in $\S 2$. By considering the $\mathbb{C}(S)$-normalization of Σ_{2}, we have a $D_{2 p}$-cover branched at $2\left(\Delta_{0, d}+\right.$ $\left.\Gamma_{Q}\right)+p \Delta_{C}$. As in [IX], we reduce our problem on the existence of $\mathcal{D}_{2 p}$-covers to that on a linear equation on $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$. By [[18, Proposition 4.1], the following proposition is straightforward:
Proposition 4.1. If there exists a $\mathcal{D}_{2 p}$-cover of \mathbb{P}^{2} branched at $p C+2 Q$, then $s_{C}^{+} \in p \operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$.
Let s_{o} be an element in $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$ such that $p s_{o}=s_{C}^{+}$. Then we have $\left\langle s_{o}, s_{o}\right\rangle=2 / p^{2}$. On the other hand, by the table in $\S 1$, the value of $\left\langle s_{o}, s_{o}\right\rangle \in 1 /\left(2^{3} \cdot 3 \cdot 5 \cdot 7\right) \mathbb{Z}$. Therefore Case 2 does not occur.

Case 3. Our statement may follow from the results in [[13]. However, we prove our statement without using the fact that Z_{B} is a $K 3$ surface. Put $B=C+D$. In this case, the canonical resolution of $D\left(S / \mathbb{P}^{2}\right)$ is Z_{B}. Hence by Theorem [3.2, $\mathrm{NS}\left(Z_{B}\right) / R_{B}$ has p-torsion. By Corollary 3.0 and Theorem U.D, it is enough to show that there exists no \mathcal{D}_{10}-cover in the case when Q has one A_{4} singularity and C is an even bitangential conic to Q. Let D be an element of $\mathrm{NS}\left(Z_{B}\right)$ such that D gives rise to 5 -torsion in $\mathrm{NS}\left(Z_{B}\right) / R_{B}$. By using the intersection pairing, D can be regarded as an element of $R_{B}^{\vee}=\oplus_{b \in \operatorname{Sing}(B)} R_{b}^{\vee}$. Since R_{b}^{\vee} can be embedded into $R_{b} \otimes \mathbb{Q}$ canonically, D can be expressed as an element in $\oplus_{b \in \operatorname{Sing}(B)} R_{b} \otimes \mathbb{Q}$. Let b_{o} be the unique A_{4} singularity, and put

$$
D \approx_{\mathbb{Q}} \sum_{b \in \operatorname{Sing}(Q)} D_{b}, \quad D_{b} \in R_{b} \otimes \mathbb{Q}
$$

and let $\gamma\left(D_{b}\right)$ be the class of D_{b} in R_{b}^{\vee} / R_{b}. Since the type of singularity of B other than b_{o} is either A_{3}, A_{7}, A_{11} or $A_{15}, \gamma\left(D_{b}\right)=0$ if $b \neq b_{o}$. As $R_{b_{o}}^{\vee} / R_{b_{o}}$ is generated by

$$
\frac{1}{5}\left(4 \Theta_{1}+3 \Theta_{2}+2 \Theta_{3}+\Theta_{1}\right)
$$

we have

$$
D-\sum_{b \in \operatorname{Sing}(B) \backslash\left\{b_{o}\right\}} D_{b} \approx_{\mathbb{Q}} \frac{k}{5}\left(4 \Theta_{1}+3 \Theta_{2}+2 \Theta_{3}+\Theta_{1}\right) \bmod R_{B}
$$

for some $k \in\{ \pm 1, \pm 2\}$. Here we label the irreducible components as follows:

By modifying D with an element in R_{B} suitably, we may assume $D \approx_{\mathbb{Q}} k / 5\left(4 \Theta_{1}+3 \Theta_{2}+2 \Theta_{3}+\Theta_{1}\right)$. This shows that

$$
D^{2}=-\frac{4 k^{2}}{5}
$$

This leads us to a contradiction, as $D^{2} \in \mathbb{Z}$. Therefore Case 3 does not occur.
The remaining part of Theorem $\mathbb{0 . 2}$ is immediate from Corollary [3.2.

Remark 4.1.

