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The mandala of Legendrian dualities for pseudo-spheres in
Lorentz-Minkowski space and “flat” spacelike surfaces

Shyuichi Izumiya and Kentaro Saji

Abstract

Using the Legendrian dualities between surfaces in pseudo-spheres in Lorentz-Minkowski
4-space, we study various kind of flat surfaces in pseudo-spheres. We consider a surface in
the pseudo-sphere and its dual surface. Flatness of a surface is defined by the degeneracy
of the dual surface similar to the case for the Gauss map of a flat surface in the Euclidean
space. We study singularities of these flat surfaces and dualities of singularities. |[[]

1 Introduction

It has been shown in [25] that a theorem of Legendrian dualities for pseudo-spheres in Lorentz-
Minkowski space which gives a commutative diagram between contact manifolds defined by the
dual relations. This theorem has been generalized into pseudo-spheres in semi-Euclidean space
with general index in [I0]. Such a commutative diagram is called a mandala of Legendrian
dualities now [10, 26]. The mandala of Legendrian dualities is very useful for the study of
the differential geometry on submanifolds in pseudo-spheres. Especially, it works well even for
spacelike hypersurfaces in the lightcone where the induced metric is degenerate[25].

In this paper we consider various kinds of flatness of surfaces in pseudo-spheres in Lorentz-
Minkowski space. In Euclidean space, a flat surface is characterized by the degeneracy of the
Gauss map. For example, a surface is a part of a plane if the Gauss map is constant. Moreover,
a surface is a developable surface if the image of the Gauss map is a point or a curve (i.e., all
points of the surface are singularities of the Gauss map). We remark that the dual surface of a
surface plays similar roles to those of the Gauss map of the surface [24], 31]. According to these
facts on the Euclidean case, the Legendrian dual of a surface in pseudo-sphere is considered
to be a kind of the Gauss map of the surface. In this sense a surface in a pseudo-sphere is
“flat”if the Legendrian dual is singular at any point of the surface. Especially, we consider
the case when the Legendrian dual is a curve in a pseudo-sphere. In [22] we have studied
a surface in Hyperbolic space whose lightcone dual is a curve. In this case the surface is
called a horo-flat surface. Moreover, such surfaces are one-parameter families of horo-cycles.
Therefore, we call it a horo-flat horocyclic surface. Horo-flat surfaces are “flat” surfaces in the
sense of a new geometry in Hyperbolic space[5} [6, (17, [I8] 19} 22] which is called “Horospherical
Geometry”. In this paper we consider surfaces with similar properties as horo-flat horo-cyclic
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surfaces in other pseudo-spheres. These surfaces can be obtained by the aid of the mandala
of Legendrian dualities. One of the main results in this paper is to give classifications of the
singularities of these surfaces and show dualities among singularities. Therefore, the mandala
of Legendrian dualities still remains on the singularities level. As a consequence, these surfaces
are frontals which are the projection images of isotropic maps into the total contact manifold
of a Legendrian fibration. If the isotropic map is a Legendrian immersion, the frontal is called
a wave front (or, simply a front).

Singularities of wave fronts have been originally investigated by Zakalyukin[34] [35]. See [2]
for the detail. He has shown that generic singularities of wave front surfaces are the cuspidal
edge and the swallowtail. It is known that generic singularities of frontal surfaces are the
cuspidal cross cap in addition to the above two fronts [14] [15].

Here, the cuspidal edgeis a map germ ((R?;u,v),0) — (R?,0) defined by (u,v) — (u, v?, v3)
at the origin, the swallowtail is a map germ ((R?;u,v),0) — (R3,0) defined by (u,v)
(u, 3v* + u?v, 403 + 2uv) and the cuspidal cross cap is a map germ ((R?;u,v),0) — (R3,0)
defined by (u,v) + (u,v?,uv3) at the origin. Furthermore, the dual surfaces have the more
degenerate singularities which called the cuspidal lips or the cuspidal beaks and the cuspidal
butterfly. The cuspidal lips (vesp. cuspidal beaks) is a map germ ((R?;u,v),0) — (R30)
defined by (u,v) — (u, =203 + u?v, 3v* — u?v?) (resp. (u,v) — (u, —20v® — u?v, v — u?v?)).
The cuspidal butterfly is a map germ ((R%;u,v),0) — (R3,0) defined by (u,v) — (u,50* +
2uv, 405 + uv? — u?). We can draw the pictures of these singularities here.

ensnidal edoee cuspidal cross cap

TS\

cuspidal lips cuspidal beaks cuspidal butterfly

NN
W

Figure 1.

We study singularities of maps up to A-equivalence among map germs. Here, map germs
f1, f2 1 (R%,0) — (R3,0) are A-equivalent if there exist diffeomorphism germs ¢; : (R?,0) —
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(R%,0) and ¢ : (R3,0) — (R3,0) such that ¢ 0 fi = fo 0 ¢ holds. In Section 8 we give
criteria to detect the map-germs in the above list of frontals. In order to give classifications of
“flat” surfaces we construct a basic Lorentzian invariant in Section 6. We give characterizations
of the above singularities of our surfaces by using such invariants (cf., Theorems 8.6, 8.8, 8.9,
8.10, 8.11, 8.13 and 8.14).

On the other hand, there are many investigations on linear Weingarten surfaces in pseudo-
spheres ([I, 8, 11, 02} 27]). The mandala of Legendrian duality is deeply related to linear
Weingarten surfaces. By using the mandala of Legendrian dualities, we can unify the notion
of linear Weingarten surfaces in different pseudo-spheres. (cf. Theorem [5.2)

We assume throughout the whole paper that all the maps and manifolds are C'* unless
the contrary is explicitly stated.

2 Basic concepts and notations

In this section we prepare basic notions on Minkowski space. For detailed properties, see [29].
Let R"™ = {(xg,21,...,2,)|z; € R, i =0,1,...,n} be an (n + 1)-dimensional vector space.
For any vectors = (2¢,...,2Zn), ¥ = (Y0, --,¥n) in R"L the pseudo scalar product of x
and y is defined by (x,y) = —xoyo + Y_;—, :¥i- The space (R"1, (,)) is called Minkowski
(n +1)-space and denoted by R},

We say that a vector x in R™*1\ {0} is spacelike, lightlike or timelike if (x,z) > 0,= 0
or < 0 respectively. The norm of the vector € R"*! is defined by ||z|| = \/|(z,z)|. For a
non-zero vector n € R?H and a real number ¢, the hyperplane with pseudo normal n is given
by

HP(n,c) = {x e R} |(z,n) = c}.

We say that HP(n,c) is a spacelike , timelike or lightlike hyperplane if n is timelike, spacelike
or lightlike respectively.

We have the following three kinds of pseudo-spheres in R’f“: The hyperbolic n-space is

defined by
H"(-1)={z € R;H_ll (x,@) = -1},

the de Sitter n-space by
P={zeR{"(z,2)=1}

and the (open) lightcone by

LC* = {z e RY™\ {0}[(z, ) =0 }.

For any «', x?,... " € R we define a vector ' Ax> A--- A" by
—€p e €en
zy il xl
L N 22 g2 22
T AT NN = 0 1 n |, (2.1)
rg o Ty
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where eg, e1,...,e, is the canonical basis of R} and x' = (z,2%,...,2%). We can easily
check that
(' N2 A Ax™) = det(x, 2t ... "), (2.2)

so that ' Ax? A --- A x™ is pseudo orthogonal to any x* (i = 1,...,n).

3 A mandala of Legendrian dualities for pseudo-spheres

We now review some properties of contact manifolds and Legendrian submanifolds. Let N be
a (2n 4 1)-dimensional smooth manifold and K be a tangent hyperplane field on N. Locally
such a field is defined as the field of zeros of a 1-form a. The tangent hyperplane field K is non-
degenerate if aA(da)™ # 0 at any point of N. We say that (N, K) is a contact manifold if K is a
non-degenerate hyperplane field. In this case K is called a contact structure and « is a contact
form. Let ¢ : N — N’ be a diffeomorphism between contact manifolds (N, K) and (N, K”).
We say that ¢ is a contact diffeomorphism if dp(K) = K'. Two contact manifolds (N, K) and
(N',K') are contact diffeomorphic if there exists a contact diffecomorphism ¢ : N — N’. A
submanifold i : L C N of a contact manifold (N, K) is said to be Legendrian if dim L = n
and di,(T,L) C K;(,) at any x € L. We say that a smooth fiber bundle 7 : E — M is called
a Legendrian fibration if its total space E is furnished with a contact structure and its fibers
are Legendrian submanifolds. Let 7 : E — M be a Legendrian fibration. For a Legendrian
submanifold ¢ : L C E, woi : L — M is called a Legendrian map. The image of the Legendrian
map 7 o ¢ is called a wavefront set of i which is denoted by W (L). For any z € E, it is known
that there is a local coordinate system (z,p,y) = (z1,...,%m,P1,.-.,Pm,y) around z such
that m(z,p,y) = (x,y) and the contact structure is given by the 1-form a = dy — Y .~ p;dz;
(cf. [2], 20.3).

In [25] we have shown the basic duality theorem which is a fundamental tool for the study
of spacelike hypersurfaces in Minkowski pseudo-spheres. We consider the following four double
fibrations:

(1> (a‘) H"(-1) x ST D Ay = {(v,w) | <'U7w> =0 }7

(b) m s A — H”(—l),ﬂ'lz A — S{l,

(C) 911 = <dv,w>|A1, 012 = (v,dw>|A1.

(2) (a) H™(—1) x LC* D Ay = {(v,w) | (v,w) = -1},
(b) o1 © AQ — Hn(_].)ﬂTQQ : AQ — LC*7
(C) 921 = (dv,w>|A2, 922 = ('u,d'w>|A2.

(3) (a) LC* x 57 D Az = {(v,w) | (v, w) =1},
(b) 31 - Ag — LC*,’Ing : Ag — Sin,
(c) O31 = (dv,w)|Az, 032 = (v, dw)|As.

(4) (a) LC* x LC* D Ay = {(v,w) | (v,w) = -2 },

(b) 41 A4 — LC*77T42 : A4 — LC*,

(C) 941 = <d’U,’U)>|A4, 942 = (v,dw>|A4.

Here, m;1(v,w) = v, m2(v,w) = w, (dv,w) = —wodvy + > widv; and (v, dw) =
—vodwo + Z?:l v;dw;.
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We remark that 6;;'(0) and 6;;'(0) define the same tangent hyperplane field over A; which
is denoted by K;. The basic duality theorem is the following theorem:

Theorem 3.1. Under the same notations as the previous paragraph, each (A;, K;) (i =
1,2,3,4) is a contact manifold and both of my; (j = 1,2) are Legendrian fibrations. More-
over those contact manifolds are contact diffeomorphic to each other.

Since the proof of the theorem was given in [25], we do not give the detailed proof here.
We only remark that (A, K;) can be canonically identified with the unit tangent bundle
S(TH™(—1)) over H™(—1) with the canonical contact structure ([7,9]). Moreover, the contact
structure K; (i = 2,3,4) can be canonically induced by the following constructions. We
consider smooth mappings (i # j ; (4,5 = 1,2,3,4)) ¥;; : A; — A, defined by

v+w w—v
2 7 2 ’

We can easily show that W;; are contact diffecomorphisms such that \I/;jl = W, ; for any i,j =
1,2,3,4. For example, we have

Uis001 = (dv,v + w)|A1 = ({dv,v) + (dv,w))|A; = (dv,w)|A; = 01,

v+w v —w
d( 5 >, 5 >|A4

({dv,v) — {(dv,w) + {(dw,v) — (dw,w))|A4

and

V0 =

1 1
(—2(dv,w))|A4 = —§<dv,'w>|A4 = —5941.

