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CLASSICAL ZARISKI PAIRS

ALEX DEGTYAREV

Abstract. We compute the fundamental groups of all irreducible plane sextics constituting

classical Zariski pairs.

1. Introduction

A classical Zariski pair is a pair of irreducible plane sextics that share the same combinatorial
type of singularities but differ by the Alexander polynomial [10]. The first example of such a
pair was constructed by O. Zariski [13]. Then, it was shown in [4] that the curves constituting a
classical Zariski pair have simple singularities only and, within each pair, the Alexander polyno-
mial of one of the curves is t2 − t+ 1, whereas the polynomial of the other curve is trivial. The
former curve is called abundant, and the latter non-abundant. The abundant curve is necessarily
of torus type, i.e., its equation can be represented in the form f32 + f23 = 0, where f2 and f3 are
homogeneous polynomials of degree 2 and 3, respectively.

A complete classification of classical Zariski pairs up to equisingular deformation was recently
obtained by A. Özgüner [1]. Altogether, there are 51 pairs, one of them being in fact a triple (as-
suming that the complex orientations of both P2 and of complex curves are taken into account):
the non-abundant curves with the set of singularities E6 ⊕A11 ⊕A1 form two distinct complex
conjugate deformation families. The purpose of this note is to compute the fundamental groups
of (the complements of) the curves constituting classical Zariski pairs. We prove the following
theorem.

1.0.1. Theorem. Within each classical Zariski pair, the fundamental group of the abundant
(respectively, non-abundant) curve is B3/(σ1σ2)3 (respectively, Z6).

This theorem is proved in Section 4, using the list of [1] and a case by case analysis. In
fact, most groups are already known, see [2], [5], [8], [3], and [9], and the few missing curves
can be obtained by perturbing the set of singularities A17 ⊕ 2A1. The construction and the
computation of the fundamental group are found in Sections 2 (the non-abundant curves) and 3
(the abundant curves).

2. The curve not of torus type

2.1. Up to projective transformation, there is a unique curve C ⊂ P2 with the set of singularities

A17 ⊕ 2A1 and not of torus type, see [11]; its transcendental lattice is
[
4 2
2 10

]
. (In the case

under consideration, the transcendental lattice can be defined as the orthogonal complement
NS(Ỹ )⊥ ⊂ H2(Ỹ ), where Ỹ is the minimal resolution of singularities of the double plane ramified

at C. Recall that Ỹ is a K3-surface.) After nine blow-ups, the curve transforms to the union

of two of the three type Ã∗0 fibers in a Jacobian rational elliptic surface with the combinatorial
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Figure 1. The skeleton Sk of B̄

type of singular fibers Ã8 ⊕ 3Ã∗0 (in Kodaira’s notation, one fiber of type I9 and three fibers of
type I1). For the equation, consider the pencil of cubics given by

fb(x, y) := b(−x2 − xy2 + y) + (x3 − xy + y3) = 0, b ∈ P1,

and take two fibers corresponding to two distinct roots of b3 = 1/27. (All three roots give

rise to nodal cubics, which are the three type Ã∗0 fibers in the elliptic pencil above. The curve

corresponding to b = ε/3, ε3 = 1, has a node at x = (2/5)ε−1, y = (1/5)ε. The type Ã8 fiber
blows down to the nodal cubic {f0 = 0}.)

2.1.1. Lemma. For the curve C as in 2.1, one has

π1(P2 r C) = 〈p, γ+ | p9 = 1, γ−1+ pγ+ = p4〉.

Proof. Consider the trigonal curve B̄ ⊂ Σ2 with a type A8 singular point. Its skeleton Sk,
see [7], is shown in Figure 1.

Let F1, F± be the type Ã∗0 singular fibers of B̄ (vertical tangents), and let F∞ be the type Ã8

fiber. (Recall that F1, F± are located inside the small loops in Figure 1, whereas F∞ is inside

the outer region.) Consider the minimal resolution of the double covering X̃ → Σ2 ramified at B̄

and the exceptional section E ⊂ Σ2, and denote by tildes the pull-backs of the fibers in X̃.
Consider the nonsingular fiber F over the •-vertex v of Sk next to F1 (shown in grey in

Figure 1), denote πF := π1(F r (B̄ ∪E)), and pick a canonical basis {α1, α2, α3} for πF defined

by the marking of Sk at v shown in Figure 1, see [7]. Then the fundamental group π̃F := π1(F̃rE)

of the punctured torus F̃ r E is obtained from πF by adding the relations α2
1 = α2

2 = α2
3 = 1

and passing to the kernel of the homomorphism πF → Z2, α1, α2, α3 7→ 1. Hence, π̃F is the free
group generated by

p := α1α2 = (α2α1)−1 and q := (α3α2) = (α2α3)−1.

