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ABOUT THE ALGEBRAIC CLOSURE OF THE FIELD OF POWER SERIES
IN SEVERAL VARIABLES IN CHARACTERISTIC ZERO

GUILLAUME ROND

ABsTrRACT. We begin this paper by constructing different algebraically closed fields containing
an algebraic closure of the field of power series in several variables over a characteristic zero
field. Each of these fields depends on the choice of an Abhyankar valuation and is constructed
via a generalization of the Newton-Puiseux method for this valuation.

Then we study the Galois group of a polynomial with power series coefficients. In particular
by examining more carefully the case of monomial valuations we are able to give several results
concerning the Galois group of a polynomial whose discriminant is a weighted homogeneous
polynomial times a unit. One of our main results is a generalization of Abhyankar-Jung The-
orem for such polynomials, classical Abhyankar-Jung Theorem being devoted to polynomials
whose discriminant is a monomial times a unit.
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1. INTRODUCTION

When k is an algebraically closed field of characteristic zero, we can always express the roots
of a polynomial with coefficients in the field of power series over k, denoted by k((¢)), as formal
Laurent series in t* for some positive integer k. This result was known by Newton (at least
formally see [BK] p. 372) and had been rediscovered by Puiseux in the complex analytic case
[Pul], [Pu2] (see [BK]| or [Cu] for a presentation of this result). A modern way to reformulate

2000 Mathematics Subject Classification. Primary: 13F25. Secondary: 11J25, 12J20, 12F99, 13J05, 14B05,
32B10.

This work has been partially supported by ANR projects STAAVF (ANR-2011 BS01 009) and SUSI (ANR-
12-JS01-0002-01).


http://dx.doi.org/10.5427/jsing.2017.16a

2 GUILLAUME ROND

this fact is to say that an algebraic closure of k((t)) is the field of Puiseux power series P defined
in the following way:
Pi= Jk((1)).
keN

The proof of this result, called the Newton-Puiseux method, consists essentially in constructing
the roots of a polynomial P(Z) € k[t][Z] by successive approximations in a similar way to New-

ton method in numerical analysis. These approximations converge since k ((t%» is a complete

field with respect to the Krull topology.

This result, applied to a polynomial with coefficients in k[¢] defining a germ of algebroid plane
curve (X,0), provides an uniformization of this germ, i.e., a parametrization of this germ.

On the other hand this description of the algebraic closure of k((t)) describes very easily
the Galois group of k((¢)) — P, since this one is generated by the multiplication of the k-th
roots of unity by t+ for any positive integer k. In particular if an irreducible monic polynomial
P(Z) € C[t][Z] has a root which is a convergent power series in ¢+, i.e., an element of C{t#},
then its other roots are also in C{t#} and the coefficients of P(Z) are convergent power series.

When k is a characteristic zero field (but not necessarily algebraically closed), we can prove
in the same way that an algebraic closure of k((t)) is

(1) P=J K ((ﬁ)) .
K keN
where the first union runs over all finite field extensions k — k'.

The aim of this work is double: the first one consists in finding representations of the roots of a
polynomial whose coefficients are power series in several variables over a characteristic zero field.
Our main results regarding these representations are Theorem 4.2 for Abhyankar valuations and
its stronger version for monomial valuations (see Theorem 5.12). The second goal is to describe
the Galois group of such polynomials. In particular we concentrate our study to irreducible
polynomials that remain irreducible as polynomials with coefficients in the completion of the
valuation ring associated to a monomial valuation. Our main result regarding this problem is
a generalization of Abhyankar-Jung Theorem to polynomials whose discriminant is weighted
homogeneous (see Theorems 7.5 and 7.7).

But let us present in more details the situation, the problems and the results given in this
paper. It is tempting to find such a similar expression to (1) for the algebraic closure of the field
of power series in n variables, k((z1,...,2,)), for n > 2. But it appears easily that the algebraic
closure of this field agimits a Jlreally more complicated description and considering only power
series depending on =, ..., =% is not sufficient. For instance it is easy to see that a square root
of ©1 4+ x5 can not be expressed as such a power series.