Therefore Uys : (A1, K1) — (Ag, K3) and W4 : (Ay, Ky) — (A1, K4) are contact diffeo-
morphisms. By the similar calculations, we can show that the other ¥;; are also contact diffeo-
morphisms. We call these Legendrian dualities a mandala of Legendrian dualities (cf.,[10] 26])
because we can explain the situation as the following diagram:
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H"(—1) x S}

H™(—1) x LC* LC* x S}

The mandala of Legendrian dualities

The above mandala has the similar structure as the real mandala of Buddhism which is a
religious picture of the universe. In the real mandala, the central Buddha is the symbol of
the sun (the light). In the above diagram the central contact manifold is corresponding to the
light, so that the analogous structure exists. This is the reason why we call the above diagram
the mandala of Legendrian dualities. The mandala was generalized into the case for pseudo-
spheres in general semi-Euclidean space[I0]. Moreover, it can be extended into infinitely many
Legendrian dualities[26].

4 Local differential geometry of spacelike hypersurfaces
in pseudo-spheres

In this section we consider differential geometry of hypersurfaces in pseudo-spheres as an
application of the mandala of Legendrian dualities. We remark that it is deeply related to the
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previous theory on the differential geometry of submanifold in the hyperbolic space[l7]. We
now give a quick review on the theory. Let X : U — H™(—1) be an embedding from an
open region U C R"~! and denote that M = X (U). We define the unit normal vector field
e:U — S} along M in H"(—1) by

Xw)ANXy,(w) A ANXy, _, (u)

1 X () A Xy (W) Ao A X, ()]

e(u) =
Therefore it satisfies that

(X(u),e(u) = (Xu,(u), e(w)) = (X (u), ey, (u)) =

)

where ¢ = 1,...,n — 1 and X,, = 90X /0u;. Since (e(u),e,,(u)) = 0, the above relations
mean that e, (u) is tangent to M at p = X (u). Therefore de(u) can be considered as a
linear transformation on T, M. We call the linear transformation A, = —de(v) : T,M —
T,M the de Sitter shape operator of M = X(U) at p = X (u). Moreover, if we consider
L*(u) = X (u) £ e(u), then L*(u) are lightlike vectors. By the identification of M with U
through X, dX (u) can be identified with 17, 5;. Therefore we have a linear transformation
dL*(u) : T,M — T,M with dL*(u) = 1g,n + de(u). We call the linear transformation
Sg: = —dL*(u) : T,M — T,M the hyperbolic shape operator of M = X (U) at p = X (u).
The de Sitter Gauss-Kronecker curvature of M = X(U) at p = X(u) is defined to be
K4(u) = detA, and the lightcone Gauss-Kronecker curvature of M = X(U) at p = X (u) is
K @i(u) = detS;t. In [I7] we have investigated the geometric meanings of the lightcone Gauss-
Kronecker curvature from the contact viewpoint. One of the consequences is that the lightcone
Gauss-Kronecker curvature estimates the contact of hypersurfaces with hyperhorospheres. It
has been also shown that the Gauss-Bonnet type theorem holds on the normalized lightcone
Gauss-Kronecker curvature [18].

On the other hand, we can interpret the above construction by using the Legendrian
duality theorem (Theorem 3.1). For any regular hypersurface X : U — H"(—1), we have
(X (u),L*(u)) = —1. Therefore, we can define embeddings £F : U — A, by L3 (u) =
(X (u), LE(u)). Since (X, (u), L*(u)) = 0, each of LF is a Legendrian embedding.

It has been shown that w91 : Ag — H™(—1) is a Legendrian fibration. The fiber is the
intersection of LC™* with a spacelike hyperplane (i.e., an elliptic hyperquadric). Therefore the
intersection of the fiber with the pseuod-normal plane (i.e., a timelike plane) in R;’H of M
consists of two points at each point of M. This is the reason why we have such two Legendrian
embeddings. However, one of the results in the theory of Legendrian singularities (cf., the
appendix) asserts that the Legendrian submanifold is uniquely determined by the wave front
set at least locally. Here, M = X (U) = mq; 0 L3 (U) are the wave front sets of £3 (U) through
the Legendrian fibration mo;. Therefore each of the Legendrian embeddings £2i is uniquely
determined with respect to M = X (U). It follows that we have a unique pair of lightcone
Gauss images LE = 799 0 in. Moreover, we have a Legendrian embedding £1 : U — A
defined by £;(u) = (X (u), e(u)). It follows from the mandala of Legendrian dualities that we
have

Ls(u) = Wiz 0Ly (u) = (LT (u),e(u)), La(u) =140 Ly(u) = (L~ (u), L (u)).

We write Lo(u) = £3 (u). Eventually, we have Legendrian embeddings £; : U — A; (i =
1,2,3,4) such that ¥;; o £; = £;. In this case we started the embedding X : U — H™(—1).
However, we have no reasons Why we do not start a spacelike embedding into ST or LC™.
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According to the above arguments, we consider the following situations. Let £; : U — A;
be a Legendrian embedding and denote that £;(u) = (X" (u), X%(u)). By using the contact
diffeomorphism ¥4, we have a Legendrian embedding £4 : U — Ay defined by L4(u) =
Wy40L1(u). We denote that L4(u) = (X (u), Xi(u))7 so that we have the following relations:

X% (u) = X"(u) — XU u), X (u)= X"(u) + X u), (4.1)

_ X () + X (u) X (u) — X (u)
2 2 '

We also denote that Lo = Uis0L1 : U — Ag and L3 = ¥i30L; : U — Ag, so that we have

X" (u) . X% u) =

Lo(u) = (X" (u), X4 (w)), La(u) = (X5 (u), X(u)). (4.2)

Since U;; (4,5 = 1,2,3,4) are contact diffeomorphisms, £;(U) (i = 1,2,3,4) are Legendrian
submanifolds. By definition, £1(U) is a Legendrian submanifold in A; if and only if

(X" (u), XU (u)) = (X" (u), X7, (u)) = (X7, (u), X (u)) = 0

for i = 1,...,n — 1. Therefore if we suppose that X" is an embedding, then X? can be con-
sidered as the Gauss map of M" = X"(U) and —dX%(u) is the corresponding Weingarten
map. If X¢ is an embedding, then X" can be considered as the Gauss map of M% = Xd(U)
and —dX h(u) is the corresponding Weingarten map. It follows that we can define the corre-
sponding curvatures. The situations are the same as for the other £;(U). We now summarize
the situations. We denote that M7 = X"(U) and MP = X4(U). If X" is an embedding,
we call X? the de Sitter Gauss image of hypersurface M in the hyperbolic space H™(-1).
Moreover, we define (S}), = —dX(u) : T,M" — T, M" where p = X" (u). We also call
(Sf)p the de Sitter Weingarten map of hypersurface M in the hyperbolic space H"(—1) at
p = X" (u). Then we have de Sitter principal curvatures ﬁd}{i(u) (¢=1,...,n—1) defined as
the eigenvalues of (SZ), and the de Sitter Gauss-Kronecker curvature K (u) = det(S4), of
M at p=X"(u).

On the other hand, if X% is an embedding, we call X" the hyperbolic Gauss image of
spacelike hypersurface M in the d Sitter space S}'. Moreover, we define (S2), = —dXh(u) :
T,MP — T,MP where p = Xd(u). We also call (SP), the hyperbolic Weingarten map of
spacelike hypersurface MP in the de Sitter space S7 at p = X%(u). Then we have hyperbolic
principal curvatures nﬁi(u) (i =1,...,n — 1) defined as the eigenvalues of (SP), and the
hyperbolic Gauss-Kronecker curvature KP(u) = det(SP), of MP at p = X%(u). If both
the mappings X", X¢ are embeddings, then we define gg(u) = (Xf(u),X;l(u)), gg(u) =
(X (), X§(u)) and A3 (u) = —(X(u), X} (u)) = (X7 (w), X" (w)) = (X (u), X7(u)). We
respectively call gg,gg and hiAj1 a hyperbolic first fundamental invariant of MP, a de Sitter
first fundamental invariant of M and a Ai-second fundamental invariant. In this case we
can identify T, M with TIQMD for p = Xh(u) and p’ = Xd(u). By definition, the principal
directions of (S4'), and (SP);, are the same. We have the following Weingarten type formulae.

Proposition 4.1. Let L1 : U — A, be a Legendrian embedding with £ (u) = (X" (u), X% (u)).
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(1) Suppose that X" : U —s H"™(—1) is an embedding. Then we have

n—1 )

X! = —Z (hD)j ng.

Jj=1

(2) Suppose that X : U —s H"™(—1) is an embedding. Then we have

n—1 .

Xt = Z (hH)j XZ],.

j=1

Here, ((h7)]) = (h")(g#) ™ and ((hP)]) = () (95) .

The proof of the above formulae is given by the same arguments as those for the Weingarten
type formula in [I7], so that we omit it. We remark that Hé{i(u) and /th7i(u) are the eigenvalues

of ((hH ) ) and ((hD ) ) respectively. We have the following relation between xf/;(u) and
/@'%z ().

Corollary 4.2. Suppose that both the mappings X", X% are embeddings. In this case we
have the relation Rﬁ{i(u)ﬂﬁi(u) =1(=1,...n—1). Here ngi(u) and nﬁi(u) are principal

curvatures corresponding to the same principal direction.

Proof. Since both the mappings X", X% are embeddings, K(u) # 0 and KP (u) # 0. By the
Weingarten type formulae, ((hD )

Z) is the inverse matrix of ((hH )f ) , so that the eigenvalues

have the above relations. O

We say that m;1 o £; and 75 o £; are A;-dual each other if £; : U — A; is an isotropic
mapping with respect to K.

5 Linear Weingarten surfaces

Galvez, Martinez and Milan has investigated the linear Weingarten surfaces using the Weier-
strass type representation formula [12]. In this section, we discuss linear Weingarten surfaces
and their hyperbolic Gauss maps from our point of view. In this section, we identify the
Minkowski 4-space with the 2 x 2 Hermitian matrices. For the detailed description, see [12]
Section 2]. A surface f : U — H3(—1) is called a linear Weingarten surface if the mean
curvature HY = (k¥ + k) /2 and the de Sitter Gauss-Kronecker curvature K1 satisfies

2a(HY —1) +b(K¥ —1)=0, a, bR, a+b#0.

If a +b # 0 holds, it is called a linear Weingarten surface of Bryant type. In [22], we have
investigated “horo-flat” horospherical surfaces in H? (—1). It is linear Weingarten surfaces of
non-Bryant type, we have considered them as surfaces whose hyperbolic Gauss map degen-
erates to a curve in the de Sitter space (see [22, Section 4]). This means that a horo-flat
horospherical surface is the dual surface of a curve in the de Sitter space. In [12], Galvez, Mar-
tinez and Milan showed the following representation formula for linear Weingarten surfaces of
Bryant type.
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Theorem 5.1. [12] Theorem 2] Let V C C be a simply connected domain. Fiz a meromorphic
map A:V — SL(2,C) satisfying
1 o 0 w
A7dA = ( v O) |

where h is a meromorphic function and w a holomorphic one-form. If

21972
o= (a+0) ((1 +elh)?)?|w]? — ((11_,_55)|h||dz};|2)

is positive definite then f = A(Q)A* is a linear Weingarten surface. Moreover, the hyperbolic
Gauss map v of f is given by v = A(Q_)A* where

1+ 2|

Qe = | 1+¢lh?
Feh +(1 +¢lhl?)

Feh , respectively, €=a/(a+b), and 1+¢lh|*>0.

By the construction of Legendrian dualities (4.1)) and (4.2]), we can obtain the dual surfaces
in S} and LC* by taking v : U — S} and f +v: U — LC*:

2# 0 Qﬂ —9%h
fHrv=A| 1+¢lh|? A*, f-v=A|"1+¢n)? A*. (5.1)
0 0 “2eh 2(1+elhf?)

In [3], Aledo and Espinar showed a Weierstrass type representation formula for linear
Weingarten surfaces of Bianchi type. A spacelike surface f : U — S5 is a linear Weingarten
surface if the mean curvature HY and the hyperbolic Gauss-Kronecker curvature K7 satisfy

2A(HP —1)+ B(KP —1)=0, A, BER.