Start with the group

G1 = π1(X̃ r (E ∪ F̃+ ∪ F̃− ∪ F̃∞))

and compute it applying Zariski–van Kampen’s approach [12] to the elliptic pencil on X̃. Let
γ1, γ± be the generators of the free group

π1(P1 r (F1 ∪ F+ ∪ F− ∪ F∞), F )

represented by the shortest loops in Sk starting at v and circumventing the corresponding fibers
in the counterclockwise direction. (We identify fibers of the ruling and their projections to the
base.) Fix a closed disk ∆ in the base and consider a proper section over ∆, i.e., a topological
section of the ruling disjoint from the fiberwise convex hull of B̄, see [7]. Using this proper

section, one can lift these generators to Σ2 r (B̄ ∪ E) and to X̃ r E. Using the same proper
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section, define the braid monodromies m1,m± ∈ AutπF and their lifts m̃1, m̃± ∈ Aut π̃F . In
this notation, the group G1 has the following presentation, cf. [12]:

G1 =
〈
p, q, γ+, γ−

∣∣ p = m̃1(p), q = m̃1(q), γ−1± pγ± = m̃±(p), γ−1± qγ± = m̃±(q)
〉
.

The braid monodromy is computed as explained in [7]; for B̄ it is

m1 = σ2, m+ = σ−31 σ2σ
3
1 , m− = σ−11 σ2

2σ1σ
−2
2 σ1,

where σ1, σ2 are the Artin generators of B3 (we assume that the braid group B3 acts on πF from
the left), and in terms of p and q it takes the form

m̃1 : p 7→ pq, q 7→ q;

m̃+ : p 7→ pqp3, q 7→ p−4q−1p−4q−1p−1;

m̃− : p 7→ (pq)2(p2q)2p, q 7→ p−1q−1(p−2q−1)3p−1q−1p−1.

The very first relation p = pq implies q = 1. Hence also m̃±(q) = 1 and p9 = 1. Thus, one has

(2.1.2) G1 =
〈
p, γ+, γ−

∣∣ p9 = 1, γ−1+ pγ+ = p4, γ−1− pγ− = p7
〉
.

In order to pass to the group π1(P2rB), we need to patch back in one of the nine irreducible

components of the type Ã8 fiber F∞. (The component to be patched in is the proper transform of

the nodal curve {f0(x, y) = 0}.) This operation adds to (2.1.2) an additional relation [∂Γ̃] = 1,

where Γ̃ is a small holomorphic disk in X̃ transversal to the component in question. Using a
proper section again, one can see that in G1 there is a relation [∂Γ̃]−1p? = γ−γ+, where p?

is merely an element of the group π̃F of the fiber (modulo the relations in G1), which we do

not bother to compute. Adding the extra relation [∂Γ̃] = 1 to (2.1.2) and eliminating γ−, one
arrives at the presentation announced in the statement. (Note that 7 = 4−1 mod 9, hence the
order of p remains 9.) �

2.1.3. Corollary. The commutant of the group π1(P2 r C) as in Lemma 2.1.1 is a central
subgroup of order 3.

Proof. The commutant is normally generated by the commutator p−1γ−1+ pγ+ = p3; it is a central
element of order 3. �

2.1.4. Corollary. For any irreducible perturbation C ′ of the curve C as in 2.1, one has π1(P2 r
C ′) = Z6.

Proof. Let G = π1(P2 r C ′). Due to Corollary 2.1.3, the commutant [G,G] is a quotient of Z3,
hence either Z3 or {1}. Furthermore, [G,G] ⊂ G is a central subgroup. On the other hand, since
C is irreducible, G/[G,G] = Z6, and any central extension

