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THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF THE

SINGULAR LOCUS OF LAURICELLA’S FC

YOSHIAKI GOTO AND JYOICHI KANEKO

Abstract. We study the fundamental group of the complement of the singular locus of
Lauricella’s hypergeometric function FC of n variables. The singular locus consists of n

hyperplanes and a hypersurface of degree 2n−1 in the complex n-space. We derive some

relations that hold for general n ≥ 3. We give an explicit presentation of the fundamental
group in the three-dimensional case. We also consider a presentation of the fundamental group

of 23-covering of this space.

1. Introduction

In the study of the monodromy representation of Lauricella’s hypergeometric function FC (see,
e.g., [4]), we consider the fundamental group of the complement of the following hypersurfaces:

(x1 = 0), . . . , (xn = 0), S(n) = (Fn(x) = 0) ⊂ Cn,
where

Fn(x) =
∏

(a1,...,an)∈{0,1}n

(
1−

n∑
k=1

(−1)ak
√
xk

)
.

Note that Fn(x) is an irreducible polynomial in xk’s of degree 2n−1. For example, the complex
curve S(2) = (F2(x1, x2) = 0) is given by

F2(x1, x2) = x21 + x22 − 2x1x2 − 2x1 − 2x2 + 1,(1.1)

and Figure 1 shows (x1 = 0), (x2 = 0) and S(2) in R2. The complex surface S(3) is known as a
Steiner surface (see, e.g., [7]).

Throughout this paper, we assume n ≥ 2. Let X(n) be the complement of these hypersurfaces.
We consider n+ 1 loops γ0, γ1, . . . , γn in X(n); γk (1 ≤ k ≤ n) turns the divisor (xk = 0), and γ0
turns the divisor S(n) around the point

(
1
n2 , . . . ,

1
n2

)
∈ S(n) (see Figure 1, for n = 2). Explicit

definitions are given in Section 2.

Fact 1.1 ([4]). The fundamental group π1(X(n)) is generated by γ0, γ1, . . . , γn. Further, they
satisfy the following relations:

[γi, γj ] = 1 (1 ≤ i < j ≤ n),(Rij)

(γ0γk)2 = (γkγ0)2 (1 ≤ k ≤ n),(Rk)

where [α, β] = αβα−1β−1.

In this paper, we discuss the following:

• another relation in π1(X(n)) for n ≥ 3,
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Figure 1. X(2) and loops.

• precise calculation of π1(X(3)),

• a presentation of π1(X̃(3)), where X̃(3) is a 23-covering of X(3).

The main part of this paper is calculation for n = 3 (the second and third topics). In the
following, we explain each topic.

First, we give another relation in π1(X(n)), by using similar methods to [4]:

Theorem 1.2. For I = {i1, . . . , ip}, J = {j1, . . . , jq} ⊂ {1, . . . , n} with p, q ≥ 1, p + q ≤ n− 1
and I ∩ J = ∅, we have

[(γi1 · · · γip)γ0(γi1 · · · γip)−1, (γj1 · · · γjq )γ0(γj1 · · · γjq )−1] = 1.(RIJ)

Note that if n = 2, this relation does not appear, and it is shown in [6] that the relations
(Rij) and (Rk) generate all relations in π1(X(2)), that is,

π1(X(2)) = 〈γ0, γ1, γ2 | [γ1, γ2] = 1, (γ0γ1)2 = (γ1γ0)2, (γ0γ2)2 = (γ2γ0)2〉.
Second, we prove that if n = 3, the relations (Rij), (Rk) and (RIJ) generate all relations in

π1(X(3)), that is,

Theorem 1.3.

π1(X(3)) =

〈
γ0, γ1, γ2, γ3

∣∣∣∣ [γi, γj ] = 1, [γiγ0γ
−1
i , γjγ0γ

−1
j ] = 1 (1 ≤ i < j ≤ 3)

(γ0γk)2 = (γkγ0)2 (1 ≤ k ≤ 3)

〉
.

To prove this theorem, we compute π1(X(3)) in detail by using the theorem of van Kampen-
Zariski. We cut X(3) by a plane and consider a pencil of lines. Then we obtain many monodromy
relations, and we reduce them to those in the theorem.

Finally, we consider a covering space X̃(n) of X(n) (especially, the case of n = 3). If we put
xk = ξ2k, then Fn is decomposed into 2n linear forms in ξk’s. This means that there exists a

2n-covering space X̃(n) of X(n) which is a complement of hyperplanes. By using our presentation
of π1(X(3)) and the Reidemeister-Schreier method, we also obtain the presentation of π1(X̃(3)).
There are several studies for the fundamental group of the complements of hyperplane arrange-
ments (see, e.g., [1], [8], [9], [10], [11]). However, it seems difficult to present π1(X̃(n)) explicitly,
even if we apply these results.
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The relations (Rij), (Rk) and (RIJ) generate all relations in π1(X(n)) for n = 2, 3, while we do

not know if the same claim holds for n ≥ 4 or not. As in Section 4, a plane cut of X(3) has three
nodes, and we can interpret that these nodes correspond to three relations (RIJ). However, a
plane cut of X(4) has 20 nodes, and the number of relations (RIJ) are 18. Thus, it seems that
relations different from the above ones hold.1

Since our detailed calculations are very long, we omit some of them in this paper. For the
omitted calculations, refer to the separate appendix here.

Acknowledgments. The authors are grateful to Susumu Tanabé for helpful discussions.

2. Preliminaries

We give explicit definitions of the loops γ0, γ1, . . . , γn.
We put 1 = (1, . . . , 1) ∈ Cn. Let ẋ = 1

2n2 · 1 ∈ X(n) be a base point. For 1 ≤ k ≤ n, let γk
be the loop in X(n) defined by

γk : [0, 1] 3 θ 7→
(

1

2n2
, . . . ,

e2π
√−1θ

2n2
k-th

, . . . ,
1

2n2

)
∈ X(n).

We take a positive real number ε0 so that ε0 < min
{

1
2n2 ,

1
(n−2)2 − 1

n2

}
, and we define the loop

γ0 in X(n) as γ0 = τ0γ
′
0τ0, where

τ0 : [0, 1] 3 θ 7→
(

(1− θ) · 1

2n2
+ θ ·

(
1

n2
− ε0

))
· 1 ∈ X(n),

γ′0 : [0, 1] 3 θ 7→
(

1

n2
− ε0e2π

√−1θ
)
· 1 ∈ X(n),

and τ0 is the reverse path of τ0.

Remark 2.1. The loop γk (1 ≤ k ≤ m) turns the hyperplane (xk = 0), and γ0 turns the
hypersurface S(n) around the point 1

n2 ·1, positively. Note that 1
n2 ·1 is the nearest to the origin

in S(n) ∩ (x1 = x2 = · · · = xm) =
{

1
n2 · 1, 1

(n−2)2 · 1, . . .
}

.

3. Proof of Theorem 1.2

In this section, we assume n ≥ 3 and prove Theorem 1.2. We use similar methods to [4,
Appendix]. However, we change some notations for our convenience.

We regard Cn as a subset of Pn and put L∞ = Pn −Cn. Then we can consider that S(n) is a
hypersurface in Pn, and

X(n) = Cn −
(

(x1 · · ·xn = 0) ∪ S(n)
)

= Pn −
(

(x1 · · ·xn = 0) ∪ S(n) ∪ L∞
)
.

Note that if we use homogeneous coordinates x0, x1, . . . , xn (i.e., L∞ = (x0 = 0)), then the
defining equation of S(n) becomes more symmetric form. For example, by (1.1), the curve
S(2) ⊂ P2 is expressed as

x20 + x21 + x22 − 2(x0x1 + x0x2 + x1x2) = 0.

A symmetric form of the defining equation of S(3) is given in the beginning of Section 4.

1 After our submission, Terasoma [12] has shown that the relations (Rij), (Rk) and (RIJ ) generate all relations

in π1(X(n)) for general n.

http://www.journalofsing.org/volume17/goto-kaneko-appendix.pdf
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By a special case of the Zariski theorem of Lefschetz type (see, e.g., [3, Chapter 4 (3.1)]), the
inclusion L ∩X(n) ↪→ X(n) induces an epimorphism

η : π1

(
L ∩X(n)

)
→ π1(X(n)),

for a line L in Pn which intersects Pn −X(n) transversally and avoids its singular parts. Note
that generators of π1(L ∩ X(n)) are given by n + 2n−1 loops going once around each of the
intersection points in L ∩ ((x1 · · ·xn = 0) ∪ S(n)) ⊂ Cn. To define loops in X(n) explicitly, we
specify such a line L in the following way. Let r1, . . . , rn−1 be positive real numbers satisfying

rn−1 <
1

4
, rk <

rk+1

4
(1 ≤ k ≤ n− 2),

and let ε = (ε1, . . . , εn−1) be sufficiently small positive real numbers such that ε1 > · · · > εn−1.
We consider lines

L0 :(x1, . . . , xn−1, xn) = (r1, . . . , rn−1, 0) + t(0, . . . , 0, 1) (t ∈ C),

Lε :(x1, . . . , xn−1, xn) = (r1, . . . , rn−1, 0) + t(ε1, . . . , εn−1, 1) (t ∈ C)

in Cn. We identify Lε with C by the coordinate t. The intersection point Lε ∩ (xk = 0) is
coordinated by t = − rkεk < 0, for 1 ≤ k ≤ n − 1. The intersection point Lε ∩ (xn = 0) is

coordinated by t = 0. On the other hand, Lε and S(n) intersect at 2n−1 points. We coordinate
the intersection points Lε∩S(n) by t = ta1···an−1 , (a1, . . . , an−1) ∈ {0, 1}n−1. The correspondence

is as follows. We denote the coordinates of the intersection points L0 ∩ S(n) by

t
(0)
a1···an−1 =

(
1−

n−1∑
k=1

(−1)ak
√
rk

)2

.

By this definition, we have

t
(0)
a1···an−1 < t

(0)
a′1···a′n−1

⇐⇒ ∃r s.t. ai − a′i = 0 (i = r + 1, . . . , n− 1), ar = 0, a′r = 1.(3.1)

For (a1, . . . , an−1), (a′1, . . . , a
′
n−1) ∈ {0, 1}n−1, we denote (a1, . . . , an−1) ≺ (a′1, . . . , a

′
n−1) when

(3.1) holds. For example, if n = 4, then

t
(0)
000 < t

(0)
100 < t

(0)
010 < t

(0)
110 < t

(0)
001 < t

(0)
101 < t

(0)
011 < t

(0)
111.

Since Lε is sufficiently close to L0, ta1···an−1 is supposed to be arranged near to t
(0)
a1···an−1 .

Since L0 does not pass the singular part of S(n), for sufficiently small εk’s, Lε also avoids the
singular parts of Pn −X(n). Thus, ηε : π1

(
Lε ∩X(n)

)
→ π1(X(n)) is an epimorphism.

Let `k be the loop in Lε∩X(n) going once around the intersection point Lε∩(xk = 0), and let
`a1···an−1

be the loop going once around the intersection point ta1···an−1
. Each loop approaches

the intersection point through the upper half-plane of the t-space; see Figure 2.
As in [4], we have

ηε(`k) = γk (1 ≤ k ≤ n), ηε(`0···0) = γ0,

γiγj = γjγi (1 ≤ i, j ≤ n).

To investigate relations among the ηε(`a1···an−1
)’s, we consider these loops in L0 ∩X(n). By the

above definition, we can define the `a1···an−1
’s as loops in L0∩X(n). Since L0 is sufficiently close

to Lε, the image of `a1···an−1
under

η : π1

(
L0 ∩X(n)

)
→ π1(X(n))
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Figure 2. `∗ for n = 3.

coincides with ηε(`a1···an−1) as elements in π1(X(n)). Though η is not an epimorphism, relations

among the η(`a1···an−1)’s in π1(X(n)) can be regarded as those among the ηε(`a1···an−1)’s.
In [4], we move L0 as follows. For θ ∈ [0, 1], let L(θ) be the line defined by

L(θ) :(x1, . . . , xk, . . . , xn−1, xn)

= (r1, . . . , e
2π
√−1θrk, . . . , rn−1, 0) + t(0, . . . , 0, 1) (t ∈ C).