If A+ B # 0 holds, it is called Bianchi type. As a consequence of the duality theorem, we can
interpret the relationship between linear Weingarten surfaces in H3 (—1) and S3.

Theorem 5.2. Let L1 : U — Aq be a Legendrian immersion. Suppose that both of w11 0 L1 :
U — Hi(—l) and T2 0 L1 : U — S3 are immersions. Then w1 0 L1 = X" is a linear
Weingarten surface of Bryant type if and only if mia0 Ly = X% is a linear Weingarten surface
of Bianchi type.

Proof. Let kf; (i = 1,2) be the de Sitter principal curvatures of M* = X"MU) at p= X"(u).
and ), (i = 1,2) the hyperbolic principal curvatures of MP = XYU) at p' = X%u).
By Corollary we have the relations x};s};, = 1. Since KJ'(u) = x,xl}, and 2H] =
ki + KL, we have

2a(Hy — 1)+ b(K)' — 1) = a(ly + £y — 2) + b(s} kY5 = 1).
We also have another relation

2A(HY — 1)+ B(K] — 1) = A(ky 1 + Ko — 2) + B(kp 165 — 1).
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Since k4, = 1/KkP,, we have

1 1 1
2a(HY — 1) +b(KF —1) = — =2 4b| -1
a( d ) ( d ) a Kzﬁl Iith KE’1K£2
1
= "D D (a(“£1+"hD,2_2)4‘(_2“_}))("51"32—1)
K 16n,2

1
Kp1Fh2

If we put A = a, B = —(2a+b), then 2a(HY — 1)+ b(KHX —1) = 0 if and only if 2A(HP — 1) +
B(KP —1) =0. Moreover, A+ B = 0 if and only if a + b = 0. This completes the proof. [

This theorem shows that we can bring the representation formula for a surface in H? (—1)
to representation formulae for surfaces in S3 and LC*, and get new surfaces. Remark that
we have interesting families of surfaces in the lightcone obtained by taking the dual of linear
Weingarten surface of non-Bryant type. In fact, the Gauss map v of a linear Weingarten
surface f given in Theorem is a linear Weingarten surface in S7. Furthermore, surfaces
f £ v given in belong to this class of surfaces. Theorem says that Theorem also
can be considered representation formula for these families of surfaces. Kokubu and Umehara
investigated the topological properties of linear Weingarten surfaces giving a variant of this
representation formula [27].

6 The Legendrian dualities for “flat” spacelike surfaces

In this section we study general properties of spacelike surfaces in pseudo-spheres which are A;-
duals of spacelike curves in pseudo-spheres. Let ag : I — H i(fl) be a smooth mapping and
a;: I — S} (i =1,2) be smooth mappings from an open interval I with (a;(t), a;(t)) = 0 if
i # j. We define a unit spacelike vector as3(t) = ag(t) Aa1(t) Aaz(t), so that we have a pseudo-
orthonormal frame {ag, a1, as, az} of Rf. We have the following fundamental invariants:

c1(t) = (ag(t),ai(t)) = —(ao(t),ai(t)),  ca(t) = (ai(t), ax(t)) = —(ai(t), as(t)),
ca(t) = (ap(t), az(t)) = —(ao(t), as(t)),  cs5(t) = (ai(t),as(t)) = —(ai(t), a;(t)),
c3(t) = (ap(t),as(t)) = —(ao(t), a3(t)),  co(t) = (as(t), as(t)) = —(axz(t), aj(t))

It can be written in the following form:

ay(t) 0 ci(t)  calt) es(t)\ [aolt) ao(t)
ai(t)| _ |a) O ca(t) es(t) | | anlt) | _. cw | ™ (t)
ay(t) co(t)  —ca(t) 0 c(t) as(t) ’ as(t)
a;(t) cs(t) —cs(t) —ce(t) O a3(t) a3(t)

We remark that C(t) is an element of the Lie algebra so(3, 1) of the Lorentzian group SOq (3, 1).
If {ao(t), a1(t), az(t), as(t)} is a pseudo-orthonormal frame field as the above, the 4 x 4-matrix
determined by the frame defines a smooth curve A : I — S0O(3,1). Therefore we have the
relation that A’(t) = C(t)A(t). For the converse, let A : I — SOq(3,1) be a smooth curve,
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then we can show that A’(t)A(t)~! € s0(3,1). Moreover, for any smooth curve C : I —»
50(3,1), we apply the existence theorem on the linear systems of ordinary differential equations,
so that there exists a unique curve A : I — SOq(3,1) such that C(t) = A’(t)A(t)~! with an
initial data A(tg) € SOy(3,1). Therefore, a smooth curve C' : I — s0(3, 1) might be identified
with a pseudo-orthonormal frame in H? (—1). Let C : I — s0(3,1) be a smooth curve with
C(t) = A'(t)A(t)~! and B € SOq(3,1), then we have C(t) = (A(t)B)'(A(t)B)~!. This means
that the curve C' : I — s0(3,1) is a Lorentzian invariant of the pseudo-orthonormal frame
{ao(t),a1(t),az(t),as(t)}. In the followings of this section, we construct dual surfaces of a
lightlike curve £ satisfying ||£'|| # 0 by using this frame.

6.1 Ay, A; and As-dual surfaces of £

Let £ be a lightlike curve satisfying ||€'|| # 0 and set a3 := £'/||€'||. Then aj is spacelike. Since
£(t) € (a3(t))*, we have curves ag and a satisfying (ag, ag) = —1, (as,az) =1, £ = ay + as
and ag, as, ag are pseudo-orthonormal each other. If we define a1 = agAasAas, then we have
a pseudo-orthonormal frame {ag, a1, as, a3} satisfying co = 0, ¢; — ¢4 = 0 and ¢36(t) # 0 for
any t, where = 0 means that the function is constantly equal to zero. Thus, we may assume
that £ = ag +as, c2 =0, ¢; — ¢4 = 0 and c36(t) # 0 for any ¢, this means that £ = c3gasz # 0.

(1) Ay-dual surface of £: In order to obtain the Ag-dual surface of £, we consider a hight
function F : H3 (—1)xI — R defined by F(X,t) = (X, £(t))+1. There exist zo, z1, 72,73 € R
such that X = xgag + z1a1 + x2a2 + z3a3. Then the discriminant set Dp of F is

Dr = {XeHE’;(—n

el F(X,t)= %—I;(X,t) = 0}

{(X e H¥(-1)|7tel,—xzo+a2+1=0, 23 =0}.

Since X € H?(—1), we have

X = ao(t) + sal(t) + ?e@f)

for z; = s, which we write X (s,t).

By the above construction, (Xg(s, t),£(t)) : I x R — Ay is an isotropic map with respect
to the contact structure defined in Theorem so that X7 (s,t) and £(t) are Ay-dual each
other.

Since ¢ = ¢1 — ¢4 = 0 hold, the surface X 2 is horo-flat in the sense of [22]. Moreover if we
assume c3 = 0, then the singular value of X ’Z is ag(t). We also consider the A; and Ay-dual
surfaces of ag. By the same computations as those of the previous paragraph for obtaining
the surface X f;, and assumptions co = ¢z = 0 instead of ¢y = ¢; — ¢4 = 0, we have the Aj-dual
surface X and the As-dual surface X of ag as follows:

X%(s,t) :=cossas(t) +sinsas(t) and X%(s,t):= ag(t) + cossas(t) + sinsas(t).

In [22], we introduced these surfaces X and X by the same construction as the above and
investigated the geometric properties and singularities of them. It has been shown in [22] that
X Z is a linear Weingarten surface of non-Bryant type.
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(2) As-dual surface of £: We consider a hight function F : S x I — R defined by
F(X,t) = (X,£(t)) — 1. By the same computations as those for detecting X7} (s,t), the
discriminant set is given by

X = as(t) + sa;(t) — %E(t)7

which we write X §(s,t). Like as in the case for X, we consider the dual surfaces of ay here.
By exactly the same calculations as those in the previous cases, and assumptions co = c¢g =0
instead of c3 = ¢; — ¢4 = 0, the Aj-dual surface XZ of as(t) and the As-dual surface Xﬁ of
as(t) are parameterized by

X" (s,t) := cosh s ag(t) + sinhsas(t) and X4(s,t) := as(t) + cosh s ag(t) + sinh s as(t).

(3) Ay-dual surface of £: We consider a hight function F' : LC* x I — R defined by
F(X,t) = (X,£(t)) + 2. Putting 1 = 2s and by exactly the same computations as those of
the previous two cases. we have

X = ao(t) — ax(t) + 2sa; (t) + s%£(1),

which we write X(s,t). We study geometric properties of X%(s,t) in sectionlﬂ and investigate
the singularities in section |8 Like as in the case of X 2 and X ?, we consider the dual surfaces
of £_ := ag — as. Under the condition ¢y = ¢ + ¢4 = 0, the As-dual surface Xéi of £_(t),

the As-dual surface X¢  of £_(t) and the Ay-dual surface X% of £_(t) are parameterized by

XI (s,t) = ao(t)+sa1(t)+i;e_(t),

82
X4 (s,t) = —a(t) + sax (1) — (1),

XY (s,1) ao(t) + as(t) + 2say(t) + s2L_(t).

Since we can obtain these surfaces X7 , X¢ and X! by translating as — —as, geometric
properties of these surfaces are completely the same as those of X ZL, X ;l and X 2. Here we
explain the meanings of the superscript and the subscript. For example, X ? means this
surface is the dual surface of a curve in the lightcone and lies in the hyperbolic 3-space. Since
surfaces X 2 , X ? and X ﬁ are one-parameter families of parabolas, we call these surfaces
parabollatic surfaces. If we adopt the word “parabolic” instead of the word “parabollatic”, it
might be confused with other notions. Now, we summerize the correspondences between these
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curves and surfaces:

2

LOC* S L) «—  X'(s,t) = ao(t) + saqi(t) + %E(t) C H3(-1)
2

LO* S L) +— XUs,t) = as(t) + saq(t) %E(t) cS?

LO* D 0(t) +—  XUi(s,t) = ao(t) — as(t) + 2sai(t) + s>£(t) C LC* (6.1)
H3(-1) D ay(t) «— X(s,t) = cossay(t) + sin sas(t) c S}
H3(-1) D ay(t) «— Xt (s,t) = ao(t) + cos say(t) + sin saz(t) c Lc*

S3 > ag(t) «— Xl(s,t) = coshsag(t)+ sinhsas(t) C H3(-1)

S3 D ag(t) «— X4(s,t) = as(t) + coshsag(t) + sinhsas(t) < LC*.

6.2 Dualities of “flat” surfaces

By using the equations for the pseudo-orthonormal frame, we have

2
S
(Xg)/(s, t) = sciag+cia1 + scas + <c3 + scs + 2036> as

(X?)S(s,t) = sag+ ay + sao,

where ()’ means 9/9t and ( ); means 9/0s. It follows that we have
(Xl (s, 0. X (F.) =0
<(X?)’(:ts,t),X§l(:|:s,t)> =0 and <(X?)s(ﬂ:s,t),X‘}(:|:s,t)> =0.

This implies that (X Z , X ‘Z) : I x R — A; is an isotropic map with respect to K;. Therefore
X} and X¢ are Aj-dual each other. Since X (s,t) is a linear Weingarten surface of non-
Bryant type, X ‘Z(s,t) is a linear Weingarten surface of non-Bianchi type by Theorem
By the same calculation, we can show that the As-duality between X1 (+s,t) and X5(=£s, 1),
and the Ag-duality between X¢(+s,t) and —X5(Fs,t) under the assumptions cy(t) = 0,
c1(t) — c4(t) = 0. These assumptions mean that a kind of flatness of X (s,t), X% (s,t) and
XY(s,t). For X"(s,t), such a flatness is called horo-flat in [22).