(1) $(C / Q)=1$ is not enough for the existence of $D_{2 n}$-covers. In fact, for Q with $3 A_{1}$ singularities, there exists an even tangential conic C such that $(C / Q)=1$ but $Q^{+} \nsim Q^{-}$(see [Z]).
(2) By [13], there exists an irreducible quartic Q with one A_{5} singularity and an even tangential conic C to Q such that

- $C \cap Q=\left\{x_{1}, x_{2}\right\}, I_{x_{1}}(C, Q)=2, I_{x_{2}}(C, Q)=6$, and
- $\operatorname{NS}\left(Z_{B}\right) / R_{B}$ has 3-torsion.

By Theorem [3.2, there exists a \mathcal{D}_{6}-cover branched at $2(C+Q)$. In this case, $(C / Q)=1$, but $Q^{+} \nsim Q^{-}$. In fact, if $Q^{+} \sim Q^{-}$, then Q^{+}is a rational curve with one singularity whose type is either A_{1} or A_{2}. This singularity must give rise to another singularity of Q, which is impossible.

5. Application to the study of Zariski pairs

Let $\left(B_{1}, B_{2}\right)$ be a pair of reduced plane curves. We call $\left(B_{1}, B_{2}\right)$ a Zariski pair if
(1) both of B_{1} and B_{2} have the same combinatorial type (see [T] for the precise definition of combinatorial type), and
(2) there exists no homeomorphism $h: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ such that $h\left(B_{1}\right)=B_{2}$.

In the case of an irreducible quartic Q and its even tangential conic, the combinatorial type of $C+Q$ is determined by $\Xi_{Q}, \sharp C \cap Q$ and $I_{P}(C, Q)$ for each $P \in C \cap Q$.

As an application of the previous sections, we have

Proposition 5.1. Let Q_{1} and Q_{2} be irreducible quartics and let C_{1} and C_{2} be their even tangential conics, respectively. Suppose that $C_{i}+Q_{i}(i=1,2)$ have the same combinatorial type.
(i) If $\left(C_{1} / Q_{1}\right)=1$ and $\left(C_{2} / Q_{2}\right)=-1$, then $\left(C_{1}+Q_{1}, C_{2}+Q_{2}\right)$ is a Zariski pair.
(ii) If $\left(C_{i} / Q_{i}\right)=1(i=1,2), Q_{1}^{+} \sim Q_{1}^{-}$and $Q_{2}^{+} \nsim Q_{2}^{-}$, then $\left(C_{1}+Q_{1}, C_{2}+Q_{2}\right)$ is a Zariski pair.

Proof. (i) As $C_{1}+Q_{1}$ and $C_{2}+Q_{2}$ have the same combinatorial type, $\Xi_{Q_{1}}=\Xi_{Q_{2}}$. Since $\left(C_{1} / Q_{1}\right)=1$ and $\left(C_{2} / Q_{2}\right)=-1$, by Theorem U.D, we see that $\Xi_{Q_{1}}=\Xi_{Q_{2}}=2 A_{1}$ or A_{3}. Therefore $Q_{1}^{+} \sim Q_{1}^{-} \sim(2,2)$. Hence by Corollary $\mathbb{D}, 2$, we infer that $\pi_{1}\left(\mathbb{P}^{2} \backslash\left(C_{1}+Q_{1}\right), *\right) \not \neq$ $\pi_{1}\left(\mathbb{P}^{2} \backslash\left(C_{2}+Q_{2}\right), *\right)$, i.e., $\left(C_{1}+Q_{1}, C_{2}+Q_{2}\right)$ is a Zariski pair.
(ii) Our statement is immediate from [[Z, Proposition 2].

An example for Proposition 5.] (ii) can be found in [8]. We end this section by giving examples for Proposition $5 . \mathbf{D}^{(i)}$. Let \mathcal{E}_{x}^{Q} be the rational elliptic surface corresponding to either No. 40 or No. 50 in Theorem U.I. Choose sections s_{1} and s_{2} in $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$ in such a way that

- $\left\langle s_{i}, s_{i}\right\rangle=2, s_{i} O=0(i=1,2)$ and
- $s_{1} \in 2 \operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$, while $s_{2} \notin 2 \operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right)$.

