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THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF THE
SINGULAR LOCUS OF LAURICELLA’S F¢

YOSHIAKI GOTO AND JYOICHI KANEKO

ABSTRACT. We study the fundamental group of the complement of the singular locus of
Lauricella’s hypergeometric function Fo of n variables. The singular locus consists of n
hyperplanes and a hypersurface of degree 2"~! in the complex n-space. We derive some
relations that hold for general n > 3. We give an explicit presentation of the fundamental
group in the three-dimensional case. We also consider a presentation of the fundamental group
of 23-covering of this space.

1. INTRODUCTION

In the study of the monodromy representation of Lauricella’s hypergeometric function Fo (see,
e.g., [4]), we consider the fundamental group of the complement of the following hypersurfaces:

(x1=0), ..., (z, =0), S™ = (F,(z) =0) c C",

where

Fo(x) = H (1 - Z(_l)akm> .

(a1,...,an)€{0,1}n k=1

Note that F,(x) is an irreducible polynomial in x;’s of degree 2"~1. For example, the complex
curve S = (Fy(z1,27) = 0) is given by

(1.1) Fy(x1,x9) :m%—i—mg — 2w12T9 — 201 — 29 + 1,

and Figure 1 shows (z1 = 0), (z2 = 0) and S?) in R?. The complex surface S®) is known as a
Steiner surface (see, e.g., [7]).

Throughout this paper, we assume n > 2. Let X (™ be the complement of these hypersurfaces.
We consider n + 1 100ps 40,71, - - -, Yn in X™); ~; (1 < k < n) turns the divisor (z; = 0), and 7o
turns the divisor S around the point (#, cee %) € 5™ (see Figure 1, for n = 2). Explicit
definitions are given in Section 2.

Fact 1.1 ([4]). The fundamental group 7 (X ™) is generated by vo, 71,-.., Vn. Further, they
satisfy the following relations:

(Rij) Vil =1 (1<i<j<n),

(Ry) (ow)? = (w0)? (1 <k <n),

where [a, ] = afa~tp7L.

In this paper, we discuss the following:
e another relation in m; (X ™) for n > 3,
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FIGURE 1. X® and loops.

e precise calculation of zrl(X (), )
e a presentation of m (X)), where X®) is a 23-covering of X ).

The main part of this paper is calculation for n = 3 (the second and third topics). In the
following, we explain each topic.
First, we give another relation in 71 (X (”)), by using similar methods to [4]:

Theorem 1.2. For I ={i1,...,ip}, J ={j1,...,4q} C{1l,...,n} withp,g>1,p+qg<n-—-1
and INJ =0, we have

(R1s) (Vi Vi )P0 (s =+ 3,) ™Y (i v )0 (-, T = 1

Note that if n = 2, this relation does not appear, and it is shown in [6] that the relations
(Ri;) and (Ry) generate all relations in 71 (X)), that is,

m(X®) = (v0,71,%2 | [11,72] = L, (0m1)* = (1170)% (7072)* = (1270)).

Second, we prove that if n = 3, the relations (R;;), (Ryx) and (R;;) generate all relations in
71 (X®)), that is,

Theorem 1.3.

m(X®) = <70,’71772,73

iyl =1, Doy 0y =1 (1<i<j<3) >
(07%)* = (W0)? (1 <k < 3)

To prove this theorem, we compute 71 (X (3)) in detail by using the theorem of van Kampen-
Zariski. We cut X ) by a plane and consider a pencil of lines. Then we obtain many monodromy
relations, and we reduce them to those in the theorem.

Finally, we consider a covering space X0 of X () (especially, the case of n = 3). If we put
T = fg, then F), is decomposed into 2" linear forms in &;’s. This means that there exists a
2™-covering space X () of X which is a complement of hyperplanes. By using our presentation
of 1 (X®)) and the Reidemeister-Schreier method, we also obtain the presentation of m; (X ®)).
There are several studies for the fundamental group of the complements of hyperplane arrange-
ments (see, e.g., [1], [8], [9], [10], [11]). However, it seems difficult to present m; (X (™) explicitly,
even if we apply these results.
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The relations (R;;), (Ry) and (Rr.) generate all relations in 71 (X)) for n = 2, 3, while we do
not know if the same claim holds for n > 4 or not. As in Section 4, a plane cut of X () has three
nodes, and we can interpret that these nodes correspond to three relations (Ry;). However, a
plane cut of X®* has 20 nodes, and the number of relations (Ryy) are 18. Thus, it seems that
relations different from the above ones hold.!

Since our detailed calculations are very long, we omit some of them in this paper. For the
omitted calculations, refer to the separate appendix here.

Acknowledgments. The authors are grateful to Susumu Tanabé for helpful discussions.

2. PRELIMINARIES

We give explicit definitions of the loops vg,71,- -5 Vn-
Weput 1 =(1,...,1) € C". Let & = #-1 € X be a base point. For 1 < k < n, let
be the loop in X defined by

1 627“/?10 1
0,130 | —,...,———, ..., — | e X",
Vi [0:1] <2n2 2n2 2n?
k-th
We take a positive real number g so that ¢y < mim{#7 ﬁ — n—lz}, and we define the loop

Y0 in XM as 49 = 197470, where

1 1
70:[0,1] 3 60 — ((1—0).+9- (nz—so>> 1ex™,

and 7y is the reverse path of 7.

Remark 2.1. The loop v (1 < k < m) turns the hyperplane (zy = 0), and 7o turns the
hypersurface S(™ around the point - - 1, positively. Note that # -1 is the nearest to the origin

inS(”)ﬂ(mlzxgz---:xm):{%-1, (n52)2~17...}.

3. PROOF OF THEOREM 1.2

In this section, we assume n > 3 and prove Theorem 1.2. We use similar methods to [4,
Appendix]. However, we change some notations for our convenience.

We regard C" as a subset of P* and put L., = P" —C™. Then we can consider that S is a
hypersurface in P™, and

X =cr - ((m1~-~xn=O)US(")>
=P" - ((mlxn :0)US(")ULOO).

Note that if we use homogeneous coordinates xg,z1,...,2, (i.e., Lo = (z¢o = 0)), then the
defining equation of S becomes more symmetric form. For example, by (1.1), the curve
S(2)  P? is expressed as

xy + o7 + a3 — 2(wow1 + T2 + T122) = 0.

A symmetric form of the defining equation of S is given in the beginning of Section 4.

L After our submission, Terasoma [12] has shown that the relations (Rij), (Ri) and (Ryy) generate all relations
in (X(">) for general n.
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By a special case of the Zariski theorem of Lefschetz type (see, e.g., [3, Chapter 4 (3.1)]), the
inclusion L N X (™ < X induces an epimorphism

7 (L N X(")) — 7T1(X(n))a

for a line L in P* which intersects P* — X(*) transversally and avoids its singular parts. Note
that generators of m (L N X (”)) are given by n + 2"~ ! loops going once around each of the
intersection points in L N ((x1 -2, = 0) USM™) C C". To define loops in X explicitly, we

specify such a line L in the following way. Let r1,...,7,_1 be positive real numbers satisfying
1 r
Tho1 < =, T < kil (1<k<n-2),
4 4
and let £ = (e1,...,&,—1) be sufficiently small positive real numbers such that ey > -+ > &, 1.

We consider lines

Lo :(z1,...,xp_1,2n) = (r1,...,7n—1,0) + ¢(0,...,0,1) (t € C),

Le:(x1, .. yp_1,@n) = (11, .., 7n—1,0) + t(1,...,en—1,1) (t €C)
in C*. We identify L. with C by the coordinate ¢. The intersection point L. N (zp = 0) is
coordinated by t = 7:7;; < 0, for 1 < k < n—1. The intersection point L. N (z, = 0) is

coordinated by t = 0. On the other hand, L. and S(™ intersect at 2"~ points. We coordinate
the intersection points L.NS"™ by t = t4,..a._,, (a1,...,a,_1) € {0,1}"~ . The correspondence
is as follows. We denote the coordinates of the intersection points Lo N S by

n—1 2
9 . = (1 - Z(_nawﬁ) .

k=1
By this definition, we have

0 0
tl(ll)'"anfl t((lll)a:zfl
(3.1) < drst.a,—a,=0@G=r+1,...,n—1), a, =0, a, = 1.
For (ai,...,an_1),(a},...,al,_y) € {0,1}"71, we denote (a1,...,a,_1) < (ay,...,al,_;) when
(3.1) holds. For example, if n = 4, then

0 0 0 0 0
téo)o < t(o)o < tél)o < t( 110 < t(()())l < t(01 < t(()l)l < t§1)1

Since L. is sufficiently close to Lo, t4,...a,_, iS supposed to be arranged near to t( ) gy 1~

Since Ly does not pass the singular part of S, for sufficiently small e}’s, L. also avoids the
singular parts of P* — X" Thus, 7. : m; (LE N X(")) — 7 (X)) is an epimorphism.