Furthermore, under the conditions ca = ¢35 = 0 (resp. ¢z = ¢g = 0), we have <X§lL7 Xf;> =1
(resp. <XZ,X2> = —1) and <XZ,de;> = 0 (resp. <XZ,dX§> = 0). Hence X¢ and X7

are Ag-dual (resp. X Z and X fl are As-dual) each other. By Theorem and the mandala
of Legendrian dualities, the surface X ﬁ(s7 t) corresponds to the linear Weingarten surfaces of
non-Bryant type in H? (—1) and of non-Bianchi type in S}.

Thus we have the following diagram which expresses the duality for flat surfaces in pseudo-
spheres:
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(ag + sa1 + (s%/2)L, as — say — (s?/2)€)
m
Ay

Aj
w W3 . w
(ag + say + (s%/2)¢, £) - Wso (€, —az + say + (s%/2)¢),

If we start from a curve £ in the lightcone, we have the following diagram of dualities:

ao + sa; + (s%/2)L
m
HE(-1)

As-dual

Ags-dual
w w

—ay + sa; + (s%/2)L ay — as + 2saq + s2L.

Also we can have the diagram on dualities starting from a¢ and as:
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13 (-1)
w
ao
A1-dual Ag-dual
S3 LC*
W As-dual W
cos sas + sin sas ag + cos sag + sin sag
and
St
w
a
Al—dual Ag—dual
H3(-1) LC*
w As-dual w
cosh sag + sinh sas as + cosh sag + sinh sas.
We can also have a diagram starting from the curve £_ = ay — a2. However, the situation is

the same as the case for £, so that we omit it.

7 Fundamental properties of parabollatic surfaces

In section [6] we construct the dual surfaces of £ which are called parabollatic surfaces. The
analogous notion in Euclidean space is ruled surfaces given by one-parameter families of lines
in R3. For the study of singularities and geometric properties of ruled surfaces, the striction
curve plays a crucial role ([I6]). The striction curve is a curve on the ruled surface which
contains the singularities of the surface. Similarly, an analogous notion of the striction curve
also plays a crucial role for one-parameter families of circles ([23]). Since surfaces X}, X¢ and
X ﬁ are one-parameter families of parabolas, we try to find the analogous notion of striction
curves of ruled surfaces. Here, we only consider the surfaces X 2, X ? and X 5. We remark
that surfaces X¢, X, X" and XY have similar properties as the circular surfaces [23]. We
shall investigate these surfaces in the forthcoming paper.

7.1 The striction curve of X;l

Let A = (ag,a1,a2,a3) : I — SOy(3,1) be a pseudo-orthonormal frame defined in Section @
The As-dual surface X¢ of £ is defined by

X4 A(s,1) = ag(t) + say(t) — %K(t).

For any t, the curve s — X ¢ 4(s,t) is a parabola. The each parabola called the generating
parabola.
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On the other hand, for any curve

az(t) = ax(t) + s(t)ai(t) —

£(t) (7.1)

on the X?, we define

S 2 S 2
() = (14 255 ) ault) - st ) + “F-aa) )

ai(t) = —s(t)ap(t) + a1(t) — sax(t) and az(t) = as(t)

then XZZ(S —5(t),t) = X¢ (s, t) holds. Moreover, we define invariants C(t) by the formula
A'(t) = C(t)A(t), then we have

1—s(t)? t)?
. = & c] — s’(t) + ﬂ% _ S(t)Cg
2 2
G2 = s(t)er +ca—s(t)ey
t 2
3 = c3—s(t)es + 5(2) c36
—s(t 2 t 2
1 = sé ) c1 — s(t)es + <1 + 5(2)) cqg — §'(t)
Cs = C5— S(t)036
_ t)?
Cg = Cg+ S(t)C5 — C36.

It follows that
Cl—Ci=1C —C4
and

1—¢i=cz =0if and only if ¢y — ¢4 = co = 0.

This means that the condition ¢; — ¢4 = ¢o = 0 is invariant under the adopted coordinate
changes. Here, a reparameterization (s, t) — (S, T) of X¢ 4 is said to be adopted if S = s—s(t)
and T =t. We have the following proposition.

Proposition 7.1. Let X;l,A be a parameterization of a parabollatic surfaces of the form
52
X a(s,t) = as + say — 53

such that c¢; — c4 never vanish. Then Image X?’A has an adopted reparameterization of the

form
2

X 4(s,1) =@ + say — %Z

satisfying (ag’,az) = 0 for any t.
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Proof. Let us define
—Co (t)
s(t) = ——2
0= -
and define curves ag, a1, as by (7.1) and (7.2). Then ¢ = 0 holds. We do not need to say
that X Zl,Z and X Zl, 4 have the same image. Thus the condition of the proposition holds. O

A curve X¢ A(s(t),t) on the surface is called striction curve if (aj(t),as(t)) = 0 holds.
Proposition [7.1] implies that we can take as as the striction curve. Singularities of parabollatic
surfaces are located on the striction curve. For any parabollatic surfaces satisfying ¢; — ¢4 # 0,
there exists a unique striction curve.

Proposition 7.2. Let X?’A be a parabollatic surface with the striction curve as and ¢y —cyq #
0. If (so,to) is a singular point, then s = 0 namely, xo is located on the striction curve.
Moreover, if (0,t9) is a singular point, them the generating parabola at to is tangent to the
striction curve.

Proof. Direct calculation and a), = —c4a; yield the conclusion. O

7.2 The striction curve of Xﬁ

In this section, we study general properties of dual surfaces of £. Let A = (ap,a1,az,as) :
I — 50(3,1) be a pseudo-orthonormal frame defined in Section @ The dual surface X of £
is defined by

X4 a(s,1) := ag(t) — ax(t) + 2say(t) + s2(t).

For any curve, @g — @z(t) = ag — ax(t) + 25(t)a; (t) + s2£(t) on X g, we define

st

ag(t) = ap + s(t)ar + ai(t) = a1 + s(t)L(t),

(7.3)

s 2
@3(t) = as — s(t)ay — (;) ¢ and @3(t) = ay(t)

then X?Z(s —5(t),t) = X5 a(s,t) holds. Moreover, we define invariants C(t) by the formula

’ _

A (t) = C(t)A(t), then we have

q = - S(;)Q (c1 —cq) +c1+8(t) + seo
G = —s(t)er +co+s(t)ey

c3 = c3+s(t)es+ 8(2)2636

i = —gcl + s(t)ea + #04 + 5'(t)
@ = c¢5—s(t)ess

g = c¢g—s(t)es — 8(2)2036
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Thus it follows that
Cl—Ci=C —C4

and

1—a=c=0ifandonlyif ¢y —cqs =co =0.

A reparameterization (s,t) — (S,T) of X} 4 is said to be adopted if S = s — s(t) and T = t.
We have the following proposition.

Proposition 7.3. Let Xﬁ,A be a parameterization of a parabollatic surfaces of the form
XﬁﬁA(Si) =ag — ay + 2sa; + s°

such that c¢1 — c4 never vanish. Then Image Xﬁ,A has an adopted reparameterization of the
form B
X{4(s.t) =@y — @y + 25a, + L

satisfying (ag’,asz) = 0.

Proof. Let us define
ca(t)
c1(t) — ca(t)
and define curves A as 1) and 1] Then ¢; = 0 holds. We do not need to say that X f,z
and X 2 4 have the same image. Thus the condition of the proposition holds. O

s(t) =

A curve on the surface X§ 4(s(t),t) is called striction curve if (a)(t),ax(t)) = 0 holds.
Proposition[7.3]implies that one can take ay as the striction curve. Singularities of parabollatic
surfaces are located on the striction curve.

Proposition 7.4. Let X?A be a parabollatic surface with the striction curve as and ¢; —cq #
0. If (so,to) is a singular point, then s = 0 namely, xo is located on the striction curve.
Moreover, if (0,t0) is a singular point, then the generating parabola at to is tangent to the
striction curve.

Proof. For a parabollatic surface X 2 A, point (sg,tp) is a singular point if and only if
Cg(to) — So(Cl(to) - C4(t0)) =0 and Cg(to) — Cﬁ(to) + 28005(t0) + 5(2)636(750) =0.

Thus if ag — as is the striction curve, them sy = 0 and ¢3(to) — ¢g(to) = 0 holds. Moreover, if
c3(to) — c6(to) = 0, then the parabola is tangent to the striction curve at (0,tg). Because of
af —ah = —ca(ag — az) + (c1 + c4)a. O

Singularities of these surface are studied in Section [§] Although we can construct dual
surfaces from £_, their geometric properties are the same as those of dual surfaces constructed
from £, so that we omit the study of their striction curves.
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8 Singularities of flat parabollatic surfaces

8.1 Ciriteria for singularities of frontals

All surfaces investigating here have an isotropic lift to some contact manifold. They are
called frontals which are originally investigated by Zakalyukin[34, [35]. In order to investigate
singularities of concretely parameterized surfaces, the identification problem for singularities
are important. Let fy be a given map germs. The identification problem for fy is to find a
condition such that a map germ f satisfies the condition if and only if f is A-equivalent to
fo. We call the condition a criterion for fy. Such criteria are given by many people now.
Simple criteria for the cuspidal edge and the swallowtail were given by Kokubu, Rossman,
Saji, Umehara and Yamada [28]. Other criteria for singularities for frontals are investigated in
[13] 32 22]. Here, we briefly review the criteria for frontals. Let 7 : E — M be a Legendrian
fibration from a five-dimensional contact manifold E to a three-dimensional manifold M. A
C®-map f : U — M is called a frontal (resp. front) if there exists an isotropic lift (resp.
Legendrian immersion) Ly : U — E, where U C R? be an open set. Recall that the image
of the Legendrian submanifold is called the wavefront set (see Section 3). By the generalized
Darboux theorem (cf., [2], 20.3), any Legendrian fibration E — M is locally equivalent to the
standard fibration PTR3 — R3. Therefore, we assume that £ — M is PTR? — R? and that f
is a C> map germ (U, p) — (R3, f(p)). Taking the fiber component, let us denote Ly = (f, [V]).
The discriminant function of a frontal f is defined by A(u,v) = det(fu, fv, ¥)(u,v) using the
coordinate system (u,v) on U, where f, = 0f/0u, for example. A singular point p of f is
non-degenerate if d\(p) # 0 holds. Let p be a non-degenerate singular point of a frontal f. In
this case, there exists a smooth parameterization y(t) : (—e,e) — U, v(0) = p of S(f) near
p. Moreover, there exists a smooth vector field 7(t) along ~ satisfying that 7(t) generates the
kernel of df, ). We call this vector field the null vector field. Now we define a function ¢y (t)
on v by

b7(t) = det ((f 0, v 07, dv(n)) (1) (.1)

Using these notations, the following criteria have been obtained.

Theorem 8.1. [28, [13] Let f : U — R? be a frontal and p a non-degenerate singular point
of f and v : (e,e) = U, v(0) = p be a smooth parameterization of S(f) near p. Then the
following assertions hold.

o IfnA(p) # 0 then f to be a front near p if and only if ¢;(0) # 0 holds.

o The map germ f at p is A-equivalent to the cuspidal edge if and only if f to be a front
near p and nA(p) # 0 hold.

e The map germ [ at p is A-equivalent to the swallowtail if and only if f to be a front
near p, nA(p) = 0 and nmmA(p) # 0.

e The map germ [ at p is A-equivalent to the cuspidal cross cap if and only if n\(p) # 0,
67(0) = 0 and ¢,(0) # 0.

Here, nA : U — R means the directional derivative of A by the vector field 7, where
71 € X(U) is an extended vector field of  to U. Moreover, we have the following criterion for
the cuspidal butterfly.
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Theorem 8.2. Let f : U — R3 be a frontal and p a non-degenerate singular point of f
and v : (g,e) = U, ¥(0) = p be a smooth parameterization of S(f) near p. Then the map
germ f at p is A-equivalent to the cuspidal butterfly if and only if f to be a front near p and

nA(p) = mA(p) = 0 and nnA(p) # 0.

A proof of this theorem is given in the appendix. Next we consider a degenerate singularity.
Let p be a degenerate singularity of a front f. If rank(df), = 1, then there exists a non-zero
vector field n near p such that if ¢ € S(f) then 7(q) generates the kernel of df(q). A criterion
for the degenerate singularity is given as follows.