Note that L(0) = L(1) = L0. We identify L(θ) with C by the coordinate t. It is easy to see that
the intersection points of L(θ) and S(n) are given by the following 2n−1 elements:

t
(θ)
a1···an−1 =

(
1−

n−1∑
j=1
j 6=k

(−1)aj
√
rj − (−1)ak

√
rke

π
√−1θ

)2

.

The points 1−∑j 6=k(−1)aj
√
rj − (−1)ak

√
rke

π
√−1θ are in the right half-plane for any θ ∈ [0, 1],

since
∑n−1
j=1

√
rj <

∑n−1
j=1 2−j < 1. Let θ move from 0 to 1, then

(a) t
(1)
a1···ak−10ak+1···am−1

= t
(0)
a1···ak−11ak+1···am−1

, t
(1)
a1···ak−10ak+1···am−1

= t
(0)
a1···ak−11ak+1···am−1

,

(b) t
(θ)
a1···ak−11ak+1···am−1

moves in the upper half-plane,

(c) t
(θ)
a1···ak−10ak+1···am−1

moves in the lower half-plane.

For example, the ta1a2a3 ’s move as Figure 3, for n = 4 and k = 2.

0 t000 t100 t010 t110 t001 t101 t011 t111

Figure 3. ta1a2a3 for n = 4, k = 2.

We put P (θ) = C − {t(θ)a1···an−1 | aj ∈ {0, 1}} that is regarded as a subset of L(θ). Let ε′ be
a sufficiently small positive real number, and we consider the fundamental group π1(P (θ), ε′).
As mentioned above, the `a1···an−1 ’s are defined as elements in π1(P (0), ε′) = π1(P (1), ε′). If we
move θ from 0 to 1, then the `a1···an−1 ’s define the elements in each π1(P (θ), ε′) naturally.

Note that by this variation, the base point moves around the divisor (xk = 0), since the base

point ε′ ∈ P (θ) corresponds to the point (r1, . . . , e
2π
√−1θrk, . . . , rm−1, ε′) ∈ L(θ). It implies the

conjugation by γk in π1(X(n)).
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In [4], we investigated the loops `a1···ak−11ak+1···am−1
under this variation, and we obtained

the following.

Fact 3.1 ([4, Lemma A.1 (i)]). We have

η(`a1···ak−11ak+1···am−1
) = γk · η(`a1···ak−10ak+1···am−1) · γ−1k .

Furthermore, we obtain

η(`a1···an−1
) = (γa11 · · · γ

an−1

n−1 ) · γ0 · (γa11 · · · γ
an−1

n−1 )−1.

By considering the case k = 1 and `0···0 ∈ π1(P (0), ε′), we also obtained the following

Fact 3.2 ([4, Lemma A.1 (ii)]). We have

η(`0···0) = γ1 · η(`0···0`10···0`
−1
0···0) · γ−11 ,

and this implies (γ0γ1)2 = (γ1γ0)2.

Remark 3.3. Changing the definitions of L0 and Lε, we obtain the relations

(γ0γk)2 = (γkγ0)2 (1 ≤ k ≤ n).

For example, if we put

Lε : (x1, x2, . . . , xn) = (0, r1, . . . , rn−1) + t(1, ε1, . . . , εn−1) (t ∈ C),

then a similar argument shows (γ0γ2)2 = (γ2γ0)2. By the same reason, for the proof of Theorem
1.2, it suffices to show that

[(γ1 · · · γp−1γp+q)γ0(γ1 · · · γp−1γp+q)−1, (γp · · · γp+q−1)γ0(γp · · · γp+q−1)−1] = 1,(3.2)

for any p, q ≥ 1, p + q ≤ n − 1. (Though the indices are complicated, this formulation is
convenient for our proof.) Note that if p = 1, we regard γ1 · · · γp−1 = 1.

Now, we investigate changes of other loops to prove Theorem 1.2. For p, q ≥ 1, p+ q ≤ n− 1,
we consider

`1···10···00···0 = `1 · · · 1︸ ︷︷ ︸
p−1

0 · · · 0︸ ︷︷ ︸
q

0 · · · 0︸ ︷︷ ︸
n−p−q

,

and its change for k = p + q. By the properties (a), (b), (c) and the proof of [4, Lemma A.2]
show the following.

Lemma 3.4. The loop `1···10···00···0 in π1(P (0), ε′) changes into ≺∏
(a1,...,ap+q−1)∈{0,1}p+q−1

`a1···ap+q−10···0

 `1···10···01···0

 ≺∏
(a1,...,ap+q−1)∈{0,1}p+q−1

`a1···ap+q−10···0

−1

in π1(P (1), ε′), where the notation

≺∏
means the product multiplying in ascending order of indices

with respect to ≺.

For example,
≺∏

(a1,a2)∈{0,1}2
`a1a200 = `0000`1000`0100`1100.
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Since this variation corresponds to the conjugation by γk = γp+q, Fact 3.1 and Lemma 3.4 imply

(γ1 · · · γp−1)γ0(γ1 · · · γp−1)−1

= γp+q

( ≺∏
(a1,...,ap+q−1)∈{0,1}p+q−1

(γa11 · · · γ
ap+q−1

p+q−1 )γ0(γa11 · · · γ
ap+q−1

p+q−1 )−1
)

· (γ1 · · · γp−1γp+q)γ0(γ1 · · · γp−1γp+q)−1

·
( ≺∏

(a1,...,ap+q−1)∈{0,1}p+q−1

(γa11 · · · γ
ap+q−1

p+q−1 )γ0(γa11 · · · γ
ap+q−1

p+q−1 )−1
)−1

γ−1p+q.

Note that the first factor of

≺∏
is γ0. Multiplying γ−10 γ−1p+q by left and γp+q(· · · ) by right, we

obtain

γ−10 γ−1p+q(γ1 · · · γp−1)γ0(γ1 · · · γp−1)−1 · γp+q · γ0(3.3)

·
( ≺∏

(a1,...,ap+q−1)∈{0,1}p+q−1

(a1,...,ap+q−1)6=(0,...,0)

(γa11 · · · γ
ap+q−1

p+q−1 )γ0(γa11 · · · γ
ap+q−1

p+q−1 )−1
)

=

( ≺∏
(a1,...,ap+q−1)∈{0,1}p+q−1

(a1,...,ap+q−1) 6=(0,...,0)

(γa11 · · · γ
ap+q−1

p+q−1 )γ0(γa11 · · · γ
ap+q−1

p+q−1 )−1
)

· (γ1 · · · γp−1γp+q)γ0(γ1 · · · γp−1γp+q)−1.
We prove Theorem 1.2 by using this equality. Before starting the proof, we give a useful equality:

γ−1k γ0γkγ0 = γ0γkγ0γ
−1
k ,(3.4)

which is equivalent to the relation (Rk). We also note that the relations (RIJ) is equivalent to

[(γi1 · · · γip)−1γ0(γi1 · · · γip), (γj1 · · · γjq )−1γ0(γj1 · · · γjq )] = 1,

by (Rij).

Proof of Theorem 1.2. We show the theorem by induction on p+q ≥ 2. As mentioned in Remark
3.3, it is sufficient to show (3.2) for each p, q. Considering the conjugation by γl’s, we have the
following lemma.

Lemma 3.5. Assume that we have proved (3.2) for any p, q with p+ q ≤ k− 1. Then we obtain
the relation (RIJ) for

I = {i1, . . . , ir}, J = {j1, . . . , js} ⊂ {1, . . . , n}
which satisfy I 6⊂ J , I 6⊃ J and #(I4J) ≤ k − 1. Here, I4J is the symmetric difference of I
and J .

First, we show the case p+ q = 2. In this case, we have only to show that

[γ1γ0γ
−1
1 , γ2γ0γ

−1
2 ] = 1.(3.5)

The equality (3.3) for p = q = 1 is

γ−10 γ−12 · 1 · γ0 · 1−1 · γ2 · γ0 · (γ1γ0γ−11 ) = γ1γ0γ
−1
1 · γ2γ0γ−12 .

By (3.4), the left-hand side equals to

γ−10 γ−12 γ0γ2γ0γ1γ0γ
−1
1 = γ−10 γ0γ2γ0γ

−1
2 γ1γ0γ

−1
1 = γ2γ0γ

−1
2 · γ1γ0γ−11 .
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Thus (3.5) is proved.
Next, we assume that we have proved (3.2) for any p, q with p+ q ≤ k−1 (recall Lemma 3.5),

and prove (3.2) in the case p+ q = k.

Claim 3.6. If

(1, . . . ,
p−1
1 , 0, . . . , 0) ≺ (a1, . . . , ap+q−1) � (1, . . . , 1) and (a1, . . . , ap+q−1) 6= (0, . . . ,

p−1
0 , 1, . . . , 1),

then we have

[(γa11 · · · γ
ap+q−1

p+q−1 )γ0(γa11 · · · γ
ap+q−1

p+q−1 )−1, (γ1 · · · γp−1γp+q)γ0(γ1 · · · γp−1γp+q)−1] = 1.

Proof of Claim. We put I = {i | ai = 1} and J = {1, . . . , p − 1, p + q}, and we show I and J
satisfy the conditions in Lemma 3.5. Clearly, p+ q ∈ J − I and hence I 6⊃ J . Since

(1, . . . ,
p−1
1 , 0, . . . , 0) ≺ (a1, . . . , ap+q−1),

there exists p ≤ i ≤ p+ q − 1 such that ai = 1. This implies that I 6⊂ J . Because of

I ∪ J ⊂ {1, . . . , p+ q} and (a1, . . . , ap+q−1) 6= (0, . . . ,
p−1
0 , 1, . . . , 1),

we obtain #(I4J) ≤ p+ q− 1 = k− 1, and hence I and J satisfy the conditions in Lemma 3.5.
Thus, the claim is proved. �

By applying this claim to the right-hand side of (3.3), we have

γ−10 γ−1p+q(γ1 · · · γp−1)γ0(γ1 · · · γp−1)−1 · γp+q · γ0(3.6)

·
( ≺∏

(0,...,0)≺(a1,...,ap+q−1)≺(0,...,0,1,...,1)
(γa11 · · · γ

ap+q−1

p+q−1 )γ0(γa11 · · · γ
ap+q−1

p+q−1 )−1
)

· (γp · · · γp+q−1)γ0(γp · · · γp+q−1)−1

=

( ≺∏
(0,...,0)≺(a1,...,ap+q−1)≺(0,...,0,1,...,1)

(γa11 · · · γ
ap+q−1

p+q−1 )γ0(γa11 · · · γ
ap+q−1

p+q−1 )−1
)

· (γp · · · γp+q−1)γ0(γp · · · γp+q−1)−1 · (γ1 · · · γp−1γp+q)γ0(γ1 · · · γp−1γp+q)−1.

We rewrite the first line:

(3.7) γ−10 γ−1p+q(γ1 · · · γp−1)γ0(γ1 · · · γp−1)−1 · γp+q · γ0 =

γ−10 (γ1 · · · γp−1) · γ−1p+qγ0γp+q · (γ1 · · · γp−1)−1γ0(γ1 · · · γp−1) · (γ1 · · · γp−1)−1 =

(γ1 · · · γp−1) · γ−1p+qγ0γp+q · (γ1 · · · γp−1)−1(where we used the induction hypothesis.)

Claim 3.7. This product commutes with (γa11 · · · γ
ap+q−1

p+q−1 )γ0(γa11 · · · γ
ap+q−1

p+q−1 )−1, for

(0, . . . , 0) ≺ (a1, . . . , ap+q−1) ≺ (1 . . . ,
p−1
1 , 0, . . . , 0).
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Proof of Claim. Since (0, . . . , 0) ≺ (a1, . . . , ap+q−1) ≺ (1 . . . , 1, 0, . . . , 0), we have ai = 0 for i ≥ p
and

(γa11 · · · γ
ap+q−1

p+q−1 )γ0(γa11 · · · γ
ap+q−1

p+q−1 )−1 = (γa11 · · · γ
ap−1

p−1 )γ0(γa11 · · · γ
ap−1

p−1 )−1 =

(γ1 · · · γp−1)(γ1−a11 · · · γ1−ap−1

p−1 )−1γ0(γ1−a11 · · · γ1−ap−1

p−1 )(γ1 · · · γp−1)−1.