{1} → Z3 → G→ Z6 → {1}
of the cyclic group Z6 would be abelian. �

3. The curve of torus type

3.1. Up to projective transformation, there is a unique torus type curve C ⊂ P2 with the set

of singularities A17 ⊕ 2A1, see [11]; its transcendental lattice is
[
2 0
0 2

]
. Similar to 2.1, this curve

blows up to the union of the two type Ã∗0 fibers in a Jacobian rational elliptic surface with the

combinatorial type of singular fibers Ẽ8 ⊕ 2Ã∗0 (in Kodaira’s notation, one fiber of type II∗ and
two fibers of type I1). The curve can be given by the equation

f(x, y) := (y3 + y2 + x2)
(
y3 + y2 + x2 − 4

27

)
= 0,
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and its torus structure is

f(x, y) =
(
y3 + y2 + x2 − 2

27

)2
+
( 3
√

4

9

)3
.

3.1.1. Lemma. Let C be a curve as in 3.1, and let U be a Milnor ball about the type A17 singular
point of C. Then the homomorphism π1(U rC)→ π1(P2rC) induced by the inclusion U ↪→ P2

is surjective.

Proof. In the coordinates ỹ = y/x, z̃ = 1/x, the curve is given by the equation

(ỹ3 + ỹ2z̃ + z̃)
(
ỹ3 + ỹ2z̃ + z̃ − 4

27
z̃3
)

= 0,

the type A17 singular point is at the origin, and each component is inflection tangent to the line
{z̃ = 0} at this point. To compute the group, apply Zariski–van Kampen theorem [12] to the
vertical pencil {z̃ = const}, choosing for the reference a generic fiber F = {z̃ = ε} close to the
origin. On the one hand, one has an epimorphism π1(F rC) � π1(P2rC). On the other hand,
the intersection C ∩ {z̃ = 0} consists of a single 6-fold point; hence, if ε is small enough, all six
points of the intersection C ∩ F belong to U and the generators of π1(F r C) can be chosen
inside U . �

3.1.2. Corollary. Let C ′ be a perturbation of the curve C as in 3.1 with the set of singularities
A14 ⊕A2 ⊕ 2A1. Then π1(P2 r C ′) = B3/(σ1σ2)3.

Proof. Let U be as in Lemma 3.1.1. Then π1(U r C ′) = B3 and, due to the lemma, there is
an epimorphism B3 � π1(P2 r C ′). Since C ′ is necessarily irreducible and of torus type (so
that the abelianization of π1(P2 r C ′) is Z6 and π1(P2 r C ′) factors to B3/(σ1σ2)3), the latter
epimorphism factors through an isomorphism B3/(σ1σ2)3 ∼= π1(P2 r C ′). �

3.1.3. Remark. The other irreducible perturbations of C that are of torus type are considered
elsewhere, see [5]. Their groups are also B3/(σ1σ2)3.

4. Proof of Theorem 1.0.1

4.1. The groups of all but one sextics of torus type occurring in classical Zariski pairs are known,
see [5] for a ‘map’ and further references; all groups are B3/(σ1σ2)3. The only missing curve has
the set of singularities A14 ⊕A2 ⊕ 2A1. Such a curve can be obtained by a perturbation from
a reducible sextic of torus type with the set of singularities A17 ⊕ 2A1 (see Proposition 5.1.1
in [6]), and its group is given by Corollary 3.1.2.

4.2. The fundamental groups of most non-abundant sextics appearing in classical Zariski pairs
are computed in [5], [8], [3], with a considerable contribution from [9]. According to [3], unknown
are the groups of the curves with the sets of singularities

A17 ⊕A1, A14 ⊕A2 ⊕ 2A1, 2A8 ⊕ 2A1, 2A8 ⊕A1.

The first curve can be obtained by a perturbation from a sextic with a single type A19 singular
point. According to [2], its group is abelian. The three other curves are perturbations of the
curve C constructed in 2.1, and their groups are abelian due to Corollary 2.1.4. (Note that the
perturbations exist due to Proposition 5.1.1 in [6], and the resulting curves are unique up to
equisingular deformation due to [1].) �

4.2.1. Remark. A curve C as in 2.1 can also be perturbed to a sextic with the set of singularities
A17 ⊕A1, but the result is reducible.
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