Theorem 8.3. [22 Let [ be a front and p a degenerate singular point of f Then the following
assertions hold.

o The map germ f at p is A-equivalent to the cuspidal lips if and only if rank(df), = 1
and det Hess A(p) > 0.

o The map germ f at p is A-equivalent to the cuspidal beaks if and only if rank(df), = 1,
det Hess A(p) < 0 and nnA(p) # 0.

In order to study singularities of a front in pseudo-Riemannian space, we introduce the
following notion.

Definition 8.4. ([13]) A lift L, : U — T*N of a C*®-map g : U — N to be admissible if
g never intersect to the zero-section and g.(T,U) C ker(Lgy(p)), where ker(Ly(p)) C Ty N is
the kernel of a linear map Lg4(p).

Using this notion, a criterion for the cuspidal cross cap is stated as follows.

Theorem 8.5. ([I3] Theorem 1.4]) Let g : U — N be a front and Ly : U — T*N be
an admissible lift of g. Let D be an arbitrary linear connection on N. Suppose that ~(t)
(It] < ¢) is a singular curve on U passing through a non-degenerate singular point p = ~(0),
and &g : (—e,e) = T'N is an arbitrarily fized vector field along v such that

(1) L(&g) vanishes on U and

(2) &4 is transversal to g.(T,U) at p.

We define a function 4(t) by

Uo(t) = L(DY & (1) ) (:2)

where n(t) is a null vector field on the singular curve parameterized by t. Then the germ g at
p is A-equivalent to the cuspidal cross cap if and only if 14(0) = 0 and ¢ (0) # 0 hold, and
1(0) is transversal to v'(0).

8.2 Singularities of dual surfaces of £

In this subsection, we apply the criteria in Subsection 8.1 for describing the conditions of
singularities of dual surfaces of £. We assume that co = ¢; — ¢4 = 0 in this section.

Theorem 8.6. The singular set of X} is S(X7}) = {(s,t) | 2c3(t) + 2sc5(t) + s2c36(t) = 0}
and X" is a frontal for any po = (so,to) € S(X}). Then we have the following assertions:
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If cs6(to) # 0 holds, then XZL to be a front near pg.

X? at pg is A-equivalent to the cuspidal edge if and only if csg # 0 and alh = —2c¢1(c5+
sC36) + 25 + 2sck + s2chg # 0 hold at py.

X? at po is A-equivalent to the swallowtail if and only if csg # 0, ¢5 + scag # 0, ozlh =0
and c1(al)s + ()’ # 0 hold at po.

X? at po is A-equivalent to the cuspidal butterfly if and only if csg # 0, c5 + scgg # 0,
al =0, cr(af)s + (al') # 0 and 3 (a)ss + 21 (), + i (al)s + (o) = 0 hold at po.

X? at po s A-equivalent to the cuspidal lips (resp. cuspidal beaks) if and only if c3g #
0, c5 + scag = 0, 2c4 + 2sch + s?chg = 0 and det HP > 0 (resp. det H! < 0 and
—2¢1(c36 + ¢k + schg) + (—2c1(c5 + scsp) + ¢ + sch + s2chg) # 0) hold at po, where

Igh — 2¢36 2¢f + 2schg
¢ 2ck + 2schg  2¢4 + 2scl + s2clg

X? at py is A-equivalent to the cuspidal cross cap if and only if csg = 0, c1c5 # 0 and
che # 0 hold at po.

Remark 8.7. Surfaces X Z satisfying ¢c3 = 0 be a horo-flat horo-cyclic surfaces which is
investigated in [22]. Substituting c3 = 0 in the formulae of Theorem [8.6] we have [22, Theorem

6.2].

Theorem 8.8. The singular set of X4 is S(X%) = {(s,t) | — 2cs(t) — 2s¢s5(t) + s2cz6(t) = 0}
and X is a frontal for any (so,to) € S(XY). Then we have the following assertions:

If e36(to) # O holds, then X? to be a front near pg.

X? at py is A-equivalent to the cuspidal edge if and only if csg # 0 and a}i = 2c1(c5 —
sc36) + 2 + 2sck — s2chg # 0 hold at py.

X? at po is A-equivalent to the swallowtail if and only if csg # 0, ¢5 — sczg # 0, oz;i =0
and c1(af)s + (i)’ # 0 hold at po.

le at po is A-equivalent to the cuspidal butterfly if and only if csg # 0, ¢5 — scsg # 0,
ozf =0, cl(a;i)s + (af)’ =0 and c%(a;i)ss + 2¢; (04;1)’S + c’l(a;i)S + (af)” # 0 hold at pg.

Xg at po is A-equivalent to the cuspidal lips (resp. cuspidal beaks) if and only if css #
0, 2¢s + 2sc — s2chs = 0, c5 — sczg = 0 and det HY > 0 (z"esp, det H} < 0 and
c1(—2c1c36 4 2¢k — 25chg) + (2c1(c5 — sege) + 2¢ + 2sck — s2chg) # 0) hold at py, where

/ /
Hg _ ( —2c¢36 2c5 — 250362 )
- / / /! /! /! .
2c5 — 2sc3  2cg + 2s5c5 — s7C3g

X? at po is A-equivalent to the cuspidal cross cap if and only if c3g6 = 0, cic5 # 0 and
che 7 0 hold at po.
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Theorem 8.9. The singular set of Xb is S(Xb) = {(s,t) | e3(t)(s* +1) + 2s¢5(t) + c6(t) (s —
1) =0} and X} is a frontal for any (so,to) € S(X?). Then we have the following assertions:

8.3

If ca6(to) # 0 holds, then Xf to be a front near pg.

Xf; at po is A-equivalent to the cuspidal edge if and only if css # 0 and ol == —2¢;1(c5 +
sc3g) + ch(s2 + 1) + 2sck + cg(s2 — 1) # 0 hold at po.

Xﬁ at py is A-equivalent to the swallowtail if and only if cs¢ # 0, c5 + sczg # 0, af =0
and —c1(af)s(af)' # 0 hold at po.

Xg at po is A-equivalent to the cuspidal butterfly if and only if cs¢ # 0, ¢5 + sczg # 0,
ab =0, —c1(ab)s(ah) =0 and 2 (ab)ss — 2c1(ab), — i (ab)s + (af)” # 0 hold at po.

Xf; at po is A-equivalent to the cuspidal lips (resp. cuspidal beaks) if and only if cz¢ # 0,
ch(s2+1) +2sck +ch(s>—1) =0, c5 + scag = 0 and det Hf > 0 (resp. det Hf < 0 and

—c1( = 2c1e36 + 2(c5 + schg)) + (— 2c1(es + seze) + ch(s? 4+ 1) + 2sch + cj(s? — 1))/ #0)
hold at py, where

7t 2c36 2¢f + 2schg
¢ 2¢k + 2schg (s 4+ 1)+ 2scf + (s —1) )"

Xﬁ at po 1s A-equivalent to the cuspidal cross cap if and only if czg = 0, crc5 # 0 and
che # 0 hold at po.

Singularities of dual surfaces of a

In this subsection, we apply the criteria in Subsection 8.1 for describing the conditions of
singularities of dual surfaces of ag. We assume that c¢o = ¢3 = 0.

Theorem 8.10. The singular set of X is S(X§) = {(s,t) | ca(t) coss+ ¢5(t)sins = 0} and
Xﬁ is a frontal for any po = (s, to). Then we have the following assertions:

If ¢1 # 0 holds, then Xz to be a front near pg.

Xﬁf at pg is A-equivalent to the cuspidal edge if and only if c1 # 0 and afL = —cg(cy sins—
cs5co88) — (¢ coss + cksins) # 0 holds at po.

XflL at po is A-equivalent to the swallowtail if and only if ¢; # 0, —cqsins+c5cos s # 0,
ad =0 and —cg(a)s + (ad) #0.

XZ at po is A-equivalent to the cuspidal butterfly if and only if ¢ # 0, —cgsins +
cscoss #0, af =0, —cs(ad)s+(af) =0 and (ad)ss —2c6(af) —ch(ad) s+ (af)” # 0
holds at pg.

XZ at pg is A-equivalent to the cuspidal lips (resp. cuspidal beaks) if and only if c; # 0,
cycoss + cgsins = 0, ¢ysins — cscoss = 0, and detH,‘f > 0 (resp. detH,‘f < 0 and
—c(ad)s + (ad) #0) hold at py, where

d —cyc088 —cssins  ¢sins — ¢k cos s
h cysins —chcoss ¢ coss+cysins
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° Xﬁf at po is A-equivalent to the cuspidal cross cap if and only if ¢c; = 0, csce # 0 and
¢y # 0 hold at pg.

Theorem 8.11. The singular set of X4 is S(X5) = {(s,t) | c1(t)—ca(t) cos s—c5(t) sins = 0}
and be is a frontal for any po = (so,t0). Then we have the following assertions:

o Ifci(to) # 0 holds, then X% to be a front near po.

) Xﬁ at po is A-equivalent to the cuspidal edge if and only if c; # 0 and of, := —cg(cq sin s—
C5C08S) + ¢} — ¢ coss — cgsins # 0 holds at pg.

) be at po is A-equivalent to the swallowtail if and only if ¢c; # 0, cqsins — ¢5coss # 0,

af =0 and —cg(at)s + (af)’ # 0 holds at po.

° Xf; at po is A-equivalent to the cuspidal butterfly if and only if c; # 0, c4sin s—cs5 cos s #
0, af, =0 and —cg(al)s + (ah) =0 and c2(ab)ss — 2c6(al) — ch(ak)s + (af)" # 0 holds
at pg.

. Xf; at pg is A-equivalent to the cuspidal lips (resp. cuspidal beaks) if and only if c; # 0,
cysins — cscoss = 0, ¢ — cjcoss — cisins = 0 and det H, > 0 (resp. det H. and
—cg(ab)s + (ab) #0) holds at py, where

. e /g ! cos
gt — (cacoss+cssins cysins — cfcos s
h cysins —chcoss ¢ —cfcoss — clsins

° XfL at po is A-equivalent to the cuspidal cross cap if and only if ¢c; = 0, csce # 0 and
¢y # 0 hold at pg.

Remark 8.12. Surfaces Xf; satisfying cg = 0 is called a hyperbolic-flat tangent lightcone
circular surface which was investigated in [22]. Substituting cg = 0 in the formulae of Theorem
we have [22] Theorem 8.2].

8.4 Singularities of dual surfaces of a-

In this subsection, we apply criteria in Subsection 8.1 for describing the conditions of singu-
larities of dual surfaces of a5. In this section, we assume that cy = cg = 0.

Theorem 8.13. The singular set of X% is S(X) = {(s,t) | c1(t) coshs — ¢5(t)sinh s = 0}
and XZ is a frontal for any po = (so,to). Then we have the following assertions:

o Ifcy # 0 holds, then XZ 18 a front near pg.

° XZ at pg is A-equivalent to the cuspidal edge if and only if c4 # 0 and ag := —c3(cg sinh s—
s cosh s) + ¢ cosh s — ¢ sinh s # 0 hold at po.

. XZ at po is A-equivalent to the swallowtail if and only if ¢4 # 0, ¢1 sinh s —c5 cosh s # 0
and ot =0 and —cz(al)s + () # 0 hold at po.

L XZ at pg is A-equivalent to the cuspidal butterfly if and only if ¢4 # 0, c¢1sinhs —
cs cosh s 0 and o) = —ex(al), + (o) = 0, —cslad), + (o) = 0"and (e -
203(043); - 013(042)3 + (OCZ)H 7é 0 hold at Po-
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) XZ at po is A-equivalent to the cuspidal lips (resp. cuspidal beaks) if and only if c4 # 0,
c1sinhs — cscoshs = 0, ¢j coshs — cisinhs = 0 det HY > 0 (resp. det H} < 0 and
—c3(al)s + (o) #0) hold at py, where

gh_ (@ coshs — czsinhs ¢ sinhs — ¢ cosh s

d 7 \¢ysinhs —cfcoshs ¢/ coshs—cfsinhs/"

) XZ at po is A-equivalent to the cuspidal cross cap if and only if c4 = 0, czcs # 0 and
¢y, # 0 hold at pg.