Let ¢}, be the loop in L.NX () going once around the intersection point L. N (zr = 0), and let
Lo, ...a, , be the loop going once around the intersection point ¢,,...q,, ,. Each loop approaches
the intersection point through the upper half-plane of the t-space; see Figure 2.

As in [4], we have
ne(ly) = (1<k < ) e (Lo.-.0) = Y0,
iy = (1<, <n).

To investigate relations among the 7. (Zal‘..anfl)’s, we consider these loops in Ly N X (™. By the
above definition, we can define the £, ... ’s as loops in Lo N X (™. Since Ly is sufficiently close
to L, the image of £, ... under

\ /\

an—1

an—1

/s (Lo ﬁX(")) — m(X™)
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FIGURE 2. /¢, for n = 3.

coincides with 7. (€4,...a, ) as elements in (X (™). Though 7 is not an epimorphism, relations
among the 7(£g,...q, ,)’s in 71 (X ™) can be regarded as those among the 7. (£q,...a, _,)’s.
In [4], we move Ly as follows. For § € [0, 1], let L(6) be the line defined by
L(G) 5(ZE17 vy Thy e 7:E7L—1a'1:n)
= (ry,..., eV r_1,0)+¢(0,...,0,1) (teC).

Note that L(0) = L(1) = Ly. We identify L(6) with C by the coordinate ¢. It is easy to see that
the intersection points of L(#) and S are given by the following 2"~ elements:

n—1 2
o a; ag T —
to s = <1Z<1> T (1) e m) .

i=1
Gk

The points 1 =37, (=1)% /15 — (=1)% \/rre™ =1 are in the right half-plane for any 6 € [0, 1],
since E;:ll VTj < E;:ll 277 < 1. Let 6 move from 0 to 1, then

(a) +D) _ 4(0) 1) —+O
ar-ag—10ag41am—1 ar-ag—1lagti-am—1’ Yar-ag—10ag41am—1 ar-ag—1lagti-am—1’
0 .
(b) 75511).“%711ak+1,_.am71 moves in the upper half-plane,
0 .
(c) tfll)'"ak—loalc-f-l“'am—l moves in the lower half-plane.

For example, the ¢4, 4,4, ’s move as Figure 3, for n =4 and k = 2.

—— ——
= =
7 \\ 7 \\
4 \ 7 \
/ /

0 tooo t100 tolo t110 too1 t101 to11 t111
N // \ ,/
\\ _7 \\ _7
- -

FIGURE 3. t; 450 for n =4, k=2.

We put P(f) =C — {t,(l(i)..an_l | a; € {0,1}} that is regarded as a subset of L(#). Let &’ be
a sufficiently small positive real number, and we consider the fundamental group 71 (P(0),e’).
As mentioned above, the £,,...,, ,’s are defined as elements in 71 (P(0),&’) = 71 (P(1),¢’). If we
move 6 from 0 to 1, then the ¢,,...,,_,’s define the elements in each 71 (P(6),’) naturally.

Note that by this variation, the base point moves around the divisor (z; = 0), since the base
point ¢’ € P(#) corresponds to the point (rq, ..., 2™V =10, Tm—1,€") € L(#). It implies the
conjugation by ~y; in my (X ™).



300 Y. GOTO AND J. KANEKO

In [4], we investigated the loops fa,...a;_,1as4,--a,,_, under this variation, and we obtained
the following.

Fact 3.1 ([4, Lemma A.1 (i)]). We have

T](Eal"'ak—llak+1"'anL—1) =Yk n(£a1--~ak710ak+1"-amf1) : 7]:1'
Furthermore, we obtain
N(layan_y) = (0 1"7) 70 (7)™
By considering the case k = 1 and £y...o € m1(P(0),€’), we also obtained the following

Fact 3.2 ([4, Lemma A.1 (ii)]). We have
1(€o-.0) = 71 - 1(lo-.0l10--005.-0) - 11
and this implies (yov1)? = (7170)2-
Remark 3.3. Changing the definitions of Ly and L., we obtain the relations
(o)?* = (w10)* (L <k <n).
For example, if we put
L. : (z1,22,...,2n) = (0,71, ...,7n—1) +t(l,e1,...,en—1) (t €C),

then a similar argument shows (v972)% = (7270)%. By the same reason, for the proof of Theorem
1.2, it suffices to show that

(3.2) (71 Yp=1Yp+a)v0 (71 -+ "7p71'7p+q)_17 (Y Ypra—1)70(Vp - "Yerqfl)_l] =1,
for any p,q > 1, p+q < n — 1. (Though the indices are complicated, this formulation is
convenient for our proof.) Note that if p = 1, we regard 71 - - - yp—1 = 1.

Now, we investigate changes of other loops to prove Theorem 1.2. For p,g > 1, p+qg<n-—1,
we consider

fl...u)‘..o()...() = él ...10---00---0>
S~
p—1 q n—p—q

and its change for kK = p 4+ ¢. By the properties (a), (b), (¢) and the proof of [4, Lemma A.2]
show the following.
Lemma 3.4. The loop {1...10...00---0 in 71 (P(0),&’) changes into

—1

= =<
H Loy apig10--0 | £1..10--01--0 H Loy iapiq 100
(a1,...,ap4q-1)€{0,1}PFa—1 (1,38ptq_1)€E{0,1}P+a—1
<

inm(P(1),e"), where the notation H means the product multiplying in ascending order of indices
with respect to <.

For example,
=
Il ‘aras00 = Lovootro00forontrnoo.
(al’a2)6{0’1}2
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Since this variation corresponds to the conjugation by vy = vp+4, Fact 3.1 and Lemma 3.4 imply

(-0 o)
<
= vp+q< 11 (e (v -~-v§i§tll)‘1>
(a1,--sapyq—1)€{0,1}PFTa—1
(m-e ’Yp—l’Yp-&-q)’YO(’Yl o "Yp—17p+q)71

- -1
' < H (QERERE ;ﬁzq:f)% QERERE 7512q11)1> 717_-4}q‘
(al,..

8pyq—1)€{0,1}PHa—1

=<
Note that the first factor of H is 70. Multiplying 'yal'y;ﬁq by left and 7,44(---) by right, we
obtain

(3.3) ’y&lwﬁq(’h o Yp—1)Y0 (1 - "Ypf1)_1 *Ypt+q -0

=<
- —1y—1
( 11 (1 e T (T i) )
(a1,..., ap+ _1)6{0’1}1)4»1171
(@1 11ty s 4—1)#(0,...,0)

<
- —1y—1
( 11 QR A ] O LR A A )
(@1,-8ppq—1)€{0,1}PFI71
(@1r-espt g—1)7(0;-..,0)

S 1Y) 0 (N Y1) T
We prove Theorem 1.2 by using this equality. Before starting the proof, we give a useful equality:
(3.4) Ve 0TV = Y0TEYVOVk
which is equivalent to the relation (Rj). We also note that the relations (Ryy) is equivalent to
[(vi =, ™ 90 (i - 3,), (- 5,) ™ 0 (v v, = 1,
by (Rij).

Proof of Theorem 1.2. We show the theorem by induction on p+¢ > 2. As mentioned in Remark
3.3, it is sufficient to show (3.2) for each p, g. Considering the conjugation by ~;’s, we have the
following lemma.

Lemma 3.5. Assume that we have proved (5.2) for any p,q with p+q < k—1. Then we obtain
the relation (Ryy) for

I={ityoyivky J={jreeie} € {Lim)

which satisfy I ¢ J, I p J and #(IAJ) < k — 1. Here, INJ is the symmetric difference of I
and J.

First, we show the case p + ¢ = 2. In this case, we have only to show that

(3.5) Mvov: H 20 ] = L.
The equality (3.3) for p=¢=11is

Yo v 1T v 0 (v ) =m0 20
By (3.4), the left-hand side equals to

Y5 5 012707117077 = 15 02075 T = eyt o
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Thus (3.5) is proved.
Next, we assume that we have proved (3.2) for any p, ¢ with p+¢ < k—1 (recall Lemma 3.5),
and prove (3.2) in the case p + ¢ = k.