By Lemma [2.0], there exist even tangential conics $C_{s_{1}}$ and $C_{s_{2}}$ arising from s_{1} and s_{2}, respectively. By Theorem [2.|], we have $\left(C_{s_{1}} / Q\right)=1$ and $\left(C_{s_{2}} / Q\right)=-1$. Hence if $C_{s_{1}}$ and $C_{s_{2}}$ intersects Q in the same manner, we have an example for Proposition [.] (i). Now we go on to give explicit examples.

Example 5.1. (cf. [166 , Example, p.198]) Let Q be an irreducible quartic given by the affine equation

$$
f(t, u)=u^{3}+(271350-98 t) u^{2}+t(t-5825)(t-2025) u+36 t^{2}(t-2025)^{2}=0
$$

By taking homogeneous coordinates, $[U, T, V]$, of \mathbb{P}^{2} in such a way that $u=U / V, t=T / V$, we easily see that $[1,0,0]$ is a smooth point of Q. Choose $[1,0,0]$ as the distinguished point x. We easily see that the tangent line l_{x} is given by $V=0$, and $I_{x}\left(l_{x}, Q\right)=3$. The elliptic surface $\varphi_{x}^{Q}: \mathcal{E}_{x}^{Q} \rightarrow \mathbb{P}^{1}$ corresponding to Q and x is given by a Weierstrass equation

$$
y^{2}=f(t, u)
$$

By [【6, Example, p.198], \mathcal{E}_{x}^{Q} satisfies the following properties:
(i) φ_{x}^{Q} has 3 reducible singular fibers over $t=0,2025, \infty$, whose types are: I_{2} over $t=0,2025$ and III over $t=\infty$. This implies Q has $2 A_{1}$ as its singularities.
(ii) $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right) \cong D_{4}^{*} \oplus A_{1}^{*}$.

Choose three sections of \mathcal{E}_{x}^{Q} given by [IT] as follows:

$$
s_{o}:\left(0,6 t^{2}-12150 t\right), \tilde{s}_{1}:\left(-32 t, 2 t^{2}-6930 t\right), \tilde{s}_{2}:\left(-20 t, 4 t^{2}-4500 t\right)
$$

For these sections, $s_{o} \in A_{1}^{*}$ and $\tilde{s}_{i} \in D_{4}^{*}(i=1,2)$ and we have

$$
\left\langle s_{o}, s_{o}\right\rangle=\frac{1}{2},\left\langle\tilde{s}_{i}, \tilde{s}_{i}\right\rangle=1(i=1,2),\left\langle\tilde{s}_{1}, \tilde{s}_{2}\right\rangle=0
$$

and there is no other section s with $\langle s, s\rangle=1 / 2$ other than $\pm s_{o}$.
The sections given by $s_{1}:=2 s_{o}$ and $s_{2}:=\tilde{s}_{1}+\tilde{s}_{2}$ are

$$
s_{1}=\left(\frac{1}{144} t^{2}+\frac{1231}{72} t-\frac{5143775}{144},-\frac{1}{1728} t^{3}-\frac{2335}{576} t^{2}+\frac{13493375}{576} t-\frac{29962489375}{1728}\right)
$$

$$
s_{2}=\left(\frac{1}{36} t^{2}+\frac{435}{2} t-\frac{921375}{4},-\frac{1}{216} t^{3}-\frac{1181}{24} t^{2}-\frac{41625}{8} t+\frac{373156875}{8}\right) .
$$

Since $s_{2} \in D_{4}^{*}$, we infer that s_{1} is 2-divisible, while s_{2} is not 2-divisible. Also, both s_{1} and s_{2} do not meet the zero section O and $\left\langle s_{1}, s_{1}\right\rangle=\left\langle s_{2}, s_{2}\right\rangle=2$. Let C_{1} and C_{2} be conics given by

$$
\begin{aligned}
C_{1}: u & =\frac{1}{144} t^{2}+\frac{1231}{72} t-\frac{5143775}{144} \\
C_{2}: u & =\frac{1}{36} t^{2}+\frac{435}{2} t-\frac{921375}{4}
\end{aligned}
$$