Theorem 8.14. The singular set of X4 is S(X5) = {(s,t) | —ca(t)+c1(t) cosh s—c5(t) sinh s =
0} and XY is a frontal for any po = (so,to) € S(XY). Then we have following assertions:

o [fcy # 0 holds, then Xfl s a front near pg.

° Xfi at pg is A-equivalent to the cuspidal edge if and only if c4 # 0 and ozf; := —c3(cq sinh s—
cscoshs) — ¢y + ¢f coshs — ¢f sinh s # 0 hold at pg.

. Xg at po is A-equivalent to the swallowtail if and only if ¢4 # 0, ¢1 sinh s —¢5 cosh s #£ 0,
o =0 and —c3(ab)s + (f)' # 0 hold at po.

° Xfl at pg is A-equivalent to the cuspidal butterfly if and only if ¢4 # 0, ¢ysinhs —

cscoshs # 0 cpsinhs — ¢5coshs # 0, ag =0 —03(a5)5 + (ag)’ =0 and cg(ag)ss —

2c3(af)l — ch(ah)s + () # 0 holds at po.

. Xﬁ at po is A-equivalent to the cuspidal lips (resp. cuspidal beaks) ¢y # 0, ¢qsinhs —
cscoshs = 0, —cj + ¢j coshs — cfsinhs = 0 and det H; > 0 (resp. det HY < 0 and
—c3(ah)s + () #0) hold at py, where

It — <01 cosh s — ¢5 sinh s ¢y sinh s — cf cosh s >

47 \¢|sinhs —cicoshs —cj + ¢} coshs — c/sinhs

) Xfi at po is A-equivalent to the cuspidal cross cap if and only if ¢4 = 0, czc5 # 0 and
¢y # 0 hold at po.

We now give proofs of these theorems.
Proof of Theorem[8.9 Since
(Xﬁ)S = 2sag + 2a; + 2sas
(Xl;)/ = 2sciag + 2c1a1 + 2c1a9 + (03(82 +1) + 2sc5 + c6(s? — 1))a3,
we have S(X%) = {(s,t) | e3(t)(s® +1)+2scs5(t) +cs(t) (s> —1) = 0}. Furthermore, an isotropic
map (X4,€) : U — A, is a Legendrian immersion if and only if ¢35 # 0 on S(X%). In this

case X is a front near py. Since ag and as are linearly independent to T'LC*, we can choose
the discriminant function A as

A = det <(X§)S , (Xﬁ)l , ao, ag) = —2((s2 + 1)es(t) + 2¢5(t) + 2sc6(t).
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Since the kernel direction of d X on singular set is 7 = —¢; s+t and we can take a transversal
vector field ds, we have

nA = —2ci(cs+ scsp) + (s + 1) + 2sck + ch(s? — 1)
7777)\ = 701( — 2c1c36 + 2(05 + 86{36))
!/
+( = 2c1(cs + seze) + ch(s* + 1) + 2s¢ + c(s* — 1))
_ 2¢36 2¢5 + 2schg
Hessd = <2cg +2schs (s +1) + 2s¢f + cf(s* — 1)

Hence we have all assertions of Theorem except the case for the condition for the cuspidal
cross cap. We give the proof of the condition for the cuspidal cross cap as follows: Let us
define a lift w : U — T*LC* by

wp(v) = {0, £(p)) , v € Tz LC™, p € U,

Then w does not have intersection with the zero section. Since (7 o w).(z) = dX5(z) for any
vector z € T,U, we have <£,dX§> = 04(a3, Xb) = 0. Thus we have (7 o w).(T,U) C kerw,.
This means that w is the admissible lift of Xﬁ. Under the assumption that csg(tg) = 0,
As(50,t0) # 0 if and only if ¢5(tg) # 0. Then S(X?Y) can be parameterized as (s(t),t) for some
function s(t). Putting £(t) = as(t), then £ is a non-zero vector field along Xf;\s(xf). Since

& X §> = 0, vector field ¢ satisfies the conditions of Theorem Therefore the function
¥xe(t) is equal to (ng, £) (t) = —cs6(t). On the other hand, if As(so,%0) = 0 and N'(so, %) # 0,

then (X ﬁ, (s0,%0)) is not A-equivalent to the cuspidal cross cap. This completes the proof of
Theorem O

We can give the proofs of Theorems|[8.6} 8.10] B-11] [8-13]and [B-14] by the same arguments
as those of the above proof. We only state the fundamental data here, and omit the detailed

proof. The discriminant function A, null vector field 7, the one-form w and the vector field &
for each dual surfaces are shown in the Table 1.

’ Surface \ A \ n \ w \ 13 ‘

X 23 + 2 2 -

’ c3 + 2scs + 573 (—e1,1) | (x,£) | a3
X? —2cg — 28¢5 + 82036 (Cl7 1) <*,£> as
x4 €4 COS 8 + ¢58in s (—ce,1) | {x,a0) | a1
Xf; €1 — C4COSS — c5sin s (—ce,1) | {x,a0) | a1
Xg c1 cosh s — c5 sinh s (—e3,1) | {x,a2) | a1
Xé —cy+crcoshs —czsinhs | (—c3,1) | (*,a2) | a1

Table 1: Fundamental data to recognize the conditions of singularities of dual surfaces

9 Dualities of singularities

Comparing Theorems and when singular point is always (0,¢), with Theorems
8.10] [8.11] [S.13] and [8.14] we observe a certain duality between the swallowtail and the cuspidal
cross cap. It can be summerized as follows.
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Remark 9.1. The conditions that singular set is equal to the curve (0,¢) is

e c3 =0 for X?7

cg = 0 for X‘Z,

c;;—cGEOforXﬁ

C4EOfOfX;1L

c1 —cq =0 for Xf;,

c1 =0 for XZ,

° clfc4EOforXfl.

Moreover, if co = ¢3 = ¢; — ¢4 = 0, then X? at (0,tp) is A-equivalent to the swallowtail if
and only if ¢ = 0 and ¢1¢ # 0 at 9. This condition is the same as the condition that X fl at
(0,t0) is A-equivalent to the cuspidal cross cap. Furthermore, X} at (0,t) is A-equivalent to
the cuspidal cross cap if and only if ¢; = 0 and cgc} # 0 at tg. This condition is the same as
the condition that X% at (0,to) is A-equivalent to the swallowtail. Like as these arguments,

we have the same type condition of singular points for dual surfaces when the singular set is

equal

to (0,t).

We can summerize this situation on the Table [2] In the table, S means the singular set.

duality S ={(0,t)} || cuspidal edge || swallowtail cuspidal cross cap
X? =0 c3=0 ce £ 0, cecs #£ 0, cies # 0,

c1—cy =0 cies 0 c1=0,c,#0, || ¢6=0, cg#0,
ngl =0 cg =0 c3 £ 0, czcs # 0, cie5 # 0,

c1—cy =0 cies # 0 c1=0,¢, #0 c3 =0, g #0,
X) [[e2=0 c3—c=0 | c36 #0, czecs # 0, cies # 0,

c1—c1=0 cies 0 c1=0,¢, #0 cse =0, chg # 0,
X;ZL CQEO 6450 61#0 6165%0 6566#0

c3=0 cscg £ 0 e =0, c5#0 c1=0,¢, #0
Xi =0 c1—c1 =0 c1 #0 cie5 #0 csc6 # 0

c3 =0 cscg # 0 cg=0,c5#0 c1=0,cy #0
XZ =0 =0 cy #0 cgc5 #0 c3cs #0

=0 c3cs £ 0 c3=0,c4 #0 ey =0,¢,#0
XS =0 c1—c1 =0 cy #0 cyc5 #0 c3es # 0

=0 czcs £ 0 c3=0,c4 #0 ey =0,¢,#0

We can observe there are some dual relations of conditions for singularities of the swallowtail
and the cuspidal cross cap on each dual points of surfaces. Furthermore, the condition of

Table 2: Dualities of condition for singularity.

118




holding the duality and that the singular set is {(0,¢)} are the same between X" and X7}
(resp. between X¢ and X%):

taking singular value taking singular value
Xl tling sing a0 X teking sng o
A2-dualT lAQ-dual and Ag—dualT lAg—dual
taking singular value taking singular value
Y g g Xf], YA & g Xﬁ .

Like as the remark, a duality between the swallowtail and the cuspidal cross cap have
been pointed out in many researches, for example, [33] 13| 22]. In this section, we give an
interpretation for this duality. Firstly, we prove the following lemma.

Lemma 9.2. Let M; (i = 1,2) be three dimensional manifolds and A C M; x My a five
dimensional submanifold with the contact structure. Assume that the canonical projection
m : A — My is a Legendre fibrations. If an isotropic map L1 = (f1,v1) and a frontal
fo : U — My satisfies that p is a non-degenerate singular point of both f; (i = 1,2) and
v1 degenerates a curve such that v1 = fo 0 o, where o is a submersion U — S(f). If the
null direction of fi1 does not parallel to the kernel of o, then the following two conditions are
equivalent.

e L1 is a Legendrian immersion.
e The null direction of fo at p is transversal to S(f1).

Proof. Since p is a non-degenerate singular point, L; is a Legendrian immersion if and only
if the directional derivative 171 does not vanish. this is equivalent to the condition that
df2(n1)(o) does not vanish. This is equivalent to that the tangential direction of S(f;) does
not parallel to 7o. This is equivalent to the condition that 7y is transversal to S(f1). This
completes the proof. O

Theorem 9.3. Let p be a non-degenerate singular point of a frontal f. Then we have the
following criteria of singularities by using the function ¢ defined in (8.2).

(1) Ifs(p) #0, then f at p is A-equivalent to the cuspidal edge.

(2) Assume that f is a front. If v¥¢(p) =0 and (d/dt)s(p) # 0, then f at p is A-equivalent
to the swallowtail.

(3) Assume that the null direction at p is transversal to S(f). If¥y(p) =0 and (d/dt)y¢(p) #
0, then f at p is A-equivalent to the cuspidal cross cap.

Proof. Since the conditions are independent of the choice of coordinates, we take the coor-
dinate system (u,v) satisfying S(f) = {v = 0}. Under this conditions, ¢ is proportional to
¢#, where ¢y is defined in (8.1). Firstly, we prove (1). The condition ¢; # 0 implies that f,
and nv are linearly independent. Since v points the kernel direction of df, this implies that f
to be a front. Moreover, we have f, # 0, this implies that  does not tangent to S(f). By
Theorem (8.1} we have (1).

Next, we assume that f to be a front and ¢y = 0 at p. Then this condition implies
fu(p) = 0, namely, n tangents S(f) at p. Thus we can take a function S(u) such that
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n(u) = 8/du+ B(u)d/dv, B(0) = 0. By Theorem [8.1] f at p is A-equivalent to the swallowtail
if and only if 5’(0) # 0. On the other hand, (d/dt)¢¢(p) # 0 implies that det(fuu, v, vu)(p) # 0.
Since f,, v and v, are linear independent at p, this is equivalent to {fy., fv) (p) # 0. Since 7 is
the null vector field on the w-axis, f,, +/5(u)+ f, = 0 holds on the u-axis. Thus (fy., fv) (p) # 0
implies 4'(0) # 0. This completes the proof. The assertion (3) directly holds from Theorem
3.1l O

We can give the alternative proof of Theorem [8.11]in the special case of ¢; — ¢4 = 0 and
Cs 7& 0.

Proof of Theorem , If co =c3 =c1 —cqg =0, and c5(ty) # 0, then by Theorem
X4 at (t,0) is A-equivalent to the swallowtail if and only if cg # 0, ¢; = 0 and ¢, # 0 at
to. Furthermore, X f; at (to,0) is A-equivalent to the cuspidal cross cap if and only if ¢; # 0,
cg =0 and cf # 0 at to.