Nevertheless there exist positive results in some specific cases, the most famous one being the
Abhyankar-Jung theorem:

Theorem (Abhyankar-Jung Theorem). If k is an algebraically closed field of characteristic

zero, then any polynomial with coefficients in K[x1,...,x,], whose discriminant has the form

uzit . xfn where w € K[z1,...,x,] is a unit and a1, ..., an € Z>o, has its roots in
1 1

klzf,...,xk] for some positive integer k.

Such a polynomial is called a quasi-ordinary polynomial and this theorem asserts that the
roots of quasi-ordinary polynomials are Puiseux power series in several variables. It provides
not only a description of the roots of a quasi-ordinary polynomial but also a description of its
Galois group. This result has first being proven by Jung in the complex analytic case, then by
Abhyankar in the general case ([Ju], [Ab]).
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In the general case, a naive approach involves the use of Newton-Puiseux theorem n times
(i.e., the formula (1) for the algebraic closure of k((t))). For example in the case where n = 2
and k is an algebraically closed field of characteristic zero, this means that the algebraic closure

of k((z1,22)) is included in
- WU ()

But this field, which is algebraically closed, is very much larger than the algebraic closure of
k((z1,22)) (see [Sa] for some thoughts about this). Moreover the action of the ki-th and ks-th
roots of unity are not sufficient to generate the Galois group of the algebraic closure since there
exist elements of k((x1))(z2)) which are algebraic over k((«1,x2)) but are not in k((z1, z3)). For

instance consider
o142 = 3 ity € Q@) (@2)\Q(n, 2)

i€Zsy 1
for some well chosen rational numbers a; € Q, ¢ € Z>o.
Nevertheless a deeper analysis of the Newton-Puiseux method leads to the fact that it is
enough to consider the field of fractions of the ring of elements
Lo Iz
f= Z alhllekl a:2k2 €L
(ll,l2)€Z2

for some k;, ko € N whose support is included in a rational strongly convex cone of R2. Here
the support of f is the set

Supp(f) := {(l1,12) € Z* / ay, 4, # O}
This result has been proven by MacDonald [McD] (see also [Go], [Aro], [AT], [SV]). But once
more, for any rational strongly convex cone of R?, denoted by o, RQZO C o, there exist elements
whose support is in o but that are not algebraic over k((z1, x2)).
One of the main difficulties comes from the fact that k((z1,...,2,)) is not a complete field
with respect to the topology induced by the maximal ideal of k[x1,...,z,] (called the Krull
topology; it is induced by the following norm ‘g‘ = e d@)=ord(f) for any f, g € k[z1,...,x.],

g # 0, where ord(f) is the order of the series f in the usual sense). Indeed, in order to apply the
Newton-Puiseux method we have to work with a complete field since the roots are constructed

by successive approximations. A very natural idea is to replace k((x1, ..., z,)) by its completion.
But the completion of k((z1,...,2,)) is not algebraic over k((z1,...,z,)), thus the fields we
construct in this way are bigger than the algebraic closure of k((z1,...,z,)). In fact we need to
replace the completion of k((«1, ..., z,)) by its henselization in the completion. The problem is

that there is no general criterion to distinguish elements of the henselization from other elements
of the completion. In some sense this problem is analogous to the fact that there is no general
criterion to determine if a real number is algebraic or not over the rationals. One more issue
is that choosing the Krull topology is arbitrary and we may replace this one by any topology
induced by an other norm (or valuation) on this field.

In this paper, we first investigate the use of the Newton-Puiseux method with respect to
"tame" valuations (i.e., replace k((x1, ..., x,)) by its completion for this valuation). By a "tame"
valuation we mean a rank one (or real valued) valuation that satisfies the equality in the Ab-
hyankar inequality (see Definition 2.1). These valuations are called Abhyankar valuations (cf.
[ELS]) or quasi-monomial valuations (cf. [FJ]) and, essentially, these are monomial valuations
after some sequence of blowing-ups. This is the first part of this work.
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If v is such a valuation, we denote by K, the completion of k((z1,...,z,)) for the topology
induced by this valuation. This field will play the role of k((¢)) in the classical Newton-Puiseux
method. Then we have to define the elements that will play the role of ¢%. This is where the
first difficulty appears, since instead of working over ]IA(,,, we need to work over the graded ring
associated to v. Both are isomorphic but there is no canonical isomorphism between them. In
the case of k((t)) where ¢ is a single variable, such an isomorphism is defined by identifying the
k-vector space of homogeneous elements of degree i of the graded ring with the k-vector space
of homogeneous polynomials of degree i, i.e., k.t*. But this identification depends on the choice
of an uniformizer of k[t]. In the case of k((z1,...,2,)) an isomorphism will be determined by
the choice of "coordinates" such that the valuation v is monomial in these coordinates since
Abhyankar valuations are monomial valuations after a sequence of blow-ups (cf. Remark 3.6).
This is the reason why we restrict our study to these valuations.