We infer that C_{1} and C_{2} are the even tangent conics corresponding to s_{1} and s_{2}, respectively. It is a straightforward computation that, for each i, C_{i} is tangent to Q at four distinct points. Hence $\left(C_{1}+Q, C_{2}+Q\right)$ is an example for Proposition [5.11 (i).
Example 5.2. (cf. [16, Example, p. 210]) Let Q be an irreducible quartic given by the affine equation

$$
f(t, u)=u^{3}+(25 t+9) u^{2}+\left(144 t^{2}+t^{3}\right) u+16 t^{4}=0
$$

We take a homogeneous coordinate $[U, T, V]$ as in the previous example. With this coordinate $[1,0,0]$ is a smooth point and choose $[1,0,0]$ as the distinguished point x. The tangent line l_{x} is again given by $V=0$ and $I_{x}\left(l_{x}, Q\right)=3$. The elliptic surface $\varphi_{x}^{Q}: \mathcal{E}_{x}^{Q} \rightarrow \mathbb{P}^{1}$ corresponding to Q and x is given by a Weierstrass equation

$$
y^{2}=f(t, u)
$$

Note that we change the equation slightly. The original Weierstrass equation in [166] is $y^{2}-6 u y=$ $u^{3}+25 t u^{2}+\left(144 t^{2}+t^{3}\right) u+16 t^{4}$. By [[6], Example, p. 210], \mathcal{E}_{x}^{Q} satisfies the following properties:
(i) φ_{x}^{Q} has 2 reducible singular fibers over $t=0, \infty$, whose types are: I_{4} over $t=0$ and III over $t=\infty$. This implies Q has A_{3} as its singularity.
(ii) $\operatorname{MW}\left(\mathcal{E}_{x}^{Q}\right) \cong A_{3}^{*} \oplus A_{1}$.

By modifying the sections given [i6] slightly, take three sections of \mathcal{E}_{x}^{Q} as follows:

$$
s_{o}:\left(0,4 t^{2}\right), \tilde{s}_{1}:(-16 t,-48 t), \tilde{s}_{2}:\left(-15 t, t^{2}+45 t\right)
$$

For these sections, $s_{o} \in A_{1}^{*}$ and $\tilde{s}_{i} \in A_{3}^{*}(i=1,2)$ and we have

$$
\left\langle s_{o}, s_{o}\right\rangle=\frac{1}{2},\left\langle\tilde{s}_{i}, \tilde{s}_{i}\right\rangle=\frac{3}{4}(i=1,2),\left\langle\tilde{s}_{1}, \tilde{s}_{2}\right\rangle=\frac{1}{4},
$$

and there is no other section s with $\langle s, s\rangle=1 / 2$ other than $\pm s_{o}$. The sections given by $s_{1}:=2 s_{0}$ and $s_{2}:=\tilde{s}_{1}+\tilde{s}_{2}$ are

$$
\begin{aligned}
s_{1} & =\left(\frac{1}{64} t^{2}-\frac{41}{2} t+315,-\frac{1}{512} t^{3}-\frac{55}{32} t^{2}+\frac{2637}{8} t-5670\right) \\
s_{2} & =\left(t^{2}+192 t+8640,-t^{3}-301 t^{2}-27936 t-803520\right)
\end{aligned}
$$

Since $s_{2} \in A_{3}^{*}$, we infer that s_{1} is 2-divisible, while s_{2} is not 2-divisible. Also, both $2 s_{o}$ and $s_{1}+s_{2}$ do not meet the zero section O and $\left\langle s_{1}, s_{1}\right\rangle=\left\langle s_{2}, s_{2}\right\rangle=2$. Let C_{1} and C_{2} be conics given by

$$
\begin{aligned}
C_{1}: u & =\frac{1}{64} t^{2}-\frac{41}{2} t+315 \\
C_{2}: u & =t^{2}+192 t+8640
\end{aligned}
$$

We infer that C_{1} and C_{2} are even tangential conics to Q corresponding to s_{1} and s_{2}, respectivly. A straightforward computation shows that, for each i, C_{i} is tangent to Q at four distinct points. Hence $\left(C_{1}+Q, C_{2}+Q\right)$ is an example for Proposition [.] (i).

Remark 5.1.