Under the assumptions c¢o = ¢3 = ¢; — ¢4 = 0 and c¢5(tg) # 0, it holds that S(XZ) =
S(X4) ={(t,0)} near (ty,0). Hence we can apply Lemma and Theorem This means
that the conditions for the swallowtail and the cuspidal cross cap of the dual surface are
obtained by only interchanging the conditions for the cuspidal cross cap and the swallowtail
of the original surface. Thus we have that X% at (t,0) is A-equivalent to the cuspidal cross
cap if and only if ¢g # 0, ¢; = 0 and ¢} # 0 at tg. Furthermore, XfL at (to,0) is A-equivalent
to the swallowtail if and only if ¢; # 0, ¢g = 0 and ¢ # 0 at to. This is the same as Theorem
under the assumption ¢; — ¢4 = 0. a

A A criterion for the cuspidal butterfly

In this section, we give a proof of Theorem [8:2] The main tool for the proof is the notion
of generating families. Let G : (R* x R” 0) — (R,0) be a function germ which we call an
unfolding of g(q) = G(q,0). We say that G is a Morse family of hypersurfaces if the mapping

oG oG
A*G = (G) :(RF x R",0) — (R x R*,0)
oq g,
is non-singular, where (q,z) = (q1,---,qk, T1,--.,7,) € (R¥ x R, 0). In this case we have a

smooth (n — 1)-dimensional submanifold

oG oG
_ k n - —- o= — =
5.6 = {{a.0) € ® x®".0) | Gl00) = SE0r) == S0 (00 =0 |
and the map germ @¢ : (X.(G),0) — PT*R™ defined by
oG 0G
Bo(a) = (o | 52 aa) o 200 )

is a Legendrian immersion germ. The fundamental result of Arnol’d-Zakalyukin [2, [34] assets
that all Legendrian submanifold germs in PT*R™ are constructed by the above method. We
call G a generating family of ®¢(2.(G)). Therefore the wave front of & (X, (G)) is

Jq € R¥ such that G(g,z) = Z—G(q,x) == %(qw) =0 }
q1

W((I)G):{meR Pa.
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We also write Dg = W(®¢) and call it the discriminant set of G.

We now introduce an equivalence relation among Legendrian submanifold germs. Let
i: (L,p) C (PT*R™,p) and ¢’ : (L',p’) C (PT*R",p’) be Legendrian submanifold germs.
Then we say that ¢ and ' are Legendrian equivalent if there exists a contact diffeomorphism
germ H : (PT*R",p) — (PT*R",p’) such that H preserves fibers of 7 and that H(L) = L’.

Since the Legendrian lift ¢ : (L, p) C (PT*R™, p) is uniquely determined on the regular part
of the wave front W (i), we have the following simple but significant property of Legendrian
immersion germs|[35]:

Proposition A.1. Leti: (L,p) C (PT*R",p) and i’ : (L',p") C (PT*R™,p') be Legendrian
immersion germs such that the representative of both the reqular sets of the projections o i
and wo i are dense. Then i and i' are Legendrian equivalent if and only if wave front sets
W (i) and W (i') are diffeomorphic as set germs.

The assumption in the above proposition is a generic condition for 7 and #’.

We can interpret the Legendrian equivalence by using the notion of generating families.
We denote &, the local ring of function germs (R™,0) — R with the unique maximal ideal
M, ={h €&, | h(0) =0} Let G,Gy : (R¥ x R",0) — (R,0) be function germs. We
say that G; and G, are P-K-equivalent if there exists a diffeomorphism germ ¥ : (Rk X
R",0) — (R* x R",0) of the form ¥(q,z) = (¢¥1(q,z),¥2(x)) for (¢,z) € (RF x R",0)
such that ¥*((G1)e,,,.) = (G2)e,,,. Here ¥* : &y — Ekyy is the pull back R-algebra
isomorphism defined by ¥*(h) =ho ¥ .

Let G : (R* x R",0) — (R, 0) be a function germ. We say that G is a K-versal unfolding
of g = G|R* x {0} if for any unfolding G : (R* x R™,0) — (R,0) of g (i.e., G(q,0) = g(q)),
there exists a map germ ¢ : (R™,0) — (R",0) such that ¢*G and G are P-K-equivalent,
where ¢*G(q,u) = G(q, #(u)). For an unfolding G(t,z) of a function g(¢) of one-variable, we
have the following useful criterion on the KC-versal unfoldings in (cf., [4], 6.10): We say that g
has an A,-singularity at to if g (ty) = 0 for all 1 < p < r, and gV (ty) # 0. We have the
following lemma

Lemma A.2. Let G be an unfolding of g and g(t) has an A,-singularity (r > 1) at to. We
denote the (r — 1)-jet of the partial derivative 0G/0x; at ty by

o [ OG - ;
0 (o)) @) = S ute — oY
=

fori=1,... ,n. Then G is a K-versal unfolding if and only if the r x n matrix of coefficients
(i) has rank r (r < n).

It follows from the above lemma that the function germ defined by
et ot gt 4

is a K-versal unfolding of g(t) = t"*!1. One of the main results in the theory of Legendrian
singularities is the following theorem:

Theorem A.3. Let G,Gy : (RF xR™,0) — (R,0) be Morse families of hypersurfaces. Then
®q, and ®q, are Legendrian equivalent if and only if G1 and G2 are P-K-equivalent.
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As a corollary of Proposition and Theorem we have the following proposition.

Proposition A.4. Let G1,Gy : (RF x R",0) — (R,0) be Morse families of hypersurfaces.
Suppose that both the reqular sets of the representative of projections mo®gq,, mo®q, are dense.
Then (W (®¢g,),0) and (W(Pg,),0) are diffeomorphic as set germs if and only if G1 and G4
are P-K-equivalent.

The following Lemma roles the key of the proof for the criteria. Two function germs
g + (R,0) — (R,0) (i = 1,2) are R-equivalent if there exists a diffeomorphism germ « :
(R,0) — (R, 0) such that oo g; = g2 holds.

Lemma A.5. Let g : ((R;t),0) — (R,0) be a function germ such that R-equivalent to t°.
If an unfolding G : (R x R3;t,2,1,2),0) — (R,0) of g is a Morse family and a function

G(t,x,y,z,w) = G(t,z,y,2) + wt> is a K-versal unfolding of g, then G(t,z,y,z) is P-K-
equivalent to t° + xt? + yt + 2.

Proof. Since the condition does not depend on the parameter transformation of ¢, we can
assume that g(t) = t>. Moreover, since the map t° + wt> + xt? + yt + 2 is the versal unfolding
of t°, there is a diffeomorphism (¢1, @2, @3, ¢4) : R* — R* such that G is P-K-equivalent to

t5 =+ ¢1($a Y, Z,U})tS + ¢2<$aya va)tQ + ¢3(xaya Z7U})t + ¢4($a Y, Zaw)'

Since G = G + wt? is a K-versal unfolding, and the condition of lemma only depend on the
P-K-equivalent class, we can rechoose (z,y, z) such that G is P-K-equivalent to

5 + b1 (2, y, 2, W)t + 2t + yt + 2.

Furthermore, since G is a versal unfolding and d¢; /0w(0) = 0, we rechoose w such that G is
P-K-equivalent to
5+ (w — h(z,y, 2))t> + xt? +yt + 2

for some function h. Summerizing up these argument, we can assume that G is
Gh(t,z,y,2) == t° + (w — h(x,y, 2))t> + 2t* + yt + 2.
We have the following Zakalyukin’s lemma

Lemma A.6. [35, Theorem 1.4] Let V : (R x R*,0) — (R,0) be a K-versal unfolding of the
form
V(t,2,y, 2,w) = t° + wt® + 2t* + yt + 2 (A1)

and o : (R*,0) — (R,0) be a function germ with (x,y, z, w)-variables such that do /Ow(0) # 0.
Then there exists a diffeomorphism germ © : (R*,0) — (R*,0) such that

O(Dy) =Dy and 00 O(z,y,z,w) = w.

Let us continue to prove of Lemma We apply Lemma to V of (A.1) and w —
h(z,y,z). Then there exists a diffeomorphism germ © such that

O(Dy) = Dy and (w — h(z,y,2)) o O(x,y, z,w) = w.
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We define a diffeomorphism germ
\1/(1‘, Y, z, ’lU) = (1’7 Y, z,w — h(.’L’, Y, Z))a

then it holds that ¥*V = GJ,. Define a new diffeomorphism germ © by © = ¥ 0 © then we
have

O(Dy) =¥ oO(Dy) =¥(Dy) = Dg, .
Hence Dy, and Dg are diffeomorphic. On the other hand, let us define 7 : (R*,0) — (R, 0) by
7(x,y,z,w) = w. Since

ToB(z,y,z,w) =m0V o0 = (w—h(z,y,2)) 00 = w,

we have m o © = . Since the set of regular points of Dy is dense, by the Zakalyukin theorem
([35], see also [28, Appendix]), there exist a diffeomorphism germ = : R x R* — R x R* of the

form
E(t7 :I;7 y? Z? w)

(g(taxaya Z,U)), Cl(xa Y, =z, w)7 C2($7ya Z,U)), <3(xay7sz)7<4(w))

such that Z*((V)e,,,) = (Gh)e, .-
If we restrict the above map to w = 0, we complete the proof Lemma A.2. ]

Using these results, we give the criterion of the A4-singularity of wave fronts.

Let f : (R?,0) — (R3,0) be a front and v be the normal vector field of f. Let 0 be a
non-degenerate singular point of f. Needless to say, the conditions of Theorem do not
depend on the choice of coordinates and choice of v. One can prove the following lemma.

Lemma A.7. One can choose the coordinate systems (u,v) of (R%,0) and (X1,X2,Z) of
(R3,0) satisfying

e 7= 0v.
o flu,v) = (filw,v), f2(u,v),u) and (f1)u(0) = (f2)u(0) = 0.
e 1(0) = (1,0,0).

Under this coordinate system, we prove that if f : R? — R3 satisfies n\A = nn\ = 0 and
nmmA # 0 at 0 then f at 0 is A-equivalent to the cuspidal butterfly.

Proof of Theorem[8.4 Let us fix a small number w and consider a family of plane curves
I'“(v) = T'(u,v) = (f1(u,v), f2(u,v),u) in the plane II,, = {(X1, X2, Z)|Z = u} and show that
these are fronts near 0. Denote v = (v1, va,v3) and put

[N*(v)] = [(1(u, v), v2(u, v), 0)] .
Then [N*(v)] is well-defined near 0. We put
’Y(u’ U) = (fl (ua v)a f2(u> U)) and n(u, ’U) = (Vl (ua ”U), V2(u7 U))

Then, since (y'(u,v),n(u,v)) =0, (v, [n]) is an isotropic map for all u, where ' denotes 9/dv
and (-,-) is the canonical inner product of R3. Since 4(0), we have n/(0) # 0. This implies
that for each u near 0, (v, [n]) is a Legendrian immersion germ.
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We define two functions ¥ : R x R> — R and % : R — R as follows:
\II(’U7X17X27Z) = TLl(Z,'U)(X] - fl(Z7’l))) + ’I’LQ(Z,’U)(XQ - fQ(Z,’U)), 1/1(/1]) = \I/(’U70’070).

Then we have Dy = f(U). Hence by Lemma and the arguments in the above, it is
sufficient to prove that ¢ has an Ay-singularity and ¥ satisfies the conditions of Lemma [AT5]
In the following context, we put Z = u.

Lemma A.8. It holds that f'(0) = f'(0) = f""(0) =0, f""(0) # 0 and (F)(0) = (F)"(0) =
(f)"(0) =0, (f)"(0) # 0.

Proof. Since 9, is the null vector field, so that we have f/(0) = 0 and S(f) = {f, = 0}.
By nA = 0, since (9, =)no € TpS(f), it holds that f”(0) = 0. Furthermore, by A”(0) = 0
and f'(0) = f”(0) = 0, we have \’(0) = det(fu, f"”,~)(0). Hence it holds that f"/(0) €
span { f,.(0),2(0)}.