Nevertheless when such an isomorphism is chosen, we are able to define the elements that
will play the role of t%, this the aim of Section 3. These elements are called homogeneous
elements with respect to v (cf. Definitions 3.15 and 3.17). These are defined as being the roots
of weighted homogeneous polynomials with coefficients in the graded ring of k[x1, ..., z,] for
the valuation v. If k is the field of complex numbers and the weights of the monomial valuation
are positive integers, we can think about these homogeneous elements as weighted homogeneous
algebraic (multivalued) functions. In fact we can replace KV by a smaller field, the subfield of
]KV whose elements have support included in a finitely generated sub-semigroup of R>y. Let us
remark that this field is similar to the field of generalized power series UrC((t")) where the sum
runs over all finitely generated semigroups I' of R>¢ (see [Ri] for instance). Our first result is
that the inductive limit of the extensions of H/{y by homogeneous elements with respect to v is
algebraically closed (see Theorem 4.2). This field is hgl K, [v1, - .,7s) where the limit runs over

RERIEEE s

all subsets {71,...,7s} of homogeneous elements with respect to v and is denoted by K,. The
field extension k((z1,...,z,)) — K, factors through the field extension k((z1,...,z,)) — K,.
While the Galois group of the field extension ]K,, — K, is easily described by the Galois group of
weighted homogeneous polynomials, the Galois group of the algebraic closure of k((x1, ..., 2,)) in
K, is more complicated. So it is very natural to study irreducible polynomials over k((z1, ..., zy))
which remain irreducible over ]K,,, since their Galois groups are described by the Galois groups
of weighted homogeneous polynomials. Proposition 4.14 shows that this property is an open
property with respect to the topology induced by the chosen valuation. Let us mention that
these polynomials are called v-analytically irreducible polynomials in [Te] and their study is
motivated by the construction of key polynomials for Abhyankar valuations (not necessarily of
rank 1) in order to prove local uniformization.

Then we investigate more deeply the particular case of monomial valuations. In Section 5,
using an idea of Tougeron [To] based on a work of Gabrielov [Gal, for any monomial valuation
v we construct a field, smaller than the ones constructed previously using the Newton-Puiseux
method, and containing an algebraic closure of k((z1,...,2,)). The main result (see Theorem
5.12) is a non-archimedean version of Eisenstein Theorem (classical Eisenstein Theorem concerns
algebraic power series over Q). The tool we use here is an effective version of the Implicit Function
Theorem (see Proposition 5.10). The elements we need to consider are of the form

(2) > s

€A

where the a; and § are weighted homogeneous polynomials for the weights corresponding to the
given monomial valuation, A is a finitely sub-semigroup of R>q, v (%) = for all 4 € A and
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i — m(i) is bounded by a an affine function. In the particular case where the weights are
Q-linearly independent this corresponds to the result of MacDonald (see Theorem 6.9).

In Section 7, we use this description of the roots of polynomials with coefficients in
C{z1,...,z,} to make a topological and complex analytical study of such polynomials whose
discriminant is a weighted homogeneous polynomial multiplied by a unit. This study has been
inspired by the work of Tougeron in [To| and more particularly by Remarque 2.7 of [To| where
it is noticed that the elements of the form (2) define analytic functions on an open domain of
C™ which is the complement of some hornshaped neighborhood of {§ = 0} (see Definition 7.1).
This study is possible in the case of monomial valuations whose weights are positive integers.
To obtain the same results in the case of general monomial valuations we need to approximate
general monomial valuations by divisorial monomial valuations, i.e., monomial valuations whose
weights are positive integers. This is the subject of Section 6.