Thus, the claim is equivalent to

[γ−1p+qγ0γp+q, (γ
1−a1
1 · · · γ1−ap−1

p−1 )−1γ0(γ1−a11 · · · γ1−ap−1

p−1 )] = 1.

This relation follows from the induction hypothesis and (1− a1, . . . , 1− ap−1) 6= (0, . . . , 0). �

Since (3.7) is changed into

(γ1 · · · γp−1) · γ−1p+qγ0γp+q · (γ1 · · · γp−1)−1

= (γ1 · · · γp−1) · γ−1p+qγ0γp+q · γ0γ−10 · (γ1 · · · γp−1)−1

= (γ1 · · · γp−1) · γ0γp+qγ0γ−1p+qγ−10 · (γ1 · · · γp−1)−1

= (γ1 · · · γp−1)γ0(γ1 · · · γp−1)−1 · (γ1 · · · γp−1γp+q)γ0(γ1 · · · γp−1γp+q)−1

·
(
(γ1 · · · γp−1)γ0(γ1 · · · γp−1)−1

)−1
,

the left-hand side of (3.6) is( ≺∏
(0,...,0)≺(a1,...,ap+q−1)≺(1...,1,0,...,0)

(γa11 · · · γ
ap+q−1

p+q−1 )γ0(γa11 · · · γ
ap+q−1

p+q−1 )−1
)

(3.8)

· (γ1 · · · γp−1)γ0(γ1 · · · γp−1)−1 · (γ1 · · · γp−1γp+q)γ0(γ1 · · · γp−1γp+q)−1

·
( ≺∏

(1...,1,0,...,0)≺(a1,...,ap+q−1)≺(0,...,0,1,...,1)
(γa11 · · · γ

ap+q−1

p+q−1 )γ0(γa11 · · · γ
ap+q−1

p+q−1 )−1
)

· (γp · · · γp+q−1)γ0(γp · · · γp+q−1)−1.

By Claim 3.6, (γ1 · · · γp−1γp+q)γ0(γ1 · · · γp−1γp+q)−1 commutes with the third line. Then (3.8)
is equal to( ≺∏

(0,...,0)≺(a1,...,ap+q−1)≺(0,...,0,1,...,1)
(γa11 · · · γ

ap+q−1

p+q−1 )γ0(γa11 · · · γ
ap+q−1

p+q−1 )−1
)

· (γ1 · · · γp−1γp+q)γ0(γ1 · · · γp−1γp+q)−1 · (γp · · · γp+q−1)γ0(γp · · · γp+q−1)−1.

Therefore, (3.6) implies the commutativity (3.2). �

4. Presentation of π1(X(3))

Hereafter, we mainly consider the case of n = 3. In this section, we prove Theorem 1.3.
To prove the theorem, we consider a plane cut of X(3). In the projective space P3, the defining

equation of S(3) is

(
√
x0 −

√
x1 −

√
x2 −

√
x3)(
√
x0 +

√
x1 −

√
x2 −

√
x3)

· (√x0 −
√
x1 +

√
x2 −

√
x3)(
√
x0 +

√
x1 +

√
x2 −

√
x3)

· (√x0 −
√
x1 −

√
x2 +

√
x3)(
√
x0 +

√
x1 −

√
x2 +

√
x3)

· (√x0 −
√
x1 +

√
x2 +

√
x3)(
√
x0 +

√
x1 +

√
x2 +

√
x3)

=
(
2(x20 + x21 + x22 + x23)− (x0 + x1 + x2 + x3)2

)2 − 64x0x1x2x3.
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By [5, Chapter XVII, §3, Ex. 11], a plane cut (substituting xi’s for linear forms) of S(3) is a
quartic with four bitangents

xi = 0 (i = 0, 1, 2, 3),

and with three nodes
xi = xj , xk = xl ({i, j, k, l} = {0, 1, 2, 3}).

We cut S(3) by H ' P2 with coordinates (x, y, z) as

x0 = x− 4z, x1 = −x− y, x2 = y − x, x3 = −x+ z.(4.1)

Then, the defining equations of the components of (P3 −X(3)) ∩H are as follows:

L0 = (x0 = 0) ∩H : x− 4z = 0,

L1 = (x1 = 0) ∩H : −x− y = 0,

L2 = (x2 = 0) ∩H : y − x = 0,

L3 = (x3 = 0) ∩H : −x+ z = 0,

Q = S(3) ∩H : (4x2 + 4y2 − 32xz + 25z2)2 = 64(y2 − x2)(x− z)(x− 4z).

By using dehomogenized coordinate (x, y) (put z = 1), their expressions in C2 are given as

L0 : x− 4 = 0, L1 : x+ y = 0,

L2 : y − x = 0, L3 : x− 1 = 0,

Q : (4x2 + 4y2 − 32x+ 25)2 = 64(y2 − x2)(x− 1)(x− 4).

Note that the line at infinity (z = 0) ⊂ H is not a component of (P3 −X(3)) ∩H. By Zariski
theorem of Lefschetz type (see, e.g., [3, Chapter 4 (1.17)]), the inclusion X(3) ∩ H ↪→ X(3)

induces an isomorphism

π1(X(3) ∩H)
∼−→ π1(X(3)).(4.2)

4.1. Preliminary. To compute π1(X(3) ∩H), we consider {Lλ : y = λ(x + 1)}λ∈C ⊂ H which
is a pencil of lines through (−1, 0) ∈ C2.

We summarize some numerical data. See also Figure 4.

• Q has three nodes ( 5
2 , 0), ( 3

2 ,±1).

• L0 is tangent to Q at (4,±
√
39
2 ).

• L1 is tangent to Q at (2 +
√
14
4 ,−2−

√
14
4 ) and (2−

√
14
4 ,−2 +

√
14
4 ).

• L2 is tangent to Q at (2 +
√
14
4 , 2 +

√
14
4 ) and (2−

√
14
4 , 2−

√
14
4 ).

• L3 is tangent to Q at (1,±
√
3
2 ).

• The intersection points of L0 (: y = 0) and Q are ( 5
2 , 0) (double root), (11

10 ±
√−1
5 , 0).

• The line Lλ is not generic for X(3) ∩H if and only if λ coincides with 0, ±a1, . . ., ±a10
or a11 =∞ which is given in Table 1. Note that each of ±a1, . . ., ±a10 is a real number.

As will be seen in the following computations, the fact that most of these data are real is useful
for our precise computation.

4.2. Computation of π1(X(3) ∩H). We compute π1(X(3) ∩H) precisely. By the theorem of
van Kampen-Zariski (see, e.g., [3, Chapter 4 (3.15)]), all relations in π1(X(3) ∩H) ' π1(X(3))
are obtained from the monodromy relations around the 21 points 0, ±a1, . . ., ±a10 (note that
the relation around a11 =∞ follows from the others).

Since X(3) ∩H is invariant under [x : y : z] 7→ [x : −y : z], the monodromy relations around
−a1, . . ., −a10 are obtained by a discussion parallel to those around a1, . . ., a10.
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Figure 4. X(3) ∩H ⊂ R2

L0 passes through
the node ( 5

2 , 0) ∈ Q and the intersection point (0, 0) = L1 ∩ L2.
a1 ; 0.2607431304 La1 is tangent to Q.
a2 = 0.4 La2 passes through the node ( 3

2 , 1) ∈ Q.

a3 ; 0.4330127020 La3 passes through the tangent point (1,
√
3
2 ) ∈ L3 ∩Q.

a4 = 0.5 La4 passes through the intersection point (1, 1) = L2 ∩ L3.

a5 ; 0.5156413111 La5 passes through the tangent point (2−
√
14
4 , 2−

√
14
4 ) ∈ L2 ∩Q.

a6 ; 0.5196653275 La6 is tangent to Q.

a7 ; 0.6244997998 La7 passes through the tangent point (4,
√
39
2 ) ∈ L0 ∩Q.

a8 ; 0.7458971504 La8 passes through the tangent point (2 +
√
14
4 , 2 +

√
14
4 ) ∈ L2 ∩Q.

a9 ; 0.7574500843 La9 is tangent to Q.
a10 = 0.8 La10 passes through the intersection point (4, 4) = L0 ∩ L2.
a11 =∞ La11(: x = −1) passes through the intersection point L0 ∩ L3.

Table 1. List of ai’s

We fix a positive real number a0 such that 0 < a0 < a1. First, we move λ from a0 to a11 =∞.

(0) At λ = a0, La0 is a generic line for X(3) ∩H. We put {h1, . . . , h8} = (P3 −X(3)) ∩H ∩ Lλ,
which are indexed as follows.

h1 h2 h3 h4, h5, h6, h7 h8
component L1 L2 L3 Q L0
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Here, we suppose that h6 < h7 are real numbers, and h4, h5 are complex numbers satisfying
Im(h5) < 0 < Im(h4). We take generators α1, . . . , α8 of

π1(X(3) ∩H ∩ La0) ' π1(P1 − {8 points})
as Figure 5 (for simplicity, we consider

√
−1∞ as the base point in our pictures, though we

should take (−1, 0) ∈ Lλ as a base point). Note that αi is a loop going once around hi via
the upper half-plane. By the definition, we have a relation

α1 · · ·α8 = 1.

Figure 5. Loops in La0

(1) At λ = a1, La1 is tangent to Q. If we move λ around a1, then h4 and h5 interchange
counterclockwisely. This implies a monodromy relation

α4 = α5.

By considering the half-turn of this move, we obtain a picture of X(3) ∩ H ∩ Lλ with
a1 < λ < a2; see Figure 6.

Figure 6. Loops in Lλ with a1 < λ < a2

(2) At λ = a2, La2 passes through the node ( 3
2 , 1) ∈ Q. When the line Lλ approaches La2 , the

points h5 and h6 merge together and we get a monodromy relation

[α5, α6] = 1, that is, [α4, α6] = 1.

By considering the half-turn of this move, we obtain a picture of X(3) ∩ H ∩ Lλ with
a2 < λ < a3; see Figure 7.
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Figure 7. Loops in Lλ with a2 < λ < a3

(3) At λ = a3, La3 passes through the tangent point (1,
√
3
2 ) ∈ L3 ∩ Q. When the line Lλ

approaches La3 , the points h3 and h4 merge together and we get a monodromy relation (see
also Figure 8)

(α3α4)2 = (α4α3)2.

Figure 8. Loops in Lλ obtained by moving λ around a3

By considering the half-turn of this move, we obtain a picture of X(3) ∩ H ∩ Lλ with
a3 < λ < a4; see Figure 9. We retake loops around h3 and h4 by α̃3 and α̃4 in Figure 9,
respectively. Note that

α̃3 = α3α4α3(α3α4)−1 = α3α4α3α
−1
4 α−13 = α−14 α3α4,

α̃4 = α3α4α4(α3α4)−1 = α3α4α
−1
3 .

(4) At λ = a4, La4 passes through the intersection point (1, 1) = L2 ∩ L3. When the line Lλ
approaches La4 , the points h2 and h3 merge together and we get a monodromy relation

[α2, α̃3] = 1, that is, [α2, α
−1
4 α3α4] = 1.

By considering the half-turn of this move, we obtain a picture of X(3) ∩ H ∩ Lλ with
a4 < λ < a5; see Figure 10.

(5) At λ = a5, La5 passes through the tangent point (2−
√
14
4 , 2−

√
14
4 ) ∈ L2∩Q. When the line

Lλ approaches La5 , the points h2 and h4 merge together and we get a monodromy relation

(α2α̃4)2 = (α̃4α2)2, that is, (α2α3α4α
−1
3 )2 = (α3α4α

−1
3 α2)2.
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Figure 9. Loops in Lλ with a3 < λ < a4

Figure 10. Loops in Lλ with a4 < λ < a5

By considering the half-turn of this move, we obtain a picture of X(3) ∩ H ∩ Lλ with
a5 < λ < a6; see Figure 11. We retake loops around h2 and h4 by α̃2 and ˜̃α4 in Figure 11,
respectively. Note that

α̃2 = α̃−14 α2α̃4 = (α3α4α
−1
3 )−1α2(α3α4α

−1
3 ) = α3α

−1
4 α−13 α2α3α4α

−1
3

= α−14 α−13 α3α4α3α
−1
4 α−13 α2α3α4α

−1
3 = (α3α4)−1α2(α3α4),

˜̃α4 = α2α̃4α
−1
2 = (α2α3)α4(α2α3)−1.