On the other hand, we have (f,, f) (0) = ((0,0,1), (*, *,0)) = 0. Differentiating (v, f') =
0, we have (v, f"') = (v, f\ — (', f') and (v, f") = (v, ") = (", f""). Hence (v, f"") = 0 holds
on S(f). Since 19 € ToS(f), it holds that (v, f/) (0) = 0 and (v, f') (0) = 0. Thus we have
£(0) = 0.

Since \’(0) # 0 and f'(0) = f(0) = f"’(0) = 0, it holds that 0 # X"’(0) = det(f., f"",v)(0).
In particular, f(0) # 0 holds. O

To prove Theorem [B:2] firstly we show that ¢ has the Ay-singularity at 0. Differenti-
ating ((f)’,n) = 0 and by Lemma we have ((f)"”,n)(0) = 0 and 4((f)"",n') (0) +
<(?)/////,n> ( ) — 0

By these formulae and Lemma we have ¢/(0) = ¢"(0) = ¢"(0) = 0, ¥""(0) =
— {n. (F)™) (0) = 0 and v"(0) = — (o', (7)) (0).

On the other hand, since n,n’ is linearly independent at 0 and (n, (f)""”) (0) = 0, we have

(', (F)"") (0) # 0 <= (f)""(0) # 0 <= f""(0) #0.

Hence 1 has the A4 singularity at O.

Next, we show that (U, ¥/ ¥”) is non-singular. If this is satisfied, ¥ satisfies the condition
of Lemma namely, ¥ is a Morse family and ¥ (v, X1, Xo, u) + wv® is a K-versal unfolding
of 1. Remark that the discriminant set of an unfolding t° + xt? + yt + z of a function ¢° is
diffeomorphic to the image of the canonical cuspidal butterfly (u,v) — (u,5v* + 2uv, 405 +
uv? —u?) at 0 as set germs. Therefore by Proposition and Lemma we can show that
f at 0 is A-equivalent to the cuspidal butterfly.

Since Wy (0) = —1(0), Wy (0) = —n(0) and Wy = 3,_y 5 (na)as Xi — fi) — (e, (fi)u), i
holds that ¥,,(0) = 0. By a direct calculation, we have ¥’ (0) = —n/(0), ¥4 (0) = —n}(0) and
U, = 3 im0 ((a)y Xi = fi) = (nas 1) = (0, (fi)u) = (na, (fi)7,)- Since (ng, (fi)y) = (. (f)'), —
(nu, (f)') = 0 holds at 0, we have ¥/,(0) = 0.

Thus it is sufficient to prove that the matrix

oW, W qﬂ’) Jot 0 0 0
8(‘1’ ’)/8X1 - nq n’l *
ow, v, v joxy | Oy oy o« |©
o, v \1/”) Jou 0 0 o
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is of full rank. Hence we show that W;/(0) # 0.
Differentiating <n, (f)’> =0 by u and v, and by Lemma we have

(n, (f)) (0) = (', ()3, (0). (A.2)
Differentiating ¥ by u and v two times, and by Lemma[A.8 and (A.2)), we have

03,(0) = — (', (£),,) (0).
On the other hand, since (n, (f);) (0) =0,

u

(0, (F)) (0) # 0 <= (£),(0) # 0 <= £.(0) #0.
holds. By A,(0) # 0 and f,(0) = 0, we have

04 A (0) = det(f,. £}, ¥)(0).

In particular, f/(0) # 0 holds. This implies the desired result.

The converse pert of the theorem is obvious since the conditions and assertions of Theorem
B2 are independent of the choice of coordinates and the choice of v, and the canonical Ay
singularity satisfies the condition of theorem. O

Remark that since 0 is a non-degenerate singular point, we have the parameterization (t)
of S(f). Take the null vector field on + as n(¢). Define a function of ¢ by

pu(t) = det(v'(t), n(t)).

One can easily show that ©(0) = p/(0) = 0 and p”(0) # 0 and nA(0) = nmmA(0) = 0 and
nmmA(0) # 0 are equivalent, as a corollary, the following assertion holds.

Corollary A.9. A front germ f at 0 is A-equivalent to the Ay-singularity if and only if O is
a non-degenerate singular point and (0) = ' (0) = 0 but 1’ (0) # 0 holds.

References

[1] R. Aiyama and K Akutagawa, Kenmotus-Bryant type representation formulas for constant
mean curvature surfaces in H*(—c?) and Si(c*), Math. global anal. geom. (1) 17 (1998),
49-75.

[2] V. I Arnol'd, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps
vol. I. Birkh&user (1986)

[3] J. A. Aledo and J. M. Espinar, A conformal representation for linear Weingarten
surfaces in the de Sitter space, Journal of geom. and phys., 57 (2007), 1669-1677.
DOI: 10.1016/j.geomphys.2007.02.002

[4] J. W. Bruce and P. J. Giblin, Curves and singularities (second edition), Cambridge University
press (1992).

[5] M. Buosi, S. Izumiya and M. A. Ruas, Total absolute horospherical curvature of submanifolds
in Hyperbolic space, to appear in Advances in Geometry

125


http://dx.doi.org/10.1016/j.geomphys.2007.02.002

(6]
[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

23]

M. Buosi, S. Izumiya and M. A. Ruas, Horo-tight spheres in Hyperbolic space, preprint (2009)

D. E. Blair, Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics
509 Springer (1976)

R. L. Bryant, Surfaces of mean curvature one in hyperbolic space in Théorie des variétés
minimales et applications (Palaiseau, 1983-1984), Astérisque No. 154-155 (1987), 12, 321—
347, 353 (1988)

T. E. Cecil, Lie Sphere Geometry. Universitetext, Springer (1992)

L. Chen and S. Izumiya, A mandala of Legendrian dualities for pseudo-spheres in semi-
Euclidean space. Proceedings of the Japan Academy, 85 Ser. A (2009), 49-54

C. L. Epstein, FEnvelopes of Horospheres and Weingarten Surfaces in Hyperbolic 3-Space.
Preprint, Princeton Univ., (1984)

J. A. Galvez, A. Martinez and F. Milan, Complete linear Weingarten surfaces of Bryant type.
A Plateau problem at infinity, Trans AMS, 356, 9 (2004), 3405-3428. |DOI: 10.1090/S0002-
9947-04-03592-5

S. Fujimori, K. Saji, M. Umehara and K. Yamada, Singularities of mazximal surfaces, Math.
Z. 259 (4) (2008), 827-848. DOI:10.1007/s00209-007-0250-0

A. B. Givental’, Singular Lagrangian manifolds and their Lagrangian mappings, Itogi Nauki
Tekh., Ser. Sovrem. Prob. Mat., 33, 1988, 55-112.

G. Ishikawa, Infinitesimal deformations and stability of singular Legendre submanifolds, Asian
J. Math. 9 (2005), no. 1, 133-166.

S. Izumiya and N. Takeuchi, Singularities of ruled surfaces in R®, Math. Proc. Camb. Philos.
Soc. 130 (2001), no. 1, 1-11.

S. Izumiya, D-H. Pei and T. Sano, Singularities of hyperbolic Gauss maps. Proceedings of
the London Mathematical Society 86 (2003), 485-512. DOI: 10.1112/50024611502013850

S. Izumiya and M. C. Romero Fuster, The horospherical Gauss-Bonnet type theorem for
hypersurfaces in hyperbolic space, Journal of Mathematical Society of Japan 58, (2006), 965—
984. DOI: 10.2969/jmsj /1179759532

S. Izumiya, D-H. Pei, M. C. Romero-Fuster and M. Takahashi, On the horospherical ridges of
submanifolds of codimension 2 in Hyperbolic n-space, Bull. Braz. Math. Soc. 35 (2) (2004),
177-198. |DOI: 10.1007/500574-004-0010-2

S. Izumiya, D-H. Pei and M. Takahashi, Singularities of evolutes of hypersurfaces in hyperbolic
space, Proceedings of the Edinburgh Mathematical Society 47 (2004), 131-153.

S. Izumiya, D-H. Pei and M. C. Romero-Fuster, The horospherical geometry of surfaces in
Hyperbolic 4-space, Israel Journal of Mathematics 154, (2006), 361-379.

S. Izumiya, K. Saji and M. Takahashi, Horospherical flat surfaces in hyperbolic 3-space, to
appear in Journal of Mathematical Society of Japan, 62 (2010)

S. Izumiya, K. Saji and N. Takeuchi, Circular surfaces, Adv. Geom. 7 (2007), no. 2, 295-313.

126


http://dx.doi.org/10.1090/S0002-9947-04-03592-5
http://dx.doi.org/10.1090/S0002-9947-04-03592-5
http://dx.doi.org/10.1007/s00209-007-0250-0
http://dx.doi.org/10.1112/S0024611502013850
http://dx.doi.org/10.2969/jmsj/1179759532
http://dx.doi.org/10.1007/s00574-004-0010-2

[24] S. Izumiya, Differential Geometry from the viewpoint of Lagrangian or Legendrian singularity
theory, in Singularity Theory, Proceedings of the 2005 Marseille Singularity School and
Conference, ed., D. Chénidt et al., World Scientific (2007), 241-275.

[25] S. Izumiya, Legendrian dualities and spacelike hypersurfaces in the lightcone. Moscow Math-
ematical Journal 9 (2009), 325-357.

[26] S. Izumiya and H. Yildirnm, Extensions of the mandala of Legendrian dualities for pseudo-
spheres in Lorentz-Minkowski space. Preprint (2009)

[27] M. Kokubu and M. Umehara, Orientability of linear Weingarten surfaces, spacelike CMC-1
surfaces and maximal surfaces, preprint.

[28] M. Kokubu, W. Rossman, K. Saji, M. Umehara and K. Yamada, Singularities of flat fronts
in hyperbolic 3-space, Pacific J. Math. 221 (2005), no. 2, 303-351.

[29] B. O’Neill, Semi-Riemannian Geometry, Academic Press, New York (1983)
[30] I. Porteous, The normal singularities of submanifold. J. Diff. Geom., vol 5, (1971), 543-564

[31] M. C. Romero Fuster, Sphere stratifications and the Gauss map. Proceedings of the Royal
Soc. Edinburgh, 95A (1983), 115-136.

[32] K. Saji, M. Umehara and K. Yamada, A singularities of wave fronts, to appear in Mathe-
matical Proceedings Cambridge Philosophical Society.

[33] O. P. Shcherbak, Projectively dual space curves and Legendre singularities, Sel. Math. Sov.
5, no.4, (1986) 391-421.

[34] V. M. Zakalyukin, Lagrangian and Legendrian singularities. Funct. Anal. Appl., 10 (1976),
23-31.

[35] V. M. Zakalyukin, Reconstructions of fronts and caustics depending one parameter and ver-
sality of mappings. J. Sov. Math., 27 (1984), 2713-2735.

S. IZUMIYA,

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

and

K. SAJI,

Department of Mathematics, Faculty of Education, Gifu University, Yanagido 1-1, Gifu, 501-1193,
Japan

e-mail : izumiyaBmath.sci.hokudai.ac. jp,

e-mail : ksajiBgifu-u.ac. jp

127



	Introduction
	Basic concepts and notations
	A mandala of Legendrian dualities for pseudo-spheres
	Local differential geometry of spacelike hypersurfaces in pseudo-spheres
	Linear Weingarten surfaces
	 The Legendrian dualities for ``flat''spacelike surfaces
	2, 3 and 4-dual surfaces of 
	Dualities of ``flat''surfaces

	Fundamental properties of parabollatic surfaces
	The striction curve of Xd
	The striction curve of X

	Singularities of flat parabollatic surfaces
	Criteria for singularities of frontals
	Singularities of dual surfaces of 
	Singularities of dual surfaces of a0
	Singularities of dual surfaces of a2

	Dualities of singularities
	A criterion for the cuspidal butterfly