One of the main results we obtain in Section 7 is the following theorem which gives a criterion
for an irreducible polynomial over k((x1, ..., %y,)) to remain irreducible over K,:

Theorem. 7.5 Let k be a field of characteristic zero and o« € RZ,. Let x denotes the set

of variables (x1,...,x,) and let v, be the monomial valuation given by the weights o;. Let
P(Z) € K[x][Z] be a monic polynomial whose discriminant is equal to du where § € k[x] is a
weighted homogeneous polynomial for the weights oy, ..., o, and u € K[x] is a unit. If P(Z)

factors as P(Z) = P1(Z)...Ps(Z) where Pi(Z) is an irreducible monic polynomial of k[x][Z],
then P;(Z) is irreducible in Vo [Z] where V,, denotes the completion of the valuation ring of v, .

Then we show that Abhyankar-Jung Theorem is in fact a generalization of this result when the
a; are Q-linearly independent (see Corollary 7.9) and we give the following generalization of
Abhyankar-Jung Theorem for polynomials whose discriminant is weighted homogeneous with
respect to weights aq, ..., a, € Ryg:

Theorem. 7.7 We assume that the hypothesis of Theorem 7.5 are satisfied. Let us set
N :=dimg(Qaq + - - - + Qo).

Then there exist 1, ..., YN integral homogeneous elements with respect to v, and a weighted
homogeneous polynomial for the weights ay, ..., o, denoted by c(x) € k[x| such that the roots
of P(Z) are in C(lx)]k’[[x]] [Y1s--.,YN] where k — K is a finite field extension.

Indeed in the case N = n, i.e., a1, ..., a, are Q-linearly independent, the only weighted ho-
mogeneous polynomials are the monomials and the integral homogeneous elements with respect
to v, are of the form x” where 8 € Q2 (see Remark 3.18). Abhyankar-Jung Theorem simply
asserts that we may choose ¢(x) = 1, a fact that we are able to prove in this case (see Corollary

7.9).

We remark that this result (along with Theorem 7.5) shows that the Galois group of an
irreducible monic polynomial with coefficients in k[z1,...,z,] whose discriminant is weighted
homogeneous is generated by the Galois group of one weighted homogeneous polynomial (see
Remark 7.8).

Finally in Section 8 we give a result of Diophantine approximation (it is just an direct gener-
alization of [Rol] and [II]) that gives a necessary condition for an element of K, to be algebraic
over k(x1,...,2n)).

At the end we give a list of notations for the convenience of the reader.

Let us mention that this work has been motivated by the understanding of the paper [To|
of Tougeron where the study we make for monomial valuations is made in the case of the
(21, ...,2n)-adic valuation of k((x1, ..., z,)).
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2. NOTATIONS AND ABHYANKAR VALUATIONS

Let N denote the set of positive integers and Z>, the set of non-negative integers. Let x
denote the multi-variable (z1,...,2,) where n > 2. Let k denote a characteristic zero field.
Then k[x] = k[z1,...,2,] denotes the ring of formal power series in n variables over k and we
denote by K, its fraction field and by m its maximal ideal.

When (A, m) is a local domain, a valuation on A is a function v : A\{0} — I'"", where T is
an ordered subgroup of R and I'" :=I' N R, such that

v(fg) =v(f) +v(g) and v(f +g) = min{v(f),v(g9)} Vf, g€ A

We will also impose that v(f) > 0 if and only if f € m. We set v(0) = co where oo > i for any
1€l
Such valuation v extends to K 4, the fraction field of A, by

V(f>;:yq)—u@>

g
for any f, g € A, g # 0. We will always assume that v : K4 — T is surjective. In this case I is
called the value group of v. The image of A\{0} by v is called the semigroup of v and we denote
it by 3. Then I is the group generated by . Let us denote by V,, the valuation ring of v:

Vo= {L/fgea nnzvaf.

This is a local ring whose maximal ideal, denoted by my, is the set of elements f/g such that
v(f/g) > 0. Tts residue field Y= is denoted by k,,.

my

Let us denote by I7V the completion of V,, which is defined as follows: For any A € T" let us
set Iy :={v €V, /v(v) > A}. The family of ideals {Ix}rcr as a system of neighbourhoods of
0 makes V,, into a topological ring. Then ‘2/ is the completion of V,, for this topology. We can
also remark that the family {V,,/I,}, is an inverse system and its inverse limit is exactly ‘A/l,.