Here, we use the relations obtained in (3) and (4).

Figure 11. Loops in Lλ with a5 < λ < a6

(6) At λ = a6, La6 is tangent to Q. If we move λ around a6, then h4 and h6 interchange
counterclockwisely. This implies a monodromy relation

α6 = ˜̃α4, that is, α6 = (α2α3)α4(α2α3)−1.
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By considering the half-turn of this move, we obtain a picture of X(3) ∩ H ∩ Lλ with
a6 < λ < a7; see Figure 12. Note that in Lλ with λ > a6, two points h4 and h6 are
not in the real axis, and satisfy Im(h4) < 0 < Im(h6).

Figure 12. Loops in Lλ with a6 < λ < a7

(7) At λ = a7, La7 passes through the tangent point (4,
√
39
2 ) ∈ L0 ∩ Q. When the line Lλ

approaches La7 , the points h7 and h8 merge together and we get a monodromy relation

(α7α8)2 = (α7α8)2.

By considering the half-turn of this move, we obtain a picture of X(3) ∩ H ∩ Lλ with
a7 < λ < a8; see Figure 13. We retake loops around h7 and h8 by α̃7 and α̃8 in Figure 13,
respectively. Note that

α̃7 = α−18 α7α8, α̃8 = α7α8α
−1
7 .

Figure 13. Loops in Lλ with a7 < λ < a8

(8) At λ = a8, La8 passes through the tangent point (2 +
√
14
4 , 2 +

√
14
4 ) ∈ L2 ∩ Q. When the

line Lλ approaches La8 , the points h2 and h5 merge together. To write down a monodromy

relation, we retake loops around h2 and h4 by α−16 α̃2α6 and α̃2
˜̃α4α̃

−1
2 , respectively (see

Figure 14).
By using these generators, we obtain a monodromy relation

(α−16 α̃2α6α5)2 = (α5α
−1
6 α̃2α6)2.
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Figure 14. Retaking loops at Lλ with a7 < λ < a8.

Because of [α5, α6] = 1, we can reduce this relation to

(α̃2α5)2 = (α5α̃2)2, or equivalently, (α̃2α4)2 = (α4α̃2)2.

By considering the half-turn of this move, we obtain a picture of X(3) ∩ H ∩ Lλ with
a8 < λ < a9; see Figure 15. We retake loops around h2 and h5 by ˜̃α2 and α̃5 in Figure 15,
respectively. Note that

˜̃α2 = α−15 (α−16 α̃2α6)α5 = α−15 α−16 (α3α4)−1α2(α3α4)α6α5

= (α3α4α5α6)−1α2(α3α4α5α6),

α̃5 = α−16 α̃2α6α5(α−16 α̃2α6)−1 = α−16 α̃2α5α̃
−1
2 α6

= α−16 (α3α4)−1α2(α3α4)α4(α3α4)−1α−12 (α3α4)α6

= α−16 α−14 α−13 α6α3α4α6.

= α−16 α−14 α−13 α4α6α
−1
4 α3α4α6

= α−16 α2α
−1
4 α−13 α4α

−1
2 α6α2α

−1
4 α3α4α

−1
2 α6

= α2α3α
−1
4 α−13 · α−14 α−13 α4 · α3α4α

−1
3 · α−14 α3α4 · α3α4α

−1
3 α−12

= α2α4α
−1
2 .

Here, we use [α5, α6] = 1, α5 = α4, (α3α4)2 = (α4α3)2, [α2, α
−1
4 α3α4] = 1, [α4, α6] = 1 and

α−12 α6α2 = α3α4α
−1
3 .

(9) At λ = a9, La9 is tangent to Q. If we move λ around a9, then h5 and h7 interchange
counterclockwisely. This implies a monodromy relation

α̃5 = α̃7, that is, α2α4α
−1
2 = α−18 α7α8.

By considering the half-turn of this move, we obtain a picture of X(3) ∩ H ∩ Lλ with
a9 < λ < a10; see Figure 16. Note that in Lλ with λ > a9, two points h5 and h7 are
not in the real axis, and satisfy Im(h5) < 0 < Im(h7).

(10) At λ = a10, La10 passes through the intersection point (4, 4) = L0 ∩ L2. When the line Lλ
approaches La10 , the points h2 and h8 merge together. To write down a monodromy relation,

we retake loops around h2 and h5 by α̃−17
˜̃α2α̃7 and ˜̃α2α̃5

˜̃α−12 , respectively (see Figure 17).
By using these generators, we obtain a monodromy relation

[α̃−17
˜̃α2α̃7, α̃8] = 1.
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Figure 15. Loops in Lλ with a8 < λ < a9

Figure 16. Loops in Lλ with a9 < λ < a10

Figure 17. Retaking loops at Lλ with a9 < λ < a10.

By considering the half-turn of this move, we obtain a picture of X(3) ∩ H ∩ Lλ with
a10 < λ < a11; see Figure 18.

(11) At λ = a11, La11 passes through the intersection point L0∩L3. When the line Lλ approaches
La11 , the points h3 and h8 merge together. To write down a monodromy relation, we
redraw a picture of La11 ' P1 so that h8 is leftmost, and we retake a loop around h8 by

(α̃−17
˜̃α2α̃7α1)−1α̃8(α̃−17

˜̃α2α̃7α1) (see Figure 19).



312 Y. GOTO AND J. KANEKO

Figure 18. Loops in Lλ with a10 < λ < a11

Figure 19. Retaking loops at Lλ with a10 < λ < a11.

By using these generators, we obtain a monodromy relation

[(α̃−17
˜̃α2α̃7α1)−1α̃8(α̃−17

˜̃α2α̃7α1), α̃3] = 1.

Therefore, we obtain the all relations for λ > 0. We list the relations obtained in λ > 0:

(0) α1α2 . . . α8 = 1;
(1) α4 = α5;
(2) [α4, α6] = 1;
(3) (α3α4)2 = (α4α3)2;
(4) [α2, α

−1
4 α3α4] = 1;

(5) (α2α3α4α
−1
3 )2 = (α3α4α

−1
3 α2)2;

(6) α6 = α2α3α4(α2α3)−1;
(7) (α7α8)2 = (α8α7)2;
(8) (α̃2α5)2 = (α5α̃2)2;
(9) α2α4α

−1
2 = α−18 α7α8;

(10) [α̃−17
˜̃α2α̃7, α̃8] = 1;

(11) [(α̃−17
˜̃α2α̃7α1)−1α̃8(α̃−17

˜̃α2α̃7α1), α̃3] = 1,

where

α̃2 = (α3α4)−1α2(α3α4), ˜̃α2 = (α3α4α5α6)−1α2(α3α4α5α6),

α̃3 = α−14 α3α4, α̃7 = α−18 α7α8, α̃8 = α7α8α
−1
7 .
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Note that the relation (11) obtained as the monodromy around a11 =∞ is not needed (see also
Remark 4.3).

Next, we move λ from a positive number to a negative one around λ = 0. Then we have two
interchanges α1 ↔ α2 and α6 ↔ α7, and obtain the monodromy relations (0’) below. We obtain
the monodromy relations around −a1, . . ., −a10 as follows (recall that (1) α4 = α5):

(0’) [α1, α2] = 1, [α6, α7] = 1;
(1’) same as (1);
(2’) [α4, α7] = 1;
(3’) same as (3);
(4’) [α1, α

−1
4 α3α4] = 1;

(5’) (α1α3α4α
−1
3 )2 = (α3α4α

−1
3 α1)2;

(6’) α7 = α1α3α4(α1α3)−1;
(7’) (α6α8)2 = (α8α6)2;
(8’) (α̃′1α5)2 = (α5α̃

′
1)2;

(9’) α1α4α
−1
1 = α−18 α6α8;

(10’) [α̃′6
−1 ˜̃α′1α̃′6, α̃

′
8] = 1;

(11’) [(α̃′6
−1 ˜̃α′1α̃′6α2)−1α̃8(α̃′6

−1 ˜̃α′1α̃′6α2), α̃′3] = 1;

here

α̃′1 = (α3α4)−1α1(α3α4), ˜̃α′1 = (α3α4α5α7)−1α1(α3α4α5α7),

α̃′3 = α−14 α3α4, α̃′7 = α−18 α6α8, α̃′8 = α6α8α
−1
6 .

By using the relations (0), (1), (6) and (6’), we have

π1(X(3) ∩H) =

〈
α1, α2, α3, α4

∣∣∣∣ (2), (3), (4), (5), (0’), (2’), (4’), (5’)
(7), (8), (9), (10), (7’), (8’), (9’), (10’)

〉
.

We put

β1 = α1, β2 = α2, β3 = α̃3 = α−14 α3α4, β4 = α̃4 = α3α4α
−1
3 .(4.3)

By the relation (3), αi’s are written as

α1 = β1, α2 = β2, α3 = β−14 β3β4, α4 = β3β4β
−1
3 .(4.4)

Thus, β1, β2, β3 and β4 form a generator of π1(X(3) ∩H):

π1(X(3) ∩H) =

〈
β1, β2, β3, β4

∣∣∣∣ (2), (3), (4), (5), (0’), (2’), (4’), (5’)
(7), (8), (9), (10), (7’), (8’), (9’), (10’)

〉
.

Lemma 4.1. The relations (2), (3), (4), (5), (0’), (2’), (4’), (5’) are equivalent to

(A) [βi, βj ] = 1 (1 ≤ i < j ≤ 3);

(B) [βiβ4β
−1
i , βjβ4β

−1
j ] = 1 (1 ≤ i < j ≤ 3);

(C) (β4βk)2 = (βkβ4)2 (1 ≤ k ≤ 3).

Proof. Note that

β2β4β
−1
2 = α2α3α4α

−1
3 α−12 = α6, β1β4β

−1
1 = α1α3α4α

−1
3 α−11 = α7.

The lemma is proved by straightforward calculations. �

By this lemma we obtain

π1(X(3) ∩H) =

〈
β1, β2, β3, β4

∣∣∣∣ (A), (B), (C)
(7), (8), (9), (10), (7’), (8’), (9’), (10’)

〉
.
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Note that by (β3β4)2 = (β4β3)2, we have

α3α4 = (β−14 β3β4)(β3β4β
−1
3 ) = β3β4.

Recall that

α1 = β1, α2 = β2, α3 = β−14 β3β4, α4 = α5 = β3β4β
−1
3 ,

α6 = β2β4β
−1
2 , α7 = β1β4β

−1
1 ,

and

α−18 = α1α2α3α4α5α6α7 = β1β2 · β3β4 · β3β4β−13 · β2β4β−12 · β1β4β−11

= β1β2β4β3β4β2β4β
−1
2 β1β4β

−1
1 .

Lemma 4.2. The relations (7)–(10) and (7’)–(10’) follow from (A)–(C).

Proof. We show the lemma only for (7)–(10), because the others are shown in a similar way. We
assume (A)–(C). First, we rewrite the relations (7), (8), (9), by using βi’s:

(7)⇔α−17 α−18 α−17 α−18 = α−18 α−17 α−18 α−17

⇔β1β−14 β2β4β3β4β2β4β1β4β3β4β2β4β
−1
2 β1β4β

−1
1

= β1β2β4β3β4β2β4β1β4β3β4β2β4β
−1
2

⇔β3β4β2β4β1β4β3β−11 β4β1 = β2β4β
−1
2 β3β4β2β4β1β4β3,

(8)⇔((α3α4)−1α2(α3α4) · α5)2 = (α5 · (α3α4)−1α2(α3α4))2

⇔(β−14 β−13 β2β3β4β3β4β
−1
3 )2 = (β3β4β

−1
3 β−14 β−13 β2β3β4)2

⇔β2β4β2β4 = β4β2β4β2 (this is a relation in (C)),

(9)⇔β2β3β4β−13 β−12 = β1β2β4β3β4β2β4β
−1
2 β1β4β

−1
1 (β1β2β4β3β4β2β4β

−1
2 )−1

⇔β4 = β−13 β1β4β3β4β1β4β
−1
1 β−14 β−13 β−14 β−11 β3.