Claim 3.6. If
(1,..., 1,0,...,0) < (a1,...,apyq—1) = (1,...,1) and (a1,...,aptq-1) # (0,..., 0 ,1,...,1),
then we have
[ T 0 (- ) ™ (- Yo 1) Y0 (0 - Vo1 Ypa) T = 1
Proof of Claim. We put I = {i | a; =1} and J = {1,...,p — 1,p + ¢}, and we show I and J
satisfy the conditions in Lemma 3.5. Clearly, p+¢q € J — I and hence I 2 J. Since
(1,...,1,0,...,0) < (a1, .., aprq1),

there exists p < i < p+ ¢ — 1 such that a; = 1. This implies that I ¢ J. Because of

IuJcA{l,...,p+gq}and (a1,...,ap4q—1) # (0,..., 0 ,1,...,1),

we obtain #(IAJ) <p+q—1=k—1, and hence I and J satisfy the conditions in Lemma 3.5.
Thus, the claim is proved. O

By applying this claim to the right-hand side of (3.3), we have

(3.6) Yo Yprg (1 Yo-1) W0 (1 Ypm1) T Yprg 0
=<
. G AT ) (0
(,yl p+q )7(71 ,yp+q ) 1
(0,...,0)=(a1,...,ap4q—1)=(0,...,0,1,....1)

(W Ypta—1)Y0(Vp "Vqurqfl)_1

<

— ai Ap+q—1 ai Aptqg—1\—1

= < H (vt p+q—1 )v0(71 © Vptg—1 ) )
(07'~~70)‘<(‘11y~~~7ap+q71)'<(07-~"071;~-71)

: ('Vp e "Vp-‘rq—l)'YO('Yp T '7p+q—1)_1 : ('71 T ’Yp—l'Yp-&-q)'VO(’Yl - "Yp—l'yp-‘rq)_l'

We rewrite the first line:
(3.7) Yo ot (L Yom1) W0 (YL Vo) T Yprg 0 =
Yo (O 1) Yt 0Upra - (1 Yp=1) T (Y p1) - (1 pmr) T =
(Y1 Yp1) - ”Yp_-&q%%ﬂ (71 -+ Yp—1)"*(where we used the induction hypothesis.)

Claim 3.7. This product commutes with (y7* - Zi;‘ff)%(fﬁl .. .,ng’rzq:ll)*l, for

(0,...,0) < (a1,...,aprq-1) < (1..., 1,0,...,0).
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Proof of Claim. Since (0,...,0) < (a1,...,8ptq-1) < (1...,1,0,...,0), we have a; = 0 fori > p
and
Aptq—1 Aptq—1 -1

(A () T = (et (et T =

_ l1—ap_1y— - 1—a,_ _
(1), ) (e T ) (1) T
Thus, the claim is equivalent to
_ _ l—ap_1y— _ 1—ap_
Mot 10Yprgs (17 9,207 ) T e Ty, ) = 1

This relation follows from the induction hypothesis and (1 —a1,...,1 —ap—1) # (0,...,0). O
Since (3.7) is changed into

(Y17 Yp-1) Vg Y0Vorq - (1 ¥p—1) "
= (71 Wp-1)  VprgW0Tpta Y070 (1 Y1) !
= (Y1 V1) V0V 10V pig Vo (1 Ype1) T
=m0 )T (e Ve 1Y) 0 Vo1 Vorg) T
_1y—1
) ((71 o Yp—1)Y0 (V1 Yp-1) 1) )
the left-hand side of (3.6) is

<
(3.8) < 11 O i (vt - -WZiZ‘if)‘l>
(0,..,0)<(

al7~~;ap+q71)<(1‘“’1aovuvo)

)Y (1) T (e Y1 ) Yo (T Yp— 1Y)

<
ai Apt+q—1 ay Ap+q—1\—1
) < H (vt p+q—1 )01 © Uptg—1 ) )
(1..,1,0,...,0)= (a1, 1 q—1)=<(0,...,0,1,...,1)

: ('Vp e "Yerqfl)'VO('Yp T '7p+q71)_1-

By Claim 3.6, (71 Yp—1Vp+¢)%0 (71 *** Yp—1Vp+¢) + commutes with the third line. Then (3.8)
is equal to

=<
ay Ap+q—1 ai Aptq—1\—1
( H (vt p+q—1 )Y0(7 “ Uptg—1 ) )
(0,...,0)< (a1, s@p1gq—1)<(0,...,0,1,...,1)

(7 Y1) 0 (N 1Y) T (W V=)0V Vprg—1) T
Therefore, (3.6) implies the commutativity (3.2). O

4. PRESENTATION OF 71 (X (%))

Hereafter, we mainly consider the case of n = 3. In this section, we prove Theorem 1.3.

To prove the theorem, we consider a plane cut of X (3). In the projective space P3, the defining
equation of S®) is

(Vo = V1 = VT2 — /) (Vo + VT — /73 — V/T3)
(Vo — VT + V/Fz — V) (Vo + VT + V)
(Vo = VT = V/Fz + V/E5) (VG + V/ET — Vi + V)
(Vo = VT + VT3 + V) (Vo + VT + VT + V)

2
= (2(af + 21 + 23 + 23) — (wo + 21 + 22 + 23)%)” — 64moz 2273
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By [5, Chapter XVII, §3, Ex. 11], a plane cut (substituting z;’s for linear forms) of S©® is a
quartic with four bitangents

xz:O (i:07172a3)5

and with three nodes

T; =Tj, Tp = T ({Z7Jak7l}:{0a1a273})

We cut @ by H ~ P? with coordinates (z,y,2) as

(4.1)

ro=a—4z, T1=—x —Y, Ta =Y —T, T3 =—T+ 2.

Then, the defining equations of the components of (P> — X)) N H are as follows:

Lo=(xg=0)NH:x—42=0,

Li=(@x=0NH:—2x—y=0,

Lo=(xzo=0NH:y—x=0,

Ly=(x3=0NH:—x+2=0,

Q=25S®NH: (42% 4 4y? — 32z2 + 252%)? = 64(y* — 22)(z — 2)(x — 42).

By using dehomogenized coordinate (z,y) (put z = 1), their expressions in C? are given as

Ly:x—4=0, Li:x+y=0,
Ly :y—x=0, Ly:x—1=0,
Q: (422 + 4y? — 320 + 25) = 64(y* — 2?)(x — 1)(x — 4).

Note that the line at infinity (z = 0) C H is not a component of (P> — X)) 0 H. By Zariski
theorem of Lefschetz type (see, e.g., [3, Chapter 4 (1.17)]), the inclusion X®) N H — X©)
induces an isomorphism

(4.2)

m(X® N H) = m(X®),

4.1. Preliminary. To compute 7 (X ®) N H), we consider {£y : y = Mz + 1)}xec € H which
is a pencil of lines through (—1,0) € C2.
We summarize some numerical data. See also Figure 4.

@ has three nodes (3,0), (3, +1).

Lg is tangent to @ at (4, i@).

L, is tangent to @ at (2 + @, -2 — @) and (2 — @, -2+ @).

L, is tangent to Q at (2 + @,QJr @) and (2 — @,2 — @).

Ls is tangent to Q at (1,:&@).

The intersection points of Lo (: y = 0) and Q are (2,0) (double root), (15 + ‘/Tj, 0).
The line £ is not generic for X®) N H if and only if \ coincides with 0, £a1, ..., £a1o
or a;; = oo which is given in Table 1. Note that each of £ay, ..., Zaj¢ is a real number.

As will be seen in the following computations, the fact that most of these data are real is useful
for our precise computation.

4.2. Computation of 7;(X®) N H). We compute 71(X®) N H) precisely. By the theorem of
van Kampen-Zariski (see, e.g., [3, Chapter 4 (3.15)]), all relations in m(X®) N H) ~ m (X®))
are obtained from the monodromy relations around the 21 points 0, +ayq, ..., ajg (note that
the relation around a;; = oo follows from the others).

Since X () N H is invariant under [z : y : 2] = [z : —y : 2], the monodromy relations around

—aiy, ..

., —a1o are obtained by a discussion parallel to those around a, ..., aip.
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L3 Lo Lo

Ly

L

FiGURE 4. X®) N H c R2
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Ly passes through
the node (%, 0) € @ and the intersection point (0,0) = Ly N Lo.

a1 = 0.2607431304

a, 1s tangent to Q.

as = 0.4

passes through the node (%, 1) eq.

Q
[§)

as = 0.4330127020

passes through the tangent point (1, %2) € L3 N Q.