Then IA/V is an equicharacteristic complete valuation ring and its residue field is isomorphic to
k, .
In this paper we will only consider a particular case of valuations, called Abhyankar valuations:

Definition 2.1. A valuation v is called an Abhyankar valuation if the following equality holds:

tr.deg, k, + dimgI' ®7 Q = n.
This equality is called the Abhyankar’s Equality.

Remark 2.2. If dimgI' ® Q =1, then I' ~ Z. Otherwise I is a dense subgroup of R.

Example 2.3. The first example is the m-adic valuation denoted by ord on the ring A = k[z],
and defined by
ord(f) :=max{n e N/ fem"} V[ ek[x]\{0}.
In this case its value group I' is equal to Z and its semigroup X is equal to Zxg.
Example 2.4. Let a := (ay,...,a,) € (Rs9)™. Let us denote by v, the monomial valuation

on A = k[z] defined by v, (z;) := a; for 1 <4 < n. For instance vy,
Here we have I' = Zo; @ -+ - @ Zay, and ¥ = Z>oa1 @ -+ @ Zi>o0u,.
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Example 2.5. If ' is isomorphic to Z and v is an Abhyankar valuation, then v is a divisorial val-
uation. For such valuation there exists a proper birational dominant map 7 : X — Spec(k[x])
and E an irreducible component of the exceptional locus of 7 such that v is the composition of
m* with the mg-adic valuation of the ring Ox g.

Remark 2.6. Geometrically, an Abhyankar valuation is a monomial valuation at a point lying
on the exceptional divisor F of some proper birational map (Y, F) — (k™,0). More precisely
we have the following:

The restriction of v to k[x] is an Abhyankar valuation with the same value group as v. We
denote it by 7. By Proposition 2.8 [ELS] there exists a regular local domain (A, m4), an injective
morphism

7w k[x] — A
inducing an isomorphism between the fields of fractions and a regular system of parameter z1,
.., zr of A such that ¥(z1), ..., U(z,) freely generate the value group of ¥ (or the value group
of v since both are equal). Let us denote by u the restriction of 7 to A. Then 7 induces
an isomorphism between V, and V). Thus it induces an isomorphism between Vi and V.

Moreover the completion of A is isomorphic to L[z1,..., 2] where k — L is a field extension
of transcendence degree n —r (here L = %) and p extends to a valuation on A which is exactly

the monomial valuation that sends z; onto v(z;) for all 4.

Remark 2.7. If n = 2, in fact any discrete valuation (i.e., I' = Z) is an Abhyankar valuation
[HOV].

Definition 2.8. Let o € RZ,. A polynomial f € k[x] is called (a)-homogeneous of degree ¢ is
every nonzero monomial ¢x? of f satisfies

n
Z apfy =1
k=0

or equivalently v, (cx?) = i. This means that f is weighted homogeneous of degree i where z;
has weight «; for every j.

Example 2.9. Let v, be a monomial valuation as before. Any power series g € k[x] can be
written g = >y, gi where g; is a (a)-homogeneous polynomial of degree i € 3. Let us denote
by ig the least i € ¥ such that g; # 0. Then we can write formally

9= Yio <1 + g)
i>io Yio

and this equality is satisfied in Vya. Now if f € k[x], g # 0 and v(f) > v(g) we can write

-1
f_ i i
- (=) (o zi)

where f =) . f; where f; is (a)-homogeneous of degree i € ¥.

Thus any element of V,,_ is of the form Z a:(x) for some iy € X, where a;(x) and
i>0,itig€L i(x)

b;(x) are (a)-homogeneous and v, (Zig) = for any i € R.
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ai(x)
bi (X)
countable subset of I't with no accumulation point, where a;(x) and b;(x) are («)-homogeneous

and v, (Z’((:g) =4 for any 7 € R.

where A is a finite or

On the other hand ‘7,,a is the set of elements of the form Z

Let us denote by ]KV the fraction field of IA/V. The valuation v defines an ultrametric norm on
K,, denoted by | |, defined by

=e?@v) v fek[x], g € k[x]\{0}.