Next, we show (7) and (9), since (8) is already proved. Note that

[βi, βj ] = 1 and [βiβ4β
−1
i , βjβ4β

−1
j ] = 1

imply [β−1i β4βi, β
−1
j β4βj ] = 1. The left-hand side of (7) is

β3β4β2β4β1(β3β
−1
3 )β4β3β

−1
1 β4β1 = β3β4β2β4β1β3β

−1
1 β4β1β

−1
3 β4β3

= β3β4β2β4β3β4β1β
−1
3 β4β3 = β3β4β2β4β3β4β

−1
3 β1β4β3,

and the right-hand side is

β2β4β
−1
2 β3β4(β−13 β3)β2β4β1β4β3 = β3β4β

−1
3 β2β4β

−1
2 β3β2β4β1β4β3

= β3β4β
−1
3 β2β4β3β4β1β4β3 = β3β4β2β

−1
3 β4β3β4β1β4β3.

Thus, (7) is equivalent to β4β3β4β
−1
3 = β−13 β4β3β4 which is nothing but a relation in (C). The

right-hand side of (9) is

β1β
−1
3 β4β3β4β1β4β

−1
1 β−14 β−13 β−14 β3β

−1
1

= β1β4β3β4β
−1
3 β1β4β

−1
1 β−14 β−13 β−14 β3β

−1
1

= β1β4β1β4β
−1
1 β3β4β

−1
3 β−14 β−13 β−14 β3β

−1
1

= β4β1β4β1β
−1
1 β3β4β

−1
4 β−13 β−14 β−13 β3β

−1
1 = β4,
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and hence (9) is proved. Finally, we show (10). By using (7), we have

α̃7α̃8α̃
−1
7 = α−18 α7α8α7α8α

−1
7 α−18 α−17 α8 = α8.

Thus, the relation (10) is rewritten by βi’s as follows:

(10)⇔[ ˜̃α2, α̃7α̃8α̃
−1
7 ] = 1 ⇔ [ ˜̃α2, α

−1
8 ] = 1

⇔[(β3β4 · β3β4β−13 · β2β4β−12 )−1β2(β3β4 · β3β4β−13 · β2β4β−12 ),

β1β2β4β3β4β2β4β
−1
2 β1β4β

−1
1 ] = 1

⇔[β2, β4β3β4β2β4β1β4β3β4β1β4β
−1
1 β−14 β−13 β−14 ] = 1.

Since

β4β3β4β2β4β1β4β3β4β1β4β
−1
1 β−14 β−13 β−14 = β4β3β4β2β4β3β4β

−1
3 β1

and [β2, β
−1
3 β1] = 1, (10) is equivalent to

β2 · β4β3β4β2β4β3β4 = β4β3β4β2β4β3β4 · β2.
This is shown as

β2 · β4β3β4β2β4β3β4 · β−12 = β2β4(β−12 β2)β3β4β2β4β3β4β
−1
2

= β2β4β
−1
2 β3β2β4β2β4β3β4β

−1
2 = β2β4β

−1
2 β3β4(β−13 β3)β2β4β2β3β4β

−1
2

= β3β4β
−1
3 β2β4β

−1
2 β3β2β4β2β3β4β

−1
2 = β3β4β

−1
3 β2β4β3β4β3β2β4β

−1
2

= β3β4β
−1
3 β2β3β4β3β4β2β4β

−1
2 = β3β4β2β3β

−1
3 β4β3β

−1
2 β4β2β4

= β3β4β2β3β
−1
2 β4β2β

−1
3 β4β3β4 = β3β4β3β4β2β

−1
3 β4β3β4

= β4β3β4β3β2β
−1
3 β4β3β4 = β4β3β4β2β4β3β4.

Therefore, the proof is completed. �

Remark 4.3. Note that the relations (11) and (11’) follow from others. Indeed, by (10), we have

(11)⇔[α−11 α̃8α1, α̃3] = 1⇔ [α−11 α̃−18 α1, α̃3] = 1⇔ [α−11 · α7α
−1
8 α−17 · α1, α̃3] = 1

⇔[β−11 · β1β4β2β4β3β4β2β4β−12 · β1, β3] = 1⇔ [β4β2β4β3β4β2β4, β3] = 1,

and this follows from (A)–(C).

Summarizing the above arguments, we obtain the following theorem:

Theorem 4.4.

π1(X(3) ∩H) =

〈
β4, β1, β2, β3

∣∣∣∣ [βi, βj ] = 1, [βiβ4β
−1
i , βjβ4β

−1
j ] = 1 (1 ≤ i < j ≤ 3)

(β4βk)2 = (βkβ4)2 (1 ≤ k ≤ 3)

〉
.

4.3. Correspondence between βi’s and γj’s. To complete the proof of Theorem 1.3, we give

relations in π1(X(3)) between the loops βi’s and γj ’s.
By the parametrization (4.1) of the plane H, we have

x0 + 4x3 = −3x, x1 + x2 = −2x,

and hence the defining equation of H is given as

3x1 + 3x2 − 8x3 = 2x0.

We fix a sufficiently small positive number ε. We consider a line L′ in H defined as

y = − 1

3− ε (x− 4)(4.5)
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Figure 20. L 1
2+ε

and L′ around (1, 1) ∈ R2

which passes through (x, y) = (1 + ε, 1). The loops α1, α̃3, α2, α̃4 in L 1
2+ε

(see Figure 10)

naturally define those in L′ (we use same notations). Since (4.5) is expressed as

1

2
(x2 − x1) = − 1

3− εx0

by (4.1), the line L′ ⊂ C3 is defined by

3x1 + 3x2 − 8x3 = 2, x1 − x2 =
2

3− ε .

By straightforward calculation, this line parametrized by t ∈ C as follows:

(x1, x2, x3) =

(
6− ε
9− 3ε

,
−ε

9− 3ε
, 0

)
+ t ·

(
4

3
,

4

3
, 1

)
.(4.6)

If we identify L′ with C by t, then the intersection points L′∩(x1 = 0), L′∩(x2 = 0), L′∩(x3 = 0)
and L′ ∩ S(3) correspond to

t = − 6− ε
4(3− ε) , t =

ε

4(3− ε) , t = 0, t = t′1, t
′
2, t
′
3, t
′
4,

respectively, where 0 < t′1 < t′2 < t′3 < t′4. By definition of γi’s and commutativity among
γ1, γ2, γ3, the loop γ0 (resp. γ1, γ2, γ3) coincides with a loop which goes once around t = t′1
(resp. t = − 6−ε

4(3−ε) , t = ε
4(3−ε) , t = 0) approaching this point through the upper half-plane of

the t-space.
The loops α1, α2, α̃3, α̃4 in L′ (or L 1

2+ε
) are defined under the parametrization by x. We should

compare the parametrization by x with that by t, and relate α1, α2, α̃3, α̃4 to γ0, γ1, γ2, γ3. The
correspondence between the x-space and t-space is given by

t =
−x+ 1

x− 4

(
= −1− 3

x− 4

)
.(4.7)

Indeed, by (4.5), we have

x1 =
−x− y
x− 4

=
6− ε
9− 3ε

+
4

3
t, x2 =

y − x
x− 4

=
−ε

9− 3ε
+

4

3
t, x3 = t,
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and these expressions are coincide with (4.6). The Möbius transformation (4.7) is decomposed
into four elementary transformations

w = x− 4, v =
1

w
, u = −3v, t = u− 1.

We see the change of α1, α2, α̃3, α̃4 under each transformations. In the x-space, they are drawn
as follows.

◦

α1

×−2
◦

α̃3

◦

α2

◦

α̃4

1
×
0

×

1 + ε

×
3

×
4

(i) w = x− 4; the changes are trivial.

◦

α1

×−6
◦

α̃3

◦

α2

◦

α̃4

−3
×−4

×

−3 + ε

×−1
×
0

(ii) v = 1
w ; the approach to each circle is through the lower half-plane in the v-space.

◦

α1

×−1
◦

α̃3

◦

α2

◦

α̃4

− 1
3 ×

− 1
4 ×

1
−3+ε

×0×
− 1

6

(iii) u = −3v; the approaches are changed again.

◦

α1

×
0

◦

α̃3

◦

α2

◦

α̃4

1
×
3
4

×

−3
−3+ε

×
3

×
1
2
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(iv) t = u− 1; the changes are trivial.

◦

α1

×−1
◦

α̃3

◦

α2

◦

α̃4

0
×
− 1

4

×

−ε
−3+ε

×
2

×
− 1

2

As mentioned above, the loops α1, α̃3, α2, α̃4 in the last picture coincide with γ1, γ3, γ2, γ0, re-
spectively. Therefore, we obtain the following lemma.

Lemma 4.5. The loops α1, α2, α̃3, α̃4 in L′ coincide with γ1, γ2, γ3, γ0 as elements in π1(X(3)),
respectively. Therefore, β1(= α1), β2(= α2), β3(= α̃3), β4(= α̃4) ∈ π1(X(3) ∩H) are mapped into
γ1, γ2, γ3, γ0 under the isomorphism (4.2), respectively.

By this lemma and Theorem 4.4, we obtain Theorem 1.3.

5. The covering space —the complement of hyperplane arrangement

5.1. Covering spaces. We consider a branched 2n-covering

φ : Cn → Cn; (ξ1, . . . , ξn) 7→ (x1, . . . , xn) = (ξ21 , . . . , ξ
2
n)

of Cn, and we put S̃(n) = φ−1(S(n)). The pull-back of Fn(x) by φ is decomposed into the
product of linear forms in ξi’s:

Fn(φ(ξ)) =
∏

(a1,...,an)∈{0,1}n

(
1−

n∑
k=1

(−1)akξk

)
.

Thus, S̃(n) is the union of hyperplanes in Cn:

S̃(n) =
⋃

(a1,...,an)∈{0,1}n
H(a1, . . . , an), H(a1, . . . , an) =

(
1−

n∑
k=1

(−1)akξk = 0

)
.

In this section, we consider the fundamental group of

X̃(n) = φ−1(X(n)) = Cn −

 n⋃
k=1

Hk ∪
⋃

(a1,...,an)∈{0,1}n
H(a1, . . . , an)

 ,

where Hk = (ξk = 0). The restriction

φ : X̃(n) −→ X(n)

of φ to X̃(n) is a (Z/2Z)n-Galois covering. Hence, we have a short exact sequence

1 −→ π1(X̃(n))
φ∗−→ π1(X(n)) −→ (Z/2Z)n −→ 1.

For (a1, . . . , an) ∈ {0, 1}n(= (Z/2Z)n), let

ξa1···an =

(
(−1)a1√

2n
, . . . ,

(−1)an√
2n

)
∈ φ−1(ẋ).

We define a path γ̃
(a1···an)
k and a loop γ̃

(a1···an)
0 in X̃(n) as lifts of γk and γ0 such that

γ̃
(a1···an)
k (0) = γ̃

(a1···an)
0 (0) = ξa1···an ,
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respectively. Note that γ̃
(a1···an)
k (1) = ξa1,...,ak+1,...,an and γ̃

(a1···an)
0 (1) = ξa1···an . Of course, we

have φ∗(γ̃
(a1···an)
k ) = γk and φ∗(γ̃

(a1···an)
0 ) = γ0. For 1 ≤ i1 < i2 < · · · < ik ≤ n, we put

τ (i1···ik) = γ̃
(0···0)
i1

γ̃
(0···

i1
1 ···0)

i2
γ̃
(0···

i1
1 ···

i2
1 ···0)

i3
· · · γ̃(0···

i1
1 ···

i2···
1···

ik−1
1 ···0)

ik
.