Q
w

ay = 0.5

Q
&

2
passes through the intersection point (1,1) = Lo N Ls.

as = 0.5156413111

passes through the tangent point (2 — ¥4 2 — @) eLNQ.

ae = 0.5196653275

is tangent to Q.

N
o

a7 = 0.6244997998

S
3

ag = 0.7458971504

passes through the tangent point (4, %22) € Ly N Q.
2

S
3

passes through the tangent point (24 ¥4 2 + ¥4y c [, N Q.

ag = 0.7574500843

l\l\l\l\phhhh

IS}
©

is tangent to Q.

aip = 0.8

L., passes through the intersection point (4,4) = Lo N Lo.

a11 = o0

La,, (: x = —1) passes through the intersection point Ly N Ls.

TABLE 1. List of a;’s

We fix a positive real number ag such that 0 < ag < ay. First, we move A from ag to a;; = oo.

(0) At A= ag, Lq, is a generic line for X®) N H. We put {hy, ..

which are indexed as follows.

hi | ho | ha | hy,hs, he, hr | hg

component | Ly | Lo | L3 Q Ly

Lhg) = (PP = XOGYNHNLy,
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X

hy

Qg
X X X X X X
h1 hz h3 h6 h7 h8

(e %1 (o) a3 Qg a7

X

hs

Qs

(1)

Y. GOTO AND J. KANEKO

Here, we suppose that hg < hy are real numbers, and hy, hs are complex numbers satisfying
Im(hs) < 0 < Im(hy). We take generators aj, ..., ag of

m(X® NHNLy) ~ m (P — {8 points})

as Figure 5 (for simplicity, we consider v/—1cc as the base point in our pictures, though we
should take (—1,0) € Ly as a base point). Note that «; is a loop going once around h; via
the upper half-plane. By the definition, we have a relation

041"'04821.

asg

FIGURE 5. Loops in L,,

At A = a1, Lo, is tangent to (. If we move A around a;, then hy and hs interchange
counterclockwisely. This implies a monodromy relation

a4 = Q5.

By considering the half-turn of this move, we obtain a picture of X®) N H N £, with
a1 < X\ < ag; see Figure 6.

g Q2 a3 Oy Qs Qg (64 as

FIGURE 6. Loops in £y with a1 < A < as
At X\ = aq, L,, passes through the node (%, 1) € Q. When the line £y approaches L,,, the
points hs and hg merge together and we get a monodromy relation
[as, 6] = 1, that is, [ayg, ag) = 1.

By considering the half-turn of this move, we obtain a picture of X®) N H N £, with
as < A < ag; see Figure 7.
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aq Q3 as Qg Qg Qs [e%¢ Qg

FIGURE 7. Loops in £y with as < A < a3

(3) At A = a3, L4, passes through the tangent point (1, ?) € L3N Q. When the line £y
approaches L, the points hz and hy merge together and we get a monodromy relation (see
also Figure 8)

(0&3(14)2 = (a4a3)2.

Fi1cURE 8. Loops in £y obtained by moving A around as

By considering the half-turn of this move, we obtain a picture of X®) N H N £, with
az < A < ay; see Figure 9. We retake loops around hs and hy by as and a4 in Figure 9,
respectively. Note that

~ 1 1 -1 -1
b3 = agouaz(say) = azuoga,  az = 0 0304,

-1

- -1
Gy = asoyag(osay)” = azouog .

(4) At A = a4, L,, passes through the intersection point (1,1) = Lo N Ls. When the line £y
approaches L,,, the points hy and hg merge together and we get a monodromy relation

[, &3] = 1, that is, oo, ag ‘azay] = 1.

By considering the half-turn of this move, we obtain a picture of X3 N H N £y with
ag < X\ < ag; see Figure 10.

(5) At A = as, L4, passes through the tangent point (2 — g, 2— g) € LoN@. When the line
Ly approaches L, , the points hy and hy merge together and we get a monodromy relation

1

(ody)? = (Aga0)?, that is, (a2a3a4a§1)2 = (azaq0s as)?.
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X
X

asg

FIGURE 9. Loops in £y with az < A < a4

Qs [e%] Qy [e7] Qs [e%

asg

X

FI1GURE 10. Loops in £y with a4 < A < as

By considering the half-turn of this move, we obtain a picture of X () N H N Ly with
as < A < ag; see Figure 11. We retake loops around hy and hy by é&s and a4 in Figure 11,
respectively. Note that

P —1y—1 —1y _ -1 -1 —1
Go = Gy aoby = (azouay ) as(agauas ) = agay  Qz Qo0saos

= a;la§1a3a4a3a11a§1a2a3a4a51 = (azoy) oo (azay),
Qy = a2d4a§1 = (042063)Ol4(a2043)71.

Here, we use the relations obtained in (3) and (4).

FIGURE 11. Loops in £y with a5 < A < ag

6) At A\ = ag, Ly, is tangent to Q). If we move A around ag, then h, and hg interchange
6
counterclockwisely. This implies a monodromy relation

Qg = du, that is, ag = (coars)ay(anasz) ™.
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By considering the half-turn of this move, we obtain a picture of X®) N H N £y with
ag < A < ar; see Figure 12. Note that in £, with A > ag, two points hy and hg are
not in the real axis, and satisfy Im(hs) < 0 < Im(hg).

LG

FIGURE 12. Loops in £y with ag < A < ar
(7) At X\ = a7, L,, passes through the tangent point (4, @) € Ly N Q. When the line £y
approaches L., the points hy and hg merge together and we get a monodromy relation
(0470‘8)2 = (a7a8)2.

By considering the half-turn of this move, we obtain a picture of X®) N H N £y with
a7 < A < ag; see Figure 13. We retake loops around h; and hg by &7 and ag in Figure 13,
respectively. Note that

~ -1 ~ -1
Q7 = Qg Qrag, ag = QragQy .

I
,
X a7/
P
/7
« .
6 i
B
X X X X
e
aq 5[3 5[2 Qs \\
X
Qy

FIGURE 13. Loops in £y with a7 < A < ag

(8) At A = ag, L, passes through the tangent point (2 + ‘ﬁ 2+ ‘ﬁ) € Ly N Q. When the
line £ approaches L,,, the points hy and hs merge together To write down a monodromy
relation, we retake loops around hy and hs4 by of 1d2a6 and dgc:udg 1, respectively (see
Figure 14).

By using these generators, we obtain a monodromy relation

(ag1&2a6a5)2 = (04504610720[6)2.
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é
[e73
X X X X
Qs az

0&51542046 5‘8

>< l)
Qg

(5]

Aoliydy !
FIGURE 14. Retaking loops at £y with a7 < A < as.

Because of a5, ag] = 1, we can reduce this relation to
(Gpa5)? = (asd0)?, or equivalently, (Goay4)? = (asdz)?.
By considering the half-turn of this move, we obtain a picture of X N H N £, with

ag < A < ag; see Figure 15. We retake loops around hy and hs by ao and és in Figure 15,
respectively. Note that

ag = ag H(ag tagas)as = ag tag t(azas) Las(azag)agas
= (043044045046)_1042(013044045046),

1~ -1~ -1 I |
G5 = ag Geagas(ag Goag) = a5 Goasls g

agl (a3a4)_1a2(a3a4)a4(a3a4)_1a51 (azay)ag

aglaglaglagogcuag.

= aglaglagloqaﬁailaga;;aﬁ

= ag1agallag1a4a51a6a2a;1a3a4a§1a6

1 1 1

= agagazlagl Coy a§1a4 . a3a4a3_1 . Ck4_1043044 s Q30 Qg

= a2a4a2_1.

Here, we use [as, ag] = 1, a5 = ag, (aza4)? = (aga3)?, (g, o tazay] = 1, [ag, 6] = 1 and
a;lagag = a3a4a§1.

At A = a9, L, is tangent to . If we move A around ag, then hs and h; interchange
counterclockwisely. This implies a monodromy relation

O~é5 = 5&7, that iS, OéQOé4OzQ_1 = Oégl()wag.

By considering the half-turn of this move, we obtain a picture of X®) N H N £, with

ag < A < ajp; see Figure 16. Note that in £y with A > a9, two points hs and h; are

not in the real axis, and satisfy Im(hs) < 0 < Im(h7).