Then ]IA{,, is the completion of K,, for the topology induced by this norm and this norm (thus the

valuation v) extends canonically on HA{,,. We shall also denote by v the extension of v to K,,.
Let us denote by K& the algebraic closure of K,, in Kl,. We also denote by V22 the ring of

elements of ‘A/l, which are algebraic over K,,: Valg = Kalg N ‘7,,. We have the following lemma:

Lemma 2.10. The ring V28 is a valuation ring (associated to the valuation v) and K2 is its
fraction field. Moreover V,, — V218 is the henselization of V,, in V,.

Proof. If f, g € V8 and v(f) > v(g), then i € Kals n V, = = V2le 50 V318 is a valuation ring.

For f € K2 there exists N € N such that z? f e Kden V, = Vale since v(z) > 0. Thus K2
is the fraction field of V1&.
By construction the elements of the henselization of V,, are algebraic over V,,. On the other

hand every element of V, which is algebraic over V, is in the Henselization of V,, (see Corollary
1.2.1 [M-B]). O

Thus we can summarize the situation with the following commutative diagram, where the
bottom part corresponds to the quotient fields of the rings of the upper part:

<
N

k[x]

alg
Vl/

%><— )

al
Ka's

3. HOMOGENEOUS ELEMENTS WITH RESPECT TO AN ABHYANKAR VALUATION

3.1. Graded ring of an Abhyankar valuation and support. Let A be an integral domain
and let v : A — I'" be a valuation where I is a subgroup of R. We define Gr, A = @, .+ % Pui

Pl
where p,; :={f € A/ v(f) > i} and pm- ={feA/v(f)>i}

Definition 3.1. Let I'" be a sub-semigroup of R>g. A I't-graded ring is a ring A that has a
direct sum of abelian groups, A = @, .+ Ay, such that A;A; C A;y; for any i, j € Tt.
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For any j € T't, @iel”r,iZj A; is an ideal of A. This family of ideals as a system of neigh-

borhoods of 0 makes A into a topological whose completion is denoted by A or PD,cr+ Ai. The
completion of A is the set of elements that are written as a series ), \ a; where A C I'" is
either a finite set, either a countable subset of R+ with no accumulation point, and a; € A; for
any i € A.

A complete (I't-)graded ring is the completion of a (I'*-)graded ring.

Remark 3.2. Let A be a complete graded ring. If Aq is a field then A is a local ring and its

maximal ideal is m := ®z>0

For any a € A we can erte a = ) ,cpa; where a; € A; for any i. If a # 0 let us set
v(a) :=min{i € I't /a; # 0}. Set v(0) = co. Then v is an order function, i.e., v(ab) > v(a)+v(b)
and v(a+b) > min{v(a),v(b)}. Moreover v is a valuation if and only if A is an integral domain.
The order function v is called the order function of A.

Example 3.3. For a glven Abhyankar valuation v on k[x] the rings Gr, k[x] and Gr,V, are
I'*-graded rings and Gr,,]k[[x]] and Grl,V are complete I'"-graded rings.

Remark 3.4. The ring m is isomorphic to the ring of generalized power series k, ﬂtr+ﬂ
where t is a single variable.

Remark 3.5. The elements of @, are the elements of the form ), a; where a; € ’;Zﬁ for

all 7 € A where A is either a finite set, either a countable subset of R>¢ with no accumulation
point.

Remark 3.6. Let us consider a monomial valuation v on k[x], let us say v := v, where o € RZ,.
Pr.i s isomorphic to the k-vector space of rational fractions Z((jg where a(x) and

b(x) are (a)—homogeneous polynomials and v, (%) = 4. Thus, by Example 2.9 m and V,

In this case

are k-isomorphic.
Let us now consider a general Abhyankar valuation v on k[x]. By Remark 2.6 there exist a
regular local domain (A, m4), an injective morphism

m:k[x] — A

inducing an isomorphism between the fields of fractions and such that, if we denote by u the
restriction of v to A, the following properties hold:

The extension of x to A is a monomial valuation (denoted by 11) and 7 induces isomorphisms
V, ~V, and Vl, ~ V

We have Vu = V}L and Gr,V, ~ Gr,V, = Gruf/“. Thus m and YA/I, are k-isomorphic by
the monomial case.