We consider loops in π1(X̃(n), ξ0···0):

λ0 = γ̃
(0···0)
0 ,

λk = γ̃
(0···0···0)
k γ̃

(0···1···0)
k (k = 1, . . . , n),

λ
(i1···ik)
0 = τ (i1···ik)γ(0···

i1
1 ···

i2···
1···

ik
1 ···0)

0 τ (i1···ik) (1 ≤ i1 < i2 < · · · < ik ≤ n).

Figure 21 shows some loops and paths in X̃(2). For example, λ
(12)
0 is defined as λ

(12)
0 = γ̃

(00)
1 γ̃

(10)
2 ·

γ̃
(11)
0 · γ̃(00)1 γ̃

(10)
2 .

Figure 21. Some loops and paths in X̃(2).

By the definition, we obtain the following.

Lemma 5.1. We have

φ∗(λ0) = γ0, φ∗(λk) = γ2k,

φ∗(λ
(i1···ik)
0 ) = (γi1γi2 · · · γik)γ0(γi1γi2 · · · γik)−1.

5.2. The case of n = 2. By using the Reidemeister-Schreier method, we obtain a presentation
of π1(X̃(2)). Since computations are similar to that in the next subsection, we do not give precise
computations.

Proposition 5.2. The fundamental group π1(X̃(2)) has a presentation by 6 generators

λ1, λ2, λ0, λ
(1)
0 , λ

(2)
0 , λ

(12)
0 ,
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and 5 defining relations

[λ1, λ2] = 1,

λ
(i)
0 λiλ0 = λ0λ

(i)
0 λi = λiλ0λ

(i)
0 (i = 1, 2),

λiλ
(j)
0 λ

(12)
0 = λ

(j)
0 λ

(12)
0 λi = λ

(12)
0 λiλ

(j)
0 ({i, j} = {1, 2}).

Sketch of Proof. Let K be the free group generated by γ0, γ1, γ2, and ϕ : K → π1(X(2)) be the

natural epimorphism. The subgroup K1 = ϕ−1(π1(X̃(2))) of K is also free, and the set

T = {1, γ1, γ2, γ1γ2} ⊂ K
is a Schreier transversal for K1 in K. By the Reidemeister-Schreier method, we obtain

γ0, γ
2
1 , γ

2
2 , γ1γ0γ

−1
1 , γ2γ0γ

−1
2 , γ1γ2γ0(γ1γ2)−1,

γ2γ1γ
−1
2 γ−11 , γ1γ2γ1γ

−1
2 , γ1γ

2
2γ
−1
1

as generators of K1, and we also obtain 12 relations in π1(X̃(2)). To determine the generator,
imitate (i) and (ii) in the proof of Lemma 5.3. We obtain similar relations to (5.3), (5.4), (5.5),
(5.9), (5.35), (5.36), (5.37), (5.38), (5.39), (5.40). Using the correspondence in Lemma 5.1, we
obtain the proposition. �

Figure 22. A part of X̃(3).

5.3. The case of n = 3. By using Theorem 1.3, we now compute the fundamental group
π1(X̃(3)). As in Subsection 5.1, we consider the 11 loops

λ1, λ2, λ3, λ0, λ
(1)
0 , λ

(2)
0 , λ

(3)
0 , λ

(12)
0 , λ

(13)
0 , λ

(23)
0 , λ

(123)
0 .(5.1)
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By Lemma 5.1, we have

φ∗(λ0) = γ0, φ∗(λ1) = γ21 , φ∗(λ2) = γ22 , φ∗(λ3) = γ23 ,

φ∗(λ
(1)
0 ) = γ1γ0γ

−1
1 , φ∗(λ

(2)
0 ) = γ2γ0γ

−1
2 , φ∗(λ

(3)
0 ) = γ3γ0γ

−1
3 ,

φ∗(λ
(12)
0 ) = γ1γ2γ0(γ1γ2)−1, φ∗(λ

(13)
0 ) = γ1γ3γ0(γ1γ3)−1,

φ∗(λ
(23)
0 ) = γ2γ3γ0(γ2γ3)−1, φ∗(λ

(123)
0 ) = γ1γ2γ3γ0(γ1γ2γ3)−1.

We put G = π1(X(3)) and G1 = π1(X̃(3)). Recall the short exact sequence

1 −→ G1
φ∗−→ G

p−→ (Z/2Z)3 −→ 1.

It is easy to see that this sequence is realized as

p(γ0) = 0, p(γ1) = (1, 0, 0), p(γ2) = (0, 1, 0), p(γ3) = (0, 0, 1),

G1 = {g ∈ G | the sum of the exponents of γi is even for each i = 1, 2, 3}.
If we put

q : (Z/2Z)3 → G; q(b1, b2, b3) = γb11 γ
b2
2 γ

b3
3 ,

then we have q ◦ p = id. Thus, the above exact sequence is split one, and G is a semidirect
product of G1 by (Z/2Z)3, that is, G = G1 o (Z/2Z)3.

We determine the generators and relations of G1 by the Reidemeister-Schreier method (see,
e.g., [2, Chapter 2]).

Let K be the free group generated by γ0, γ1, γ2, γ3, and ϕ : K → G be the natural epimor-
phism. Note that the subgroup K1 = ϕ−1(G1) of K is also free. The set

T = {1, γ1, γ2, γ3, γ1γ2, γ1γ3, γ2γ3, γ1γ2γ3} ⊂ K
is a Schreier transversal for K1 in K. For g ∈ K, denote by g the unique element of T such that
K1g = K1g.

Lemma 5.3. The following 25 elements form a generator of the free group K1:

γ0, γ
2
1 , γ

2
2 , γ

2
3 , γ1γ0γ

−1
1 , γ2γ0γ

−1
2 , γ3γ0γ

−1
3 ,(5.2)

γjγiγ
−1
j γ−1i , γiγjγiγ

−1
j , γiγ

2
j γ
−1
i , γiγjγ0(γiγj)

−1,

γ1γ3γ2(γ1γ2γ3)−1, γ2γ3γ1(γ1γ2γ3)−1,

γ1γ2γ3γ1(γ2γ3)−1, γ1γ2γ3γ2(γ1γ3)−1, γ1γ2γ
2
3(γ1γ2)−1,

γ1γ2γ3γ0(γ1γ2γ3)−1,

where 1 ≤ i < j ≤ 3.

Proof. We put B = {γ0, γ1, γ2, γ3} which is a generator of K. A generator of K1 is given by

{(tb)(tb)−1 | t ∈ T, b ∈ B, (tb)(tb)−1 6= 1}.

It is sufficient to compute all (tb)(tb)−1.

(i) In the case t = 1, since (tb)(tb)−1’s are

γ0γ0
−1 = γ0 · 1 = γ0, γ1γ1

−1 = 1, γ2γ2
−1 = 1, γ3γ3

−1 = 1,

we obtain a generator γ0.
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(ii) In the case t = γi (1 ≤ i ≤ 3), (tb)(tb)−1’s are

γ2i (γ2i )−1, γiγj(γiγj)
−1, γiγ0(γiγ0)−1,

where j 6= i. Since γ2i , γiγ
−1
0 γ−1i ∈ K1, we have γ2i = 1 and γiγ0 = γiγ

−1
0 γ−1i · γiγ0 = γi.

Thus we obtain

γ2i (γ2i )−1 = γ2i , γiγ0(γiγ0)−1 = γiγ0γ
−1
i .

We compute γiγj(γiγj)
−1. If i < j, then γiγj = γiγj . If i > j, then

γiγj = γjγiγ
−1
j γ−1i · γiγj = γjγi.

We thus have

γiγj(γiγj)
−1 =

{
1 (i < j)
γiγjγ

−1
i γ−1j (i > j).

Therefore, we obtain generators γ2i , γiγ0γ
−1
i (1 ≤ i ≤ 3) and γiγjγ

−1
i γ−1j (1 ≤ j < i ≤ 3).

(iii) In the case t = γ1γ2, tb’s are

γ1γ2γ0 = γ1γ2γ0(γ1γ2)−1 · γ1γ2 = γ1γ2,

γ1γ2γ1 = γ1γ2γ1γ
−1
2 · γ2 = γ2, γ1γ2γ2 = γ1γ22γ

−1
1 · γ1 = γ1,

γ1γ2γ3 = γ1γ2γ3,

and hence we obtain generators

γ1γ2γ0(γ1γ2γ0)−1 = γ1γ2γ0(γ1γ2)−1,

γ1γ2γ1(γ1γ2γ1)−1 = γ1γ2γ1γ
−1
2 , γ1γ2γ2(γ1γ2γ2)−1 = γ1γ

2
2γ
−1
1 .

The following generators are obtained in the same way as above.

(iv) In the case t = γ1γ3, we obtain generators

γ1γ3γ0(γ1γ3γ0)−1 = γ1γ3γ0(γ1γ3)−1, γ1γ3γ1(γ1γ3γ1)−1 = γ1γ3γ1γ
−1
3 ,

γ1γ3γ2(γ1γ3γ2)−1 = γ1γ3γ2(γ1γ2γ3)−1, γ1γ3γ3(γ1γ3γ3)−1 = γ1γ
2
3γ
−1
1 .

(v) In the case t = γ2γ3, we obtain generators

γ2γ3γ0(γ2γ3γ0)−1 = γ2γ3γ0(γ2γ3)−1, γ2γ3γ1(γ2γ3γ1)−1 = γ2γ3γ1(γ1γ2γ3)−1,

γ2γ3γ2(γ2γ3γ2)−1 = γ2γ3γ2γ
−1
3 , γ2γ3γ3(γ2γ3γ3)−1 = γ2γ

2
3γ
−1
2 .

(vi) In the case t = γ1γ2γ3, we obtain generators

γ1γ2γ3γ0(γ1γ2γ3γ0)−1 = γ1γ2γ3γ0(γ1γ2γ3)−1,

γ1γ2γ3γ1(γ1γ2γ3γ1)−1 = γ1γ2γ3γ1(γ2γ3)−1,

γ1γ2γ3γ2(γ1γ2γ3γ2)−1 = γ1γ2γ3γ2(γ1γ3)−1,

γ1γ2γ3γ3(γ1γ2γ3γ3)−1 = γ1γ2γ
2
3(γ1γ2)−1.

Therefore, we obtain the 25 generators. �

We put

R =


γiγjγ

−1
i γ−1j (1 ≤ i < j ≤ 3),

γiγ0γ
−1
i γjγ0γ

−1
j γiγ

−1
0 γ−1i γjγ

−1
0 γ−1j (1 ≤ i < j ≤ 3),

γiγ0γiγ0γ
−1
i γ−10 γ−1i γ−10 (1 ≤ i ≤ 3)


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which generates the relations of G, that is, G = 〈γ0, γ1, γ2, γ3 | R〉. By the Reidemeister-Schreier
method, G1 is presented by the 25 generators (5.2) with relations of the form

trt−1, t ∈ T, r ∈ R.
Note that to obtain relations among the generators (5.2), we need to rewrite these relations by
them.

We write down the 72(= 8 · 9) relations.

(i) r = γiγjγ
−1
i γ−1j (1 ≤ i < j ≤ 3).

(a) t = 1. We obtain a relation

1 = γjγiγ
−1
j γ−1i .(5.3)

(b) t = γk. We obtain the following relations:

1 = γi · γiγjγ−1i γ−1j · γ−1i = γ2i (γiγjγiγ
−1
j )−1,(5.4)

1 = γj · γiγjγ−1i γ−1j · γ−1j = γjγiγ
−1
j γ−1i · γiγ2j γ−1i · γ−2j ,(5.5)

1 = γ3 · γ1γ2γ−11 γ−12 · γ−13(5.6)

= γ3γ1γ
−1
3 γ−11 · γ1γ3γ2(γ1γ2γ3)−1

(
γ3γ2γ

−1
3 γ−12 · γ2γ3γ1(γ1γ2γ3)−1

)−1
,

1 = γ2 · γ1γ3γ−11 γ−13 · γ−12 = γ2γ1γ
−1
2 γ−11 ·

(
γ2γ3γ1(γ1γ2γ3)−1

)−1
,(5.7)

1 = γ1 · γ2γ3γ−12 γ−13 · γ−11 =
(
γ1γ3γ2(γ1γ2γ3)−1

)−1
.(5.8)

In the following, we write only the results.
(c) t = γkγl.