At X = ajo, Lq,, passes through the intersection point (4,4) = Lo N L. When the line £y

approaches L,,,, the points ho and hg merge together. To write down a monodromy relation,

we retake loops around ho and hs by d;lo:zgc% and 5[2&5&51, respectively (see Figure 17).
By using these generators, we obtain a monodromy relation

(a7 tandr, ag) = 1.
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—1~ I
Qg Otz(?vg,
/
X /
/A B
/L
Q .
6 e
1
X X i
N
o Qg Mo
X

Asaydy

FIGURE 15. Loops in £y with ag < A < ag

X X
(€73 5[7
X X X X
a a o ag
X X
Goliydry ! as

FIGURE 16. Loops in £y with ag < A < aqg

FI1GURE 17. Retaking loops at £y with ag < A < ajp.

By considering the half-turn of this move, we obtain a picture of X N H N £, with
a1p < A < ayr; see Figure 18.

(11) At A = aq1, La,, passes through the intersection point LoNLs. When the line £, approaches
Lq,,, the points hs and hsg merge together. To write down a monodromy relation, we
redraw a picture of £,,, =~ P! so that hg is leftmost, and we retake a loop around hg by
(d;légdwq)_1&g(d;152d7a1) (see Figure 19).
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) 5
Qg
X X
aq 63
X
~ T ~_1
a0y Oy

i LG diy
FI1GURE 18. Loops in £y with a1g < A < a1

: X
ar
-'-44.". ~71~ -

JU 1~ fA—13% o~ x x

(a7 qodraq) tas(ar " @sdron)

FIGURE 19. Retaking loops at £y with ajg < A < a1;.

By using these generators, we obtain a monodromy relation
~—1% ~ 1~ f~—1% ~ ~
[(057 012047041) Oég(Oé7 012017041)7013] =1.

Therefore, we obtain the all relations for A > 0. We list the relations obtained in A > 0:

) .. ag =1
1) a4 = as;
2 [0[4,0l6] ].,
3

)
)
) (asas)® = (aqas)?;
4) [ag, ) tazay) = 1;
) (gazaqasg 1)2 = (a3a4a51a2)2;
) Qg = 042043&4(@2043) 1;
) (arag)? = (agar)?;
) (za5)? = (azdn)?;
) a2a4a2 1= a§1a7a8;
( O) [ 042047,0ég] 1; ~
(11) [(Oé7 10&2(170[1) 1548(647_16426&7(11),653] = 1,
where

(0
(
(
(
(
(5
(6
(7
(8
(9
1

Qg = (043044)_1042(%044), Gy = (043(14@5046)_1a2(043a4a5a6),

~ -1 ~ -1 ~ —1
Q3 = 0y (304, Q7 = Og  Qrag, ag = a70g0y .
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Note that the relation (11) obtained as the monodromy around a7 = oo is not needed (see also
Remark 4.3).

Next, we move A from a positive number to a negative one around A = 0. Then we have two
interchanges a ++ as and ag <> a7, and obtain the monodromy relations (0’) below. We obtain
the monodromy relations around —ay, ..., —ajg as follows (recall that (1) ay = as):

(0) [a1, a2] =1, [ag, 7] = 1
(1’) same as (1);
(2') s, 7] = 15
(3’) same as (3);
(4) [o, 05 tazay) = 1;
(5) (azauaz')? =
(67)
(7)
(8)
(97)
10”)
11

)
)
i

i

= (0430646151&1)2;
a7 = aqazag(arag) ™l

(sas)? = (asap)?;
(@1a5)* = (asa))%;

)

i

’ a1a40¢1_ —ozglawzg;
(10°) [ag~ "0/ 1, ag) = 1; B
(11) [(af~ 6 1ap0n) " as(ap '@ 1Gha0), a5) = 1;

here
ay = (azos) tar(asay), @'t = (asasasar) o (asosasar),
ah = ajtazay, @b =g asas, Gy = asagag .
By using the relations (0), (1), (6) and (6’), we have

(2), (3), (4), (5), (07, (2), (), (5") >

™ ®) =( a1,092,03,Q
N < TR T (T), (8), (9), (10), (7), (8, (97), (107)

We put
(4.3) Bi=ai, Po=as, Ps=d3=oa;'azay, B1=ads=aza;" .
By the relation (3), o;’s are written as
(4.4) a1 =B, as=Pa, az=P0;"Babs, 4= PsPufs5"
Thus, B1, B2, B3 and 4 form a generator of m (X ) N H):

o= (| § B8 BB, )
Lemma 4.1. The relations (2), (3), (4), (5), (0°), (2°), (4°), (5°) are equivalent to
(A) [Bi, Bl =1 (1<i<j<3);
(B) [8iBaB 1 BiBaB; ] =1 (1<i<j<3);
(C) (Bafr)? = (BrBa)® (1<K <3).

Proof. Note that

—1 11 1 11
Bafafls ” = apazagay oy =g,  B1B4f] = arazouas o) = ar.

The lemma is proved by straightforward calculations. O

By this lemma we obtain

7T1(X(3) N H) = </81a1627ﬂ3a/84
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Note that by (8384)% = (B8483)?, we have
asas = (By ' B3Pa)(BsBaBs ') = BsPa

Recall that

a1 =P, ar =P, as=p"Bsbs, au=oa5=PsB06",

ag = BafaBy ., ar=PiBuBr,
and

ag' = apasazasasasar = 1Bz - BaBa - PafaBy - Bababy - BrBaf

= B1B2PaPsBaBaBaBsy  BrBaBT

Lemma 4.2. The relations (7)-(10) and (7°)-(10°) follow from (A)-(C).

Proof. We show the lemma only for (7)-(10), because the others are shown in a similar way. We
assume (A)—(C). First, we rewrite the relations (7), (8), (9), by using 3;’s:

(7) @a;lagla;lagl = agla;lagla;1
& 8181 " BaBaB3BaBaBaBr BaBsBaBabaBy  B1 Byt
= B1B284/338482B451 845354828185 *

B3 4B28451 81838y BaB1 = B2BaBy * BaBaB2B4B1B1 s,

(8) &((azas) taz(azaq) - a5)? = (a5 - (azaq) tas(aszay))?
(81 B3 B2BsBaBsBaBs ) = (BsBaBs ' By By B2BsB)?
& P204P281 = BaP2fsf2  (this is a relation in (C)),

(9) ©B2B3B485 "By " = B1B2B4B3B1B2BaBy  B1BaBy (1 B2B4BsBaB2BaBy )
By = B3 B1BaBs BB BBy By By B BT Bs.
Next, we show (7) and (9), since (8) is already proved. Note that
[Bi, Bl =1 and [@545[1,5]‘545;1] =1
imply [8; ' B4, B; ' Ba3j] = 1. The left-hand side of (7) is
B3B4B2B4B1 (B3B3 ) BaBsBr  BaBr = B3BaB2BaBr BBy BabrBs ' BaBs
= B3B4B2B4B3B415185 ' BaBs = B3B1B2B4B3BaB5 " B1BaPs,
and the right-hand side is
BoB4fBy " B3B4(Bs ' B3)B2BaB1BaBs = B3BaBs ' B2BaBy " BsB2Ba1BaBs
= B3B4fB5 " BoBaPsBaB1BaBs = B3BsB2P5  BaBsBaf1BaPs.

Thus, (7) is equivalent to 64636463_1 = 63_164,83@1 which is nothing but a relation in (C). The
right-hand side of (9) is

5185 BaBaBaBrBaBy By By By Bab

= 018483845 B1BaBy By By By BaBr

= B1B4B1 BBy BsBuBsy By B By BaB

= BuB1B1Br By BsBaBy B3 By By BB = Bu,
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and hence (9) is proved. Finally, we show (10). By using (7), we have
0776@&;1 = aglowagoqaga;lagla;lag = ag.
Thus, the relation (10) is rewritten by j;’s as follows:
(10) &[ag, aragar ] =1 & [ag,a5'] =1
<[(B3Ba- B3BaBs" - B2BaBy ") B2(B3Ba - B3BaBs - BaBaBy ),
B1B2B4B3BaB2B4Bs BB ] = 1
(B2, BaB3B1B2Ba1BaBsBaBrBaBy By ' Bs By = 1.
Since
BaB3B4B2BaB1BaBaBaBrBaBy By By By = BaBaBaBBuBaBaBy i
and [Ba, B3 '41] = 1, (10) is equivalent to
B2 + BaP3BaB2B1PB3Ba = BaBsB1P2BafB3Pa - Pa.
This is shown as
Bo - BaB3BaB2BaBsBa - By " = B2Ba(By " B2)B3BaB2B4BsBa By "
= BBy BsBaBaB2BaBsBsBy " = BaBaBy  BsBa(Bs " Bs)B2B4B2Bs Byt
= B3B4B3 BBy B3B2BaBaBsBuBy " = BsPafBs ' BoBaPsBaBsB2BaBs "
= B3B4B3 " B2BsBaBsBaB2BaBy " = BsBaB2B3B5  BaBsBy  BaBafa
= B3B4B283B5 ' BaB2B5 ' BaBsBa = B3B4BsBaB2B5 ' BaBspu
= BaPsBafB3B285 ' BaBsBs = BaBaPBafP2BaBsba.
Therefore, the proof is completed. O
Remark 4.3. Note that the relations (11) and (117) follow from others. Indeed, by (10), we have
(11) oy tagar, a3) = 1 & [a; g lag,as) =1 & [o] ' - aragtar ! - aq, a3 = 1
S8 B1BaB2BBsBaB2BaBy - Br, B3] = 1 & [BaB2B4PBsBaB2Bs, B3] = 1,
and this follows from (A)—(C).
Summarizing the above arguments, we obtain the following theorem:

Theorem 4.4.

m(X® nH) = <ﬂ4751,ﬂ2”33

[Bi, Bj] =1, [&545{1,@545;1] =1(1<i<j<3) >
(BaBr)? = (BeBa)® (1 <k < 3) '

4.3. Correspondence between 3;’s and v;’s. To complete the proof of Theorem 1.3, we give
relations in 7, (X)) between the loops 3;’s and 7;’s.
By the parametrization (4.1) of the plane H, we have

ro+4rs = -3z, x1+ 10 =21,
and hence the defining equation of H is given as
3x1 + 3x9 — 8x3 = 2xp.

We fix a sufficiently small positive number €. We consider a line £’ in H defined as

1
45 —
(4.5) Y=g

(z —4)
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L3

FIGURE 20. L1, and £ around (1,1) € R?

which passes through (z,y) = (1 +¢,1). The loops ay,as, as, &4 in £%+E (see Figure 10)
naturally define those in £’ (we use same notations). Since (4.5) is expressed as

1 1
5 (22 = 21) = —5——0
by (4.1), the line £’ C C? is defined by
2
31’1+3£L’278(E3:2, Tr1 — Ty = .
3—¢€
By straightforward calculation, this line parametrized by t € C as follows:
6—¢ —¢ 4 4
4.6 = 0 t-|=,-,1]).
( ) ('T1’$27x3) (9_35’9_35’ >+ <373a >

If we identify £" with C by ¢, then the intersection points £'N(z1 = 0), £L'N(z2 = 0), L'N(z3 = 0)
and £ N S®) correspond to
6—c¢ €
t=———— t=———", t=0, t=t,th 15,
4(3—¢) 4(3—¢) EAEE
respectively, where 0 < ¢} < t, < t§ < tj. By definition of v;’s and commutativity among
1,Y2,73, the loop o (resp. ~1,72,73) coincides with a loop which goes once around ¢t = t
(resp. t = — 4((53155), t = 4(38—5)7 t = 0) approaching this point through the upper half-plane of
the t-space.
The loops a1, g, &3, Gy in L' (or E%H) are defined under the parametrization by x. We should
compare the parametrization by x with that by ¢, and relate oy, as, a3, @4 to Yo, v1,v2,7v3. The
correspondence between the z-space and t-space is given by

—r+1 3
4. = =_1— .
(47) t Tz —4 ( x4)

Indeed, by (4.5), we have

—xr—y 6_E+4t Yy—x —€ +4t .
= —_ To = = —_ €T =
r—4 9-3 '3’ " x—4 9-3 37 P77

T =
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and these expressions are coincide with (4.6). The Mobius transformation (4.7) is decomposed
into four elementary transformations

w=zr—4, v=—, u=-3v, t=u-—-1

We see the change of oy, as, &g, @4 under each transformations. In the z-space, they are drawn
as follows.
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(iv) t = u — 1; the changes are trivial.

As mentioned above, the loops ay, s, as, &, in the last picture coincide with 1,3, 72,70, re-
spectively. Therefore, we obtain the following lemma.

Lemma 4.5. The loops oy, ag, és, dy in L' coincide with v1, 72,73, 70 as elements in w1 (X)),
respectively. Therefore, B1(= a1), fa(= az), f3(= @s), fa(= &4) € 71 (X®) N H) are mapped into
Y1,Y2, Y3, Yo under the isomorphism (4.2), respectively.

By this lemma and Theorem 4.4, we obtain Theorem 1.3.

5. THE COVERING SPACE —THE COMPLEMENT OF HYPERPLANE ARRANGEMENT
5.1. Covering spaces. We consider a branched 2"-covering
2 2
$p:C" = C"  (&1,...,&) = (x1,...,zn) = (&5, -, &)

of C", and we put S = ¢~1(S"). The pull-back of F,(x) by ¢ is decomposed into the
product of linear forms in &;’s:

Fu(¢()) = 1T (1 - Z(—l)%) :
(a1,...,an)€{0,1}m k=1

Thus, S™ is the union of hyperplanes in C™:

S(”): U H(a17-..’a’n)7 H(al,...,an): (12(1)ak§k0>
(a1,...,an)€{0,1}"

In this section, we consider the fundamental group of

n
XMW =gt (xM)y=c"— | |JHrU U H(ay,...,a,) |,
k=1 (a1,...,an)€{0,1}7

where Hy = (§; = 0). The restriction
6: XM — x
of ¢ to X" is a (Z/27)™-Galois covering. Hence, we have a short exact sequence
1 — m(X™) 25 m (X)) — (2/22)" — 1.
For (a1,...,a,) € {0,1}"(= (Z/2Z)™), let

b = (C L C0 g

(al"'an)

We define a path &,(Cal'"a") and a loop 7, in X(™ as lifts of 4, and o such that
B (0) = 46" (0) = Eapeva
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respectively. Note that ’y,(cal"'a")(l) =&y aptl.....a, and %al'”a")(l) =&4y.a, - Of course, we
have ¢*(,%(Ca1-~an)) =Yk and QS*(’?éalma")) = Y- For 1 S le < i2 < e <& ik S n, we pllt

i i i i1 g tk—1

1 1 2
P ~(0--0) = (01 0) ~ (0-+- L1 -0 (01T 1 -0
plinein) — 5005 )5 )50 )
We consider loops in 7 (X("), &0--0):
)\O = 5/(()0“.0)7
~(0-:0-+0) ~ (0++-1-+-0
)\k:'YIE; )IYI(C ) (k:]-a"'vn),

igeei

. . ) ) i1 d2eip -
G = a0 T B DO (1<) <y < - < g < ).

Figure 21 shows some loops and paths in X@) For example, )\(()12) is defined as )\(()12) = %00)%10).

~(11) ~(00) ~ (10)
L

H,

H(1,1) - H(0,1)
1
fm/'r
10\ t
Y2\ .
/511 o1
H(1,0) H(0,0)

FIGURE 21. Some loops and paths in X2,

By the definition, we obtain the following.
Lemma 5.1. We have
¢+ (Mo) =70,  d«(Ae) =7,
d)*()\glmw) = (Vis Yia =+ Vi)V (Vir Vi Vi)~

5.2. The case of n = 2. By using the Reidemeister-Schreier method, we obtain a presentation
of m (X (2)). Since computations are similar to that in the next subsection, we do not give precise
computations.

Proposition 5.2. The fundamental group 771(5((2)) has a presentation by 6 generators

)\17 >\23 )‘07 )‘81)7 )‘(()2)7 A((le)»
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and 5 defining relations
A1, A2] = 1,
A AN = AoAP A = oAl (i=1,2),
MNP = NN = 2AAD (fi ) = 11,2)
Sketch of Proof. Let K be the free group generated by 70, 71, 72, and ¢ : K — 71 (X @) be the
natural epimorphism. The subgroup K; = ¢~ (7 (X (2))) of K is also free, and the set
T'={17,7%n7}CK
is a Schreier transversal for K7 in K. By the Reidemeister-Schreier method, we obtain
%, ¥ 9> M 2% L (i)
Yoy it et mgar!

as generators of K7, and we also obtain 12 relations in 71'1()2' (2)). To determine the generator,
imitate (i) and (ii) in the proof of Lemma 5.3. We obtain similar relations to (5.3), (5.4), (5.5),
(5.9), (5.35), (5.36), (5.37), (5.38), (5.39), (5.40). Using the correspondence in Lemma 5.1, we
obtain the proposition. O

—t
Lh
1

0.5—;
0
-0.2
K3
02y0.4 06 0.80'6 ]

FIGURE 22. A part of X®).