(1) Zariski pairs in Examples 5.1 and 5.2 can be found in [13]. Hence our examples are not new. Our justification lies in a new point of view: quadratic residue curves.
(2) For Zariski pairs in Examples 5.1 and 5.2 , there exists a Z-spitting conic for $C_{1}+Q_{1}$, while there exists no such conic for $C_{2}+Q_{2}$ (see [[]3] for the definition of Z-splitting conics). Moreover precisely, for an irreducible quartic Q with $\Xi_{Q}=2 A_{1}$ or A_{3} and its even tangential conic C, one can show $(C / Q)=1$ if and only if there exists a Z-splitting conic for $C+Q$ whose class order is $4([[20])$.

References

[1] E. Artal Bartolo, J.-I. Cogolludo and H. Tokunaga: A survey on Zariski pairs, Adv. Stud. Pure Math., 50(2008), 1-100.
[2] E. Artal Bartolo and H. Tokunaga: Zariski k-plets of rational curve arrangements and dihedral covers, Topology Appl. 142 (2004), 227-233. DOI: 10.1016/j.topol.2004.02.003
[3] W. Barth, K. Hulek, C.A.M. Peters and A. Van de Ven: Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 4 2nd Enlarged Edition, Springer-Verlag (2004).
[4] E. Brieskorn: Über die Auflösung gewisser Singlaritäten von holomorpher Abbildungen, Math. Ann. 166(1966), 76-102. DOI: 10.1007/BF01361440
[5] E. Brieskorn: Die Auflösung der rationalen Singularitäten holomorpher Abbildungne, Math. Ann. 178(1968), 255-270. DOI: 10.1007/BF01352140
[6] J.H. Conway and N.J.A. Sloane: Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, third edition, 1999.
[7] E. Horikawa: On deformation of quintic surfaces, Invent. Math. 31 (1975), 43-85. DOI: 10.1007/BF01389865
[8] K. Ireland and M. Rosen: A Classical Introduction to Modern Number Theory, Second Edition, Graduate Text in Mathematics 84 Springer-Verlag (1990).
[9] K. Kodaira: On compact analytic surfaces II, Ann. of Math. 77 (1963), 563-626. DOI: 10.2307/1970131
[10] R. Miranda: The moduli of Weierstrass fibrations over \mathbb{P}^{1}, Math. Ann. 255(1981), 379-394. DOI: 10.1007/BF01450711
[11] R. Miranda and U. Persson: On extremal rational elliptic surfaces, Math. Z. 193(1986), 537-558. DOI: 10.1007/BF01160474
[12] K. Oguiso and T. Shioda: The Mordell-Weil lattice of Rational Elliptic surface, Comment. Math. Univ. St. Pauli 40(1991), 83-99.
[13] I. Shimada: Lattice Zariski k-ples of plane sextic curves and Z-splitting curves for double plane sextics, arXive:0903.3308
[14] T. Shioda: On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli 39 (1990), 211-240.
[15] T. Shioda: Existence of a Rational Elliptic Surface with a Given Mordell-Weil Lattice, Proc. Japan Acad. 68(1992), 251-255. DOI: 10.3792/pjaa. 68.251
[16] T. Shioda and H. Usui: Fundamental invariants of Weyl groups and excellent families of elliptic curves, Comment. Math. Univ. St. Pauli 41(1992), 169-217.
[17] H. Tokunaga: On dihedral Galois coverings, Canadian J. of Math. 46 (1994),1299-1317. DOI: 10.4153/CJM-1994-1)74-4
[18] H. Tokunaga: Dihedral covers and an elemetary arithmetic on elliptic surfaces, J. Math. Kyoto Univ. 44(2004), 55-270.
[19] H. Tokunaga: Splitting curves on a rational ruled surface, the Mordell-Weil groups of hyperelliptic fibrations and Zariski pairs, arXive:0905.0047
[20] H. Tokunaga: Quadratic residue conics for an irreducible quartic and Z-splitting conics, in preparation.
[21] O. Zariski: On the purity of the branch locus of algebraic functions, Proc. Nat. Acad. USA 44 (1958), 791-796. DOI: 10.1073/pnas.44.8.791
Hiro-o TOKUNAGA
Department of Mathematics and Information Sciences
Graduate School of Science and Engineering,
Tokyo Metropolitan University
1-1 Minami-Ohsawa, Hachiohji 192-0397 JAPAN
tokunaga@tmu.ac.jp