1 = γiγjγiγ
−1
j · γ2j · γ−2i · (γiγ2j γ−1i )−1.(5.9)

1 = γ1γ3γ1γ
−1
3 · γ3γ2γ−13 γ−12 ·

(
γ1γ3γ2(γ1γ2γ3)−1 · γ1γ2γ3γ1(γ2γ3)−1

)−1
.(5.10)

1 = γ2γ3γ1(γ1γ2γ3)−1 · γ1γ2γ3γ2(γ1γ3)−1 · γ1γ3γ−11 γ−13 · (γ2γ3γ2γ−13 )−1.(5.11)

1 = γ1γ2γ1γ
−1
2 ·

(
γ1γ2γ3γ1(γ2γ3)−1

)−1
.(5.12)

1 = γ2γ3γ1(γ1γ2γ3)−1 · γ1γ2γ23(γ1γ2)−1 ·
(
γ2γ

2
3γ
−1
2 · γ2γ1γ−12 γ−11

)−1
.(5.13)

1 = γ1γ
2
2γ
−1
1 ·

(
γ1γ2γ3γ2(γ1γ3)−1

)−1
.(5.14)

1 = γ1γ3γ2(γ1γ2γ3)−1 · γ1γ2γ23(γ1γ2)−1 ·
(
γ1γ

2
3γ
−1
1

)−1
.(5.15)

(d) t = γ1γ2γ3.

1 = γ1γ2γ3γ1(γ2γ3)−1 · γ2γ3γ2γ−13 ·
(
γ1γ2γ3γ2(γ1γ3)−1 · γ1γ3γ1γ−13

)−1
.(5.16)

1 = γ1γ2γ3γ1(γ2γ3)−1 · γ2γ23γ−12 ·
(
γ1γ2γ

2
3(γ1γ2)−1 · γ1γ2γ1γ−12

)−1
.(5.17)

1 = γ1γ2γ3γ2(γ1γ3)−1 · γ1γ23γ−11 ·
(
γ1γ2γ

2
3(γ1γ2)−1 · γ1γ22γ−11

)−1
.(5.18)
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(ii) r = γiγ0γ
−1
i γjγ0γ

−1
j γiγ

−1
0 γ−1i γjγ

−1
0 γ−1j (1 ≤ i < j ≤ 3).

(a) t = 1.

1 = γiγ0γ
−1
i · γjγ0γ−1j · γiγ−10 γ−1i · γjγ−10 γ−1j .(5.19)

(b) t = γk.

1 = γ2i · γ0 · γ−2i · γiγjγ0(γiγj)
−1 · γ2i · γ−10 · γ−2i ·

(
γiγjγ0(γiγj)

−1)−1 .(5.20)

1 = γjγiγ
−1
j γ−1i · γiγjγ0(γiγj)

−1 · (γjγiγ−1j γ−1i )−1 · γ2j · γ0 · γ−2j(5.21)

· γjγiγ−1j γ−1i ·
(
γiγjγ0(γiγj)

−1)−1 · (γjγiγ−1j γ−1i )−1 · γ2j · γ−10 · γ−2j .

1 = γ3γ1γ
−1
3 γ−11 · γ1γ3γ0(γ1γ3)−1 · (γ3γ1γ−13 γ−11 )−1 · γ3γ2γ−13 γ−12(5.22)

· γ2γ3γ0(γ2γ3)−1 · (γ3γ2γ−13 γ−12 )−1 · γ3γ1γ−13 γ−11

·
(
γ1γ3γ0(γ1γ3)−1

)−1 · (γ3γ1γ−13 γ−11 )−1 · γ3γ2γ−13 γ−12

·
(
γ2γ3γ0(γ2γ3)−1

)−1 · (γ3γ2γ−13 γ−12 )−1.

1 = γ2γ1γ
−1
2 γ−11 · γ1γ2γ0(γ1γ2)−1 · (γ2γ1γ−12 γ−11 )−1(5.23)

· γ2γ3γ0(γ2γ3)−1 · γ2γ1γ−12 γ−11 ·
(
γ1γ2γ0(γ1γ2)−1

)−1
· (γ2γ1γ−12 γ−11 )−1 ·

(
γ2γ3γ0(γ2γ3)−1

)−1
.

1 = γ1γ2γ0(γ1γ2)−1 · γ1γ3γ0(γ1γ3)−1(5.24)

·
(
γ1γ2γ0(γ1γ2)−1

)−1 · (γ1γ3γ0(γ1γ3)−1
)−1

.

(c) t = γkγl.

1 = γiγjγiγ
−1
j · γjγ0γ−1j · (γiγjγiγ−1j )−1 · γiγ2j γ−1i(5.25)

· γiγ0γ−1i · (γiγ2j γ−1i )−1 · γiγjγiγ−1j · (γjγ0γ−1j )−1

· (γiγjγiγ−1j )−1 · γiγ2j γ−1i · (γiγ0γ−1i )−1 · (γiγ2j γ−1i )−1.

1 = γ1γ3γ1γ
−1
3 · γ3γ0γ−13 · (γ1γ3γ1γ−13 )−1 · γ1γ3γ2(γ1γ2γ3)−1(5.26)

· γ1γ2γ3γ0(γ1γ2γ3)−1 ·
(
γ1γ3γ2(γ1γ2γ3)−1

)−1 · γ1γ3γ1γ−13

· (γ3γ0γ−13 )−1 · (γ1γ3γ1γ−13 )−1 · γ1γ3γ2(γ1γ2γ3)−1

·
(
γ1γ2γ3γ0(γ1γ2γ3)−1

)−1 · (γ1γ3γ2(γ1γ2γ3)−1
)−1

.

1 = γ2γ3γ1(γ1γ2γ3)−1 · γ1γ2γ3γ0(γ1γ2γ3)−1 ·
(
γ2γ3γ1(γ1γ2γ3)−1

)−1
(5.27)

· γ2γ3γ2γ−13 · γ3γ0γ−13 · (γ2γ3γ2γ−13 )−1 · γ2γ3γ1(γ1γ2γ3)−1

·
(
γ1γ2γ3γ0(γ1γ2γ3)−1

)−1 · (γ2γ3γ1(γ1γ2γ3)−1
)−1

· γ2γ3γ2γ−13 · (γ3γ0γ−13 )−1 · (γ2γ3γ2γ−13 )−1.

1 = γ1γ2γ1γ
−1
2 · γ2γ0γ−12 · (γ1γ2γ1γ−12 )−1 · γ1γ2γ3γ0(γ1γ2γ3)−1(5.28)

· γ1γ2γ1γ−12 · (γ2γ0γ−12 )−1 · (γ1γ2γ1γ−12 )−1 ·
(
γ1γ2γ3γ0(γ1γ2γ3)−1

)−1
.
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1 = γ2γ3γ1(γ1γ2γ3)−1 · γ1γ2γ3γ0(γ1γ2γ3)−1 ·
(
γ2γ3γ1(γ1γ2γ3)−1

)−1
(5.29)

· γ2γ23γ−12 · γ2γ0γ−12 · (γ2γ23γ−12 )−1 · γ2γ3γ1(γ1γ2γ3)−1

·
(
γ1γ2γ3γ0(γ1γ2γ3)−1

)−1 · (γ2γ3γ1(γ1γ2γ3)−1
)−1

· γ2γ23γ−12 · (γ2γ0γ−12 )−1 · (γ2γ23γ−12 )−1.

1 = γ1γ
2
2γ
−1
1 · γ1γ0γ−11 · (γ1γ22γ−11 )−1 · γ1γ2γ3γ0(γ1γ2γ3)−1(5.30)

· γ1γ22γ−11 · (γ1γ0γ−11 )−1 · (γ1γ22γ−11 )−1 ·
(
γ1γ2γ3γ0(γ1γ2γ3)−1

)−1
.

1 = γ1γ3γ2(γ1γ2γ3)−1 · γ1γ2γ3γ0(γ1γ2γ3)−1 ·
(
γ1γ3γ2(γ1γ2γ3)−1

)−1
(5.31)

· γ1γ23γ−11 · γ1γ0γ−11 · (γ1γ23γ−11 )−1 · γ1γ3γ2(γ1γ2γ3)−1

·
(
γ1γ2γ3γ0(γ1γ2γ3)−1

)−1 · (γ1γ3γ2(γ1γ2γ3)−1
)−1

· γ1γ23γ−11 · (γ1γ0γ−11 )−1 · (γ1γ23γ−11 )−1.

(d) t = γ1γ2γ3.

1 = γ1γ2γ3γ1(γ2γ3)−1 · γ2γ3γ0(γ2γ3)−1 ·
(
γ1γ2γ3γ1(γ2γ3)−1

)−1
(5.32)

· γ1γ2γ3γ2(γ1γ3)−1 · γ1γ3γ0(γ1γ3)−1 ·
(
γ1γ2γ3γ2(γ1γ3)−1

)−1
· γ1γ2γ3γ1(γ2γ3)−1 ·

(
γ2γ3γ0(γ2γ3)−1

)−1 · (γ1γ2γ3γ1(γ2γ3)−1
)−1

· γ1γ2γ3γ2(γ1γ3)−1 ·
(
γ1γ3γ0(γ1γ3)−1

)−1 · (γ1γ2γ3γ2(γ1γ3)−1
)−1

.

1 = γ1γ2γ3γ1(γ2γ3)−1 · γ2γ3γ0(γ2γ3)−1 ·
(
γ1γ2γ3γ1(γ2γ3)−1

)−1
(5.33)

· γ1γ2γ23(γ1γ2)−1 · γ1γ2γ0(γ1γ2)−1 ·
(
γ1γ2γ

2
3(γ1γ2)−1

)−1
· γ1γ2γ3γ1(γ2γ3)−1 ·

(
γ2γ3γ0(γ2γ3)−1

)−1 · (γ1γ2γ3γ1(γ2γ3)−1
)−1

· γ1γ2γ23(γ1γ2)−1 ·
(
γ1γ2γ0(γ1γ2)−1

)−1 · (γ1γ2γ23(γ1γ2)−1
)−1

.

1 = γ1γ2γ3γ2(γ1γ3)−1 · γ1γ3γ0(γ1γ3)−1 ·
(
γ1γ2γ3γ2(γ1γ3)−1

)−1
(5.34)

· γ1γ2γ23(γ1γ2)−1 · γ1γ2γ0(γ1γ2)−1 ·
(
γ1γ2γ

2
3(γ1γ2)−1

)−1
· γ1γ2γ3γ2(γ1γ3)−1 ·

(
γ1γ3γ0(γ1γ3)−1

)−1 · (γ1γ2γ3γ2(γ1γ3)−1
)−1

· γ1γ2γ23(γ1γ2)−1 ·
(
γ1γ2γ0(γ1γ2)−1

)−1 · (γ1γ2γ23(γ1γ2)−1
)−1

.

(iii) r = γiγ0γiγ0γ
−1
i γ−10 γ−1i γ−10 (1 ≤ i ≤ 3).

(a) t = 1.

1 = γiγ0γ
−1
i · γ2i · γ0 · γ−2i · (γiγ0γ−1i )−1 · γ−10 .(5.35)

(b) t = γk.

1 = γkγiγ0(γkγi)
−1 · γkγ2i γ−1k · γkγ0γ−1k(5.36)

·
(
γkγ0γ

−1
k · γkγiγ0(γkγi)

−1 · γkγ2i γ−1k
)−1

(k < i).
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1 = γ2i · γ0 · γiγ0γ−1i · γ−10 · γ−2i · (γiγ0γ−1i )−1.(5.37)

1 = γkγiγ
−1
k γ−1i · γiγkγ0(γiγk)−1 · γiγkγiγ−1k · γkγ0γ−1k(5.38)

·
(
γkγ0γ

−1
k · γkγiγ−1k γ−1i · γiγkγ0(γiγk)−1 · γiγkγiγ−1k

)−1
(k > i).

(c) t = γkγl.

1 = γiγlγiγ
−1
l · γlγ0γ−1l · γlγiγ−1l γ−1i · γiγlγ0(γiγl)

−1(5.39)

·
(
γiγlγ0(γiγl)

−1 · γiγlγiγ−1l · γlγ0γ−1l · γlγiγ−1l γ−1i
)−1

(i < l).