5.3. The case of n = 3. By using Theorem 1.3, we now compute the fundamental group
71 (X®)). As in Subsection 5.1, we consider the 11 loops

(5.1) Ay A2y Agy dos ALY AR AR A A8 A (28) A (128)
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By Lemma 5.1, we have
¢« (N0) =70, ¢«(M) =77, d.(N2) =73, du(X3) =13,
6.O0") =10 () = 1290778 6.0 = 51073
3:(A?) = 1171270 (1712) 71, 6. (M) = my370(1193) 7,
3« (A) = 1271370 (1273) 7L, e (AY) = M2 v3v0(r278) L

We put G = 1 (X®) and Gy = 7;(X®). Recall the short exact sequence
1— G256 -2 (2)22)7 — 1.
It is easy to see that this sequence is realized as

p(’YO) =0, p(’h) = (1,0,0)7 p(72) = (07 170)a p(%’») = (070a 1)>
G1 = {g € G | the sum of the exponents of ; is even for each i = 1,2, 3}.

If we put
q: (Z)22)° = G5 q(br, b2, by) = A2iabale,

then we have ¢ o p = id. Thus, the above exact sequence is split one, and G is a semidirect
product of Gy by (Z/27Z)3, that is, G = G1 x (Z/2Z)3.

We determine the generators and relations of G; by the Reidemeister-Schreier method (see,
e.g., [2, Chapter 2]).

Let K be the free group generated by 7o, 71, 72, 73, and ¢ : K — G be the natural epimor-
phism. Note that the subgroup K; = ¢~ 1(G) of K is also free. The set

T = {1,71,72,73, 1172, 173, 1273, N1 V2Y3} C K

is a Schreier transversal for K; in K. For g € K, denote by g the unique element of T" such that
K19 = Kig.

Lemma 5.3. The following 25 elements form a generator of the free group Ki:
(5.2) V05 Vs Vs V3s VINOVE s V200 s ¥3V0Y3 s
Yy vyt W e () T
Y1Y3v2(M278) Y Y2 vsma (mv2vs) T
MY23m (12793) 7 M2 13re (1) T Y27 () T
M7273%(1n7278) ",
where 1 <1 < j <3.
Proof. We put B = {70,71, 72,73} which is a generator of K. A generator of K; is given by
{(D)(@) " |t e T,be B, (@)@ £1},
It is sufficient to compute all (tb)(tb) L.
(i) In the case t = 1, since (tb)(tb)~!’s are
W% =01 =90, n =1 T =1 T =

we obtain a generator ~g.
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(ii) In the case t =; (1 <i < 3), (tb)(tb)~1’s are
W OH T v () i) T

where j # i. Since Wf,vi’yalv;l € K1, we have 712 =1 and ;70 = %-7617;1 VYo = Yi-
Thus we obtain

V()T =2, %@ W) =10
We compute v;v; (777;) . If i < j, then ¥;77; = v;y;. If i > j, then

VN = Yy N Y = e
We thus have
- 1 (1<)
LA A - 1 —
762 (37%) { Yyt (> 5)-
Therefore, we obtain generators 72, 'yﬂo’yfl (1<i<3)and 'ymjvflfyfl (1<j<i<3).
(iii) In the case t = 172, tb’s are

Fi7270 = N2 (My2) T Mve = Y12,

VT = NN e =Y, RN = MBI M =M,
Y1V2V3 = V17273,
and hence we obtain generators
N727% @ 727%0) " = 17270(ne) 7
NN (T = nens s nee@Ee) T =nnn

The following generators are obtained in the same way as above.

(iv) In the case t = y17y3, we obtain generators
Y1737 (73 70) " = 130 ()T s () T = 717371751,
Y1372 R) " = nvsre(nreys) T s s(EE) T = vt
(v) In the case t = 7273, we obtain generators
Y2737 (727370) ! = 12370(2v3) T 23 () T = 2y (rv2ys) T
Y2372 (25 72) T = 12275 L vy (e e E) T = 1273s
(vi) In the case t = v1y27y3, we obtain generators

172737 (T727370) ! = M2 30 (117273) T

N1Y27371 (727371) ' = M2y (v2y3) T
1727372 (72 7372) ! = M2 vsvz(rvs) T
71727373 (72 7378) ' = 127 (1) T
Therefore, we obtain the 25 generators. (]
We put
%%7{17*1 L (1<i<j<3),
R=4 v07 07 %70 ’y, et (1<i<j<3),

Y00 0 s e (1<i<3)
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which generates the relations of G, that is, G = (y0,71, 72,73 | R). By the Reidemeister-Schreier
method, G; is presented by the 25 generators (5.2) with relations of the form

trt™, teT, reR.

Note that to obtain relations among the generators (5.2), we need to rewrite these relations by
them.
We write down the 72(= 8 - 9) relations.
() r=mvy 't (1<i<j<3).
(a) t =1. We obtain a relation

(5.3) 1=y
t = v1. We obtain the following relations:
b vk. We obtain the following relati
(5.4) L= %yt = oy )

(5.6) L=9 -m7y vt
_ _ _ _ _ _ —1
=175 s (eys) T (e et e vs i (es) )

(5.7) L= -mym 5% =renn ' at (ernirer)™) .
_ _ _ _ —1
(5.8) L=v %77 7 1 = (e ™) .
In the following, we write only the results.
(c) t=vm-
(5.9) L=y g2 (g D7
_ _ _ _ _ —1
(5.10) L=y 127 e (s (ryeys) T s (res) ) T
(5.11) 1=y (my273) " rerre(nys) T s s (eyses )T
_ _1y—1

(5.12) 1=yt (myeymntere) ™) .

_ _ _ _ _1\—1
(5.13) 1 =273 (717273) " M2 (1y2) T (e e )

_ _1y—1
(5.14) L=y (mvevsyz(nys) ™).
_ _ _1y—1
(5.15) 1= 19372 (117273) " M () - (i)
(d) t =717273-

(5.16) L=y (1273) "t 137273 (s () Tt s )

_ _ _ _ —1
(5.17) 1=y1727371(7273) " 2137 (e () T s )

_ _ _ _ —1
(5.18) 1=y17273%2(1173) " s (s () ™ e )
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(i) r =770 07 e T e Tyt (1< i< i <3).

(a) t=1.
(5.19) =907 w0t e e g
(b) t = .
(5.20) L=77 707 2 %v006) ™ % % i 2 (o))
(5.21) 1=y b wro () ™ (D) T 005
o i (e (e) ™) T (e DT AR e
(5.22) L=9sm93 91 7173%(1n) ™ (sms T )T sy
Y2y370(1273) Tt (isrevs e D) T sms Tt
(ys0(ns) ) T (s ) T s et
: (727370(7273)71)_1 S(ysreys e )T
(5.23) L=ym7% 9 mve(nye) ™ (e T )T
170 (7293) e M (o) ) T
e DY (s ve(rers) ) T
(5.24) L =yv7%072) " ysve(nys)
() ™) T (mmre(ns) ) T
(¢) t =
(5.25) 1=y w07t (v DT
vy (i DT vy (e DT
vy DTt (e DT (e DT
(5.26) =777 137075 (nsms D7 e (reys)
“MY273%0 (M1v2y3) T - (717372(7172’73)_1)71 '7’17371751
(073 DT (s s DT s (e ys) !
: (71727370(71’)’273)_1)71 : (7173’)’2(717273)_1)7
(5.27) 1=y (my273) " - 121370 (2ys) (V27371 (’)’1’)’273)71)_
¥2Y3Y2Ys 703 (s v2ys )T e s () T
(mreyr0(mr293) ) T (e () 7Y
Y2ys2Ys L (13075 ) T (s ) T
(5.28) L=mvmy 121t (nens )™ e (nyeys)

myenys (rn )T (neme DT (71727370(717273)_1)

-1
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(5.29) 1 = v27371(717273)

vevave e b (eis )

L yiy27370 (117273)

: (71727370(717273)_1)71 - (y2v3m

2375 (27075 )

(5.30) 1=y M1

3t (e DT ()

(5.31) 1 = y1v372(717273)

e vt (nva )

L 121370 (117273)
L yvsv2(meys) !

_ -1
. (72%71(’717273) 1)
ey (nyeys)

(M) ™)

(i )T

T BT s () T
_ _ —1
. (71727370(717273) 1) :

1 (s (yes) )

1\ -1 _1y—1
'(’)’1727370(%7273) 1) '(717372(717273) 1)
2 71)—1.

Nt (o DT (i

(d) t=m7273-
(5.32) L =y1727371(7273)
- M727372(M173)
- M72737 (V273)
- M727372(M173)

(5.33) 1 =y1727371(7273)
“m17273 (1172)

L ys70(n7s)
R (727370(7273)
R (717370(7173)

L yav3v0(v2vs)
“Loyyeve(nnz)

‘Y237 (Y2ys) (’727370(’)’2’)’3)

“mMy27s (172)

(5.34) 1 = y1727372(7173)
: 717273?(7172)

-t (7172’70(71’72)

L yysy0 (1)
L yye0(11y2)

y727372(173) - (370 (s

“MY273 (1172)

R (717270 (1172)

7 (s (rays) )

_ _ -1
Ly2y370(7273) T (1727371 (293) )

o (mvevsre(nvs) )
-1 _
1) '(71’7273’71(7273) 1)

(7172’7371 Y2Y3) )
(i ()Y

DT (e (ravs) ) T
N (reE (i)Y~

(232 (mas) ) T
() )

)7 (s ye(mys) ) T
_1)71 : (71727%(7172)_1)7

(iii) 7 =7v07%70% e et (1 <i<3).
(a) t=1.

(5.35) L=y " v %2 (o D7 g
(b) t =

(5.36) 1=y (my) ™ Wi w0

(vvove ' Evivo (Ye)

_ _1\—1 .
Vi) (k<)

-1

-1

325
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(5.37) L=77 v %0 %2 (o D)

(5.38) L= vevive i vivevo (veve) ™ s k0
(w0 e v (i) T v ) T (k> ).
(c) t =y
(5.39) L=y, o vy s e (vn) T
(1) ™ v e e ) T < D).

(5.40) L= y27 07, - veyivo (veyi) Tt
_ _ _1y—1 .
- (mvivo (i) R X 1) (k <1).

(5.41) 1 = y27371 (117273) ™ - 11727370 (117273)
237 (273) T Y2 vsv0(v2ys) !
: (727370@273)_1 “y2v3m1 (1v2vs)

_ _1\—1
Sy (Mv2ys) Tt e ysm (eys) )

(5.42) 1 =mys72(17273) " - e vsvo(nyeys)
cmy2s2(mys) T s (ys) !
: (717370(7173)_1 ‘372 (11v2v3)

“my2v3%0 (Mv2v3) Y1727372(7173) )

(5.43) 1= yv2737%Myes) 11727 (n2) T e (rae) !
_ _ _ —1
(v () Tt s (nreys) Tt e () )

(d) t = y1v2v3. We take k,l such that {i,k,1} = {1,2,3} and k < . Then we obtain a
relation

(5.44) 1= vv2y37(ven) ™ vevevo(vev) !
Y (v28) T e ys 0 (rv2s) T
- (M3 (ny2vs) T 2y () !
Yo (e) T e (e s) )

Therefore, G is presented by the 25 generators (5.2) and the 72 relations (5.3)—(5.44). We
reduce this presentation to a simpler one.

Corollary 5.4. The 11 elements
(5.45) Y0, Vi Vs N3 MV s V20%3 L V30

Ty270 (1172) Y 1190 (1v3) T 2370 (273) T TR0 (v ys) T
in (5.2) generate G .
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Proof. To prove this, it suffices to show the following relations in Gy:

(5.46) %‘%"7{1’){1 —1,
(5.47) Vv =g

(5.48) VWi =

(5-49) NY372(1n7273) Tt = 1 eysm(nrers) T =1,
(5.50) My2v871 (7273) Tt =77,

Y1727372(1173) T =73, Mevi(ne) Tt =13,

where 1 < i < j < 3. (5.46) is same as (5.3). (5.47) is equivalent to (5.4). (5.48) follows
from (5.5) and (5.46). The first relation of (5.49) is equivalent to (5.8), and the second one
follows from (5.7) and (5.46). Three relations (5.50) follow from (5.12), (5.14), (5.15) and above
relations. 0

Under the inclusion ¢, : G; — G, the 11 loops (5.1) coincide with the generator (5.45) of G,
so we use the notations

V=X, =23, 7=,

_ ik — 123
() T = AP e (i) Tt = AN,

where 1 <i<3and 1 <j<k<3.
By using these generators and relations (5.46)—(5.50), we rewrite the relations (5.3)—(5.44).
The relations (5.3)-(5.8) and (5.10)—(5.15) become trivial ones. (5.9) implies

DiA]=1 (1<i<j<3),
which is equivalent to (5.16)—(5.18). (5.19) implies
DIAI=1 (1<i<j<3).
(5.20) and (5.21) imply
(5.51) DO AN =1, N 0N =1 (1< < <3).
(5.22)~(5.24) imply
D209 Z ) (02 3@9) g [\09) 3@ _ g
5.25) implies
5.52
5.26

(5.25)
(5.52) DAPATL AN =1 (1<i<j<3).
(5.26)(5.31) imply
(5.53) NP ANINT =1 (1<i £ <3).
(5.32)—(5.34) imply
(5.54) AAZIATE A AN = 1,

AAZIATE AN = 1, DAl A Asal Az = 1
(5.35) and (5.37) imply

)\E)i))\i)\o = )\oA(()i))\i = Ai)\OA((Ji) (1<i<3).
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(5.36) and (5.40) imply

AN = AN\ = AN A (1 <i < j<3).
(5.38) and (5.39) imply

AATAT = APATIN = AN (1 <i < <3).
(5.41)—(5.44) imply

)\i)\éjk))\él%) _ )\((ij))\((3123))\i _ )\8123))\i)\éjk)
where {7,7,k} = {1,2,3} and j < k.
Theorem 5.5. The fundamental group m (X(g)) = (G1 has a presentation by 11 generators
At Az, Ag 20, A6 AT MG GG AT A,

and 27 defining relations

(5.55) i Aj] = (1 <i<j<3),
(5.56) A, M (1<i<j<3),
(5.57) N, A“% LGP =1, A =1,
(5.58) A AdoA =1 (1<i<j<3),
(5.59) A AP =1,

A2 AP A =1, A asaIA Y =1,
(5.60) AD N0 = AoAN = AaoA? (1 <i<3),

)\ )\(]))\(U) )\(]))\(U))\ )\ém))\l)\(()ﬂ (1 S i <j S 3)’
)\ )\( ))\(U) )\(0)\@]))\ )\(U))\j)\éz) (1 S : <j S 3)’
AATEIASE = ATEANPIN = ASPIANTT (L g, k) = {1,2,3), § < k).

Proof. We need to show that the relations

e the second relation of (5.51),

e (5.52),

e (5.53) for (4,7) = (3,2),(1,3),(2,1), and
e (5.54)

follow from (5.55)—(5.60). We only consider the second relation of (5.51), since the others are
also proved similarly. By (5.60), we have

A NA0 = A0A A, MATAST = AT AN
Then (5.58) implies
G AT = A5 ITIAT N, o] - AT
i)y (i) y (1) L 7 i i) ()1 i i)y —
=25 DA Aol A = A G 20n) - (uag) !
A AT A = A 1 )T =1
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(5.55) | Hi N Hy, Hy N Hs, Hy N Hs
(5.56) | H(1,0,0)n H(0,1,0), H(1,0,0) N H(0,0,1), H(0,1,0) N H(0,0,1)
(5.57) | H(1,1,0)n H(1,0,1), H(0,1,1)N H(1,1,0), H(1,0,1)N H(0,1,1)
(5.58) | H(0,0,0)n H(1,1,0), H(0,0,0)N H(1,0,1), H(0,0,0)N H(0,1,1)
(5.59) | H(1,1,1)n H(0,1,0), H(1,1,1)N H(0,0,1), H(1,1,1)N H(1,0,0)
(5.60) | H(0,0,0) N H(1,0,0)N Hy, H(0,0,0) N H(0,1,0) N Hy,
H(0,0,0)N H(0,0,1) N Hs
H(0,1,0)NnH(1,1,0)NH;y, H(0,0,1)N H(1,0,1) N Hy,
H(0,0,1)N H(0,1,1) N Ho
H(1,0,0)NH(1,1,0) N He, H(1,0,0) N H(1,0,1) N Hs,
H(0,1,0)NH(0,1,1) N H3
H(0,1,1)NnH(1,1,1)NHy, H(1,0,1)N H(1,1,1) N Hy,
H(1,1,0)NnH(1,1,1)N Hs
TABLE 2. Relations and intersections.

Remark 5.6. We can interpret that these relations come from lines which are intersections of the

planes Hy, H(aq,as,a3), as Table 2. For example, the loop )\(()12) turns the hyperplane H(1,1,0).

(1]

[12]
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