1 = γkγ
2
i γ
−1
k · γkγ0γ−1k · γkγiγ0(γkγi)

−1(5.40)

·
(
γkγiγ0(γkγi)

−1 · γkγ2i γ−1k · γkγ0γ−1k
)−1

(k < i).

1 = γ2γ3γ1(γ1γ2γ3)−1 · γ1γ2γ3γ0(γ1γ2γ3)−1(5.41)

· γ1γ2γ3γ1(γ2γ3)−1 · γ2γ3γ0(γ2γ3)−1

·
(
γ2γ3γ0(γ2γ3)−1 · γ2γ3γ1(γ1γ2γ3)−1

· γ1γ2γ3γ0(γ1γ2γ3)−1 · γ1γ2γ3γ1(γ2γ3)−1
)−1

.

1 = γ1γ3γ2(γ1γ2γ3)−1 · γ1γ2γ3γ0(γ1γ2γ3)−1(5.42)

· γ1γ2γ3γ2(γ1γ3)−1 · γ1γ3γ0(γ1γ3)−1

·
(
γ1γ3γ0(γ1γ3)−1 · γ1γ3γ2(γ1γ2γ3)−1

· γ1γ2γ3γ0(γ1γ2γ3)−1 · γ1γ2γ3γ2(γ1γ3)−1
)−1

.

1 = γ1γ2γ3γ0(γ1γ2γ3)−1 · γ1γ2γ23(γ1γ2)−1 · γ1γ2γ0(γ1γ2)−1(5.43)

·
(
γ1γ2γ0(γ1γ2)−1 · γ1γ2γ3γ0(γ1γ2γ3)−1 · γ1γ2γ23(γ1γ2)−1

)−1
.

(d) t = γ1γ2γ3. We take k, l such that {i, k, l} = {1, 2, 3} and k < l. Then we obtain a
relation

1 = γ1γ2γ3γi(γkγl)
−1 · γkγlγ0(γkγl)

−1(5.44)

· γkγlγi(γ1γ2γ3)−1 · γ1γ2γ3γ0(γ1γ2γ3)−1

·
(
γ1γ2γ3γ0(γ1γ2γ3)−1 · γ1γ2γ3γi(γkγl)−1

· γkγlγ0(γkγl)
−1 · γkγlγi(γ1γ2γ3)−1

)−1
.

Therefore, G1 is presented by the 25 generators (5.2) and the 72 relations (5.3)–(5.44). We
reduce this presentation to a simpler one.

Corollary 5.4. The 11 elements

γ0, γ
2
1 , γ

2
2 , γ

2
3 , γ1γ0γ

−1
1 , γ2γ0γ

−1
2 , γ3γ0γ

−1
3 ,(5.45)

γ1γ2γ0(γ1γ2)−1, γ1γ3γ0(γ1γ3)−1, γ2γ3γ0(γ2γ3)−1, γ1γ2γ3γ0(γ1γ2γ3)−1

in (5.2) generate G1.
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Proof. To prove this, it suffices to show the following relations in G1:

γjγiγ
−1
j γ−1i = 1,(5.46)

γiγjγiγ
−1
j = γ2i ,(5.47)

γiγ
2
j γ
−1
i = γ2j ,(5.48)

γ1γ3γ2(γ1γ2γ3)−1 = 1, γ2γ3γ1(γ1γ2γ3)−1 = 1,(5.49)

γ1γ2γ3γ1(γ2γ3)−1 = γ21 ,(5.50)

γ1γ2γ3γ2(γ1γ3)−1 = γ22 , γ1γ2γ
2
3(γ1γ2)−1 = γ23 ,

where 1 ≤ i < j ≤ 3. (5.46) is same as (5.3). (5.47) is equivalent to (5.4). (5.48) follows
from (5.5) and (5.46). The first relation of (5.49) is equivalent to (5.8), and the second one
follows from (5.7) and (5.46). Three relations (5.50) follow from (5.12), (5.14), (5.15) and above
relations. �

Under the inclusion φ∗ : G1 → G, the 11 loops (5.1) coincide with the generator (5.45) of G1,
so we use the notations

γ2i = λi, γ0 = λ0, γiγ0γ
−1
i = λ

(i)
0 ,

γjγkγ0(γjγk)−1 = λ
(jk)
0 , γ1γ2γ3γ0(γ1γ2γ3)−1 = λ

(123)
0 ,

where 1 ≤ i ≤ 3 and 1 ≤ j < k ≤ 3.
By using these generators and relations (5.46)–(5.50), we rewrite the relations (5.3)–(5.44).

The relations (5.3)–(5.8) and (5.10)–(5.15) become trivial ones. (5.9) implies

[λi, λj ] = 1 (1 ≤ i < j ≤ 3),

which is equivalent to (5.16)–(5.18). (5.19) implies

[λ
(i)
0 , λ

(j)
0 ] = 1 (1 ≤ i < j ≤ 3).

(5.20) and (5.21) imply

[λ
(ij)
0 , λiλ0λ

−1
i ] = 1, [λ

(ij)
0 , λjλ0λ

−1
j ] = 1 (1 ≤ i < j ≤ 3).(5.51)

(5.22)–(5.24) imply

[λ
(12)
0 , λ

(13)
0 ] = 1, [λ

(12)
0 , λ

(23)
0 ] = 1, [λ

(13)
0 , λ

(23)
0 ] = 1.

(5.25) implies

[λiλ
(j)
0 λ−1i , λjλ

(i)
0 λ−1j ] = 1 (1 ≤ i < j ≤ 3).(5.52)

(5.26)–(5.31) imply

[λ
(123)
0 , λiλ

(j)
0 λ−1i ] = 1 (1 ≤ i 6= j ≤ 3).(5.53)

(5.32)–(5.34) imply

[λ1λ
(23)
0 λ−11 , λ2λ

(13)
0 λ−12 ] = 1,(5.54)

[λ1λ
(23)
0 λ−11 , λ3λ

(12)
0 λ−13 ] = 1, [λ2λ

(13)
0 λ−12 , λ3λ

(12)
0 λ−13 ] = 1.

(5.35) and (5.37) imply

λ
(i)
0 λiλ0 = λ0λ

(i)
0 λi = λiλ0λ

(i)
0 (1 ≤ i ≤ 3).
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(5.36) and (5.40) imply

λjλ
(i)
0 λ

(ij)
0 = λ

(i)
0 λ

(ij)
0 λj = λ

(ij)
0 λjλ

(i)
0 (1 ≤ i < j ≤ 3).

(5.38) and (5.39) imply

λiλ
(j)
0 λ

(ij)
0 = λ

(j)
0 λ

(ij)
0 λi = λ

(ij)
0 λiλ

(j)
0 (1 ≤ i < j ≤ 3).

(5.41)–(5.44) imply

λiλ
(jk)
0 λ

(123)
0 = λ

(jk)
0 λ

(123)
0 λi = λ

(123)
0 λiλ

(jk)
0 ,

where {i, j, k} = {1, 2, 3} and j < k.

Theorem 5.5. The fundamental group π1(X̃(3)) = G1 has a presentation by 11 generators

λ1, λ2, λ3, λ0, λ
(1)
0 , λ

(2)
0 , λ

(3)
0 , λ

(12)
0 , λ

(13)
0 , λ

(23)
0 , λ

(123)
0 ,

and 27 defining relations

[λi, λj ] = 1 (1 ≤ i < j ≤ 3),(5.55)

[λ
(i)
0 , λ

(j)
0 ] = 1 (1 ≤ i < j ≤ 3),(5.56)

[λ
(12)
0 , λ

(13)
0 ] = 1, [λ

(12)
0 , λ

(23)
0 ] = 1, [λ

(13)
0 , λ

(23)
0 ] = 1,(5.57)

[λ
(ij)
0 , λiλ0λ

−1
i ] = 1 (1 ≤ i < j ≤ 3),(5.58)

[λ
(123)
0 , λ1λ

(2)
0 λ−11 ] = 1,(5.59)

[λ
(123)
0 , λ2λ

(3)
0 λ−12 ] = 1, [λ

(123)
0 , λ3λ

(1)
0 λ−13 ] = 1,

λ
(i)
0 λiλ0 = λ0λ

(i)
0 λi = λiλ0λ

(i)
0 (1 ≤ i ≤ 3),(5.60)

λiλ
(j)
0 λ

(ij)
0 = λ

(j)
0 λ

(ij)
0 λi = λ

(ij)
0 λiλ

(j)
0 (1 ≤ i < j ≤ 3),

λjλ
(i)
0 λ

(ij)
0 = λ

(i)
0 λ

(ij)
0 λj = λ

(ij)
0 λjλ

(i)
0 (1 ≤ i < j ≤ 3),

λiλ
(jk)
0 λ

(123)
0 = λ

(jk)
0 λ

(123)
0 λi = λ

(123)
0 λiλ

(jk)
0 ({i, j, k} = {1, 2, 3}, j < k).

Proof. We need to show that the relations

• the second relation of (5.51),
• (5.52),
• (5.53) for (i, j) = (3, 2), (1, 3), (2, 1), and
• (5.54)

follow from (5.55)–(5.60). We only consider the second relation of (5.51), since the others are
also proved similarly. By (5.60), we have

λ
(i)
0 λiλ0 = λ0λ

(i)
0 λi, λjλ

(i)
0 λ

(ij)
0 = λ

(ij)
0 λjλ

(i)
0 .

Then (5.58) implies

[λ
(ij)
0 , λjλ0λ

−1
j ] = λj · [λ−1j λ

(ij)
0 λj , λ0] · λ−1j

= λj · [λ(i)0 λ
(ij)
0 λ

(i)
0

−1
, λ0] · λ−1j = λjλ

(i)
0 · [λ

(ij)
0 , λ

(i)
0

−1
λ0λ

(i)
0 ] · (λjλ(i)0 )−1

= λjλ
(i)
0 · [λ

(ij)
0 , λiλ0λ

−1
i ] · (λjλ(i)0 )−1 = λjλ

(i)
0 · 1 · (λjλ

(i)
0 )−1 = 1.

�
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(5.55) H1 ∩H2, H1 ∩H3, H2 ∩H3

(5.56) H(1, 0, 0) ∩H(0, 1, 0), H(1, 0, 0) ∩H(0, 0, 1), H(0, 1, 0) ∩H(0, 0, 1)
(5.57) H(1, 1, 0) ∩H(1, 0, 1), H(0, 1, 1) ∩H(1, 1, 0), H(1, 0, 1) ∩H(0, 1, 1)
(5.58) H(0, 0, 0) ∩H(1, 1, 0), H(0, 0, 0) ∩H(1, 0, 1), H(0, 0, 0) ∩H(0, 1, 1)
(5.59) H(1, 1, 1) ∩H(0, 1, 0), H(1, 1, 1) ∩H(0, 0, 1), H(1, 1, 1) ∩H(1, 0, 0)
(5.60) H(0, 0, 0) ∩H(1, 0, 0) ∩H1, H(0, 0, 0) ∩H(0, 1, 0) ∩H2,

H(0, 0, 0) ∩H(0, 0, 1) ∩H3

H(0, 1, 0) ∩H(1, 1, 0) ∩H1, H(0, 0, 1) ∩H(1, 0, 1) ∩H1,
H(0, 0, 1) ∩H(0, 1, 1) ∩H2

H(1, 0, 0) ∩H(1, 1, 0) ∩H2, H(1, 0, 0) ∩H(1, 0, 1) ∩H3,
H(0, 1, 0) ∩H(0, 1, 1) ∩H3

H(0, 1, 1) ∩H(1, 1, 1) ∩H1, H(1, 0, 1) ∩H(1, 1, 1) ∩H2,
H(1, 1, 0) ∩H(1, 1, 1) ∩H3

Table 2. Relations and intersections.

Remark 5.6. We can interpret that these relations come from lines which are intersections of the

planes Hk, H(a1, a2, a3), as Table 2. For example, the loop λ
(12)
0 turns the hyperplane H(1, 1, 0).
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