We can summarize this in the following proposition:

Proposition 3.7. The choice of a proper birational map © and parameters zy, ..., z, as in
Remark 2.6 yields an isomorphism

Gr,V, =V,
Remark 3.8. A different choice of 7 and 21, ..., 2z, would give an other isomorphism between

these two rings.

Definition 3.9. Let A = @ieFJrAi be a complete I't-graded ring. Let a € A, a = Y ier+ @i
a; € A; for any i. The support of a is the subset I of I't defined by ¢ € I if and only if a; # 0.
We denote this set I by Supp(a).
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Definition 3.10. Let v be an Abhyankar valuation defined on k[x]. Let us fix a k-isomorphism
¢ between Gr,V, and V, as in Proposition 3.7. Let a € V,, and let us write ¢(a) = Ziem a;

with a; € zii. The v-support with respect to ¢ of a is the subset of I'" defined as

Supp, ,(a) ;= {i e T+ / a; # 0}.
When the isomorphism is clear from the context we will skip the mention of ¢ and denote the
v-support of a by Supp, (a).

Proposition 3.11. Let v be an Abhyankar valuation on K[x] and let ¢ be a k-isomorphism

between W, and ‘A/,, as in Proposition 3.7. Then there exists a finitely generated sub-semigroup
of R>g, denoted by A, such that the v-support of any element of k[x] with respect to ¢ is included
mn A.

Proof. By Remark 2.6, we may assume that v is a monomial valuation. Thus the proposition

comes from the following lemma applied to ¥ = Z%: (]

Lemma 3.12. Let ¥ be a strongly convex rational cone of R™. Let o € RY such that (o, 3) >0
for any € X,  # 0. Then there exists a finitely generated subgroup of R>q, denoted by A,
such that Supp,, (f) C A for any f € k[z,8 € £ NZ"] where k[z”, 3 € £ NZ"] denotes the
ring of formal Laurent series whose support is included in X N Z".

Proof. By Gordan Lemma, XNZ" is a finitely generated semigroup, let us say XNZ" is generated

by w1, ..., ug. Let us set r; := (a,u;), 1 < i < k. Since any element of ¥ NZ" is a Z>o-
linear combination of w1, ..., ug, then (o, ) is a Z>¢-linear combination of ry, ..., 7y for
any 3 € ¥ NZ". Let us denote by A the semigroup of R>( generated by ri, ..., 7. Then
Supp,, (f) C A. O

Remark 3.13. Proposition 3.11 does not imply that the semigroup X of v is finitely generated,
which is not true in general for Abhyankar valuations which are not monomial valuations.

3.2. Homogeneous elements. From now on we fix an Abhyankar valuation v on k[x] and
a k-isomorphism ¢ between m and IA/Z, induced by an injective birational morphism 7 as
in Remark 3.6 and we will skip to mention it in the following. There are several reasons for
that. The first one is that we are interested in effective results on the algebraic elements over
k[x], thus we are interested by valuations which are given effectively and this will be the case
essentially through a map 7 as in Remark 2.6. In particular we will investigate more deeply
the case of monomial valuations and, in this case, the set of variables xq, ..., x, will be fixed
from the beginning, thus ¢ is quite natural in this case. The last reason is that we will give
properties on the v-support of algebraic elements, and Proposition 3.11 will allow us to consider
only elements whose v-support is included in a finitely generated sub-semigroup of R+, and this
fact does not depend on .

Definition 3.14. Let v be an Abhyankar valuation defined on k[x]. We will denote by V@
the subset of IA/Z, of elements whose v-support is included in a finitely generated sub-semigroup
of R>o (when we identify ‘A/,, and m via ). It is straightforward to check that V¢ is a
valuation ring. We denote by K its fraction field.

Definition 3.15. Let A be a complete I'-graded domain and let v be its order function (which
is a valuation since A is a domain). A homogeneous element with respect to v is an element « of
a finite extension of A such that its minimal polynomial Q(Z) is irreducible in A[Z] and has the
following form:

294 29 g,
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where gr € A;) with i(k) € T for 1 < k < ¢ such that k.i(l) = [.i(k) for all k and [. In this case
d:= % € %I‘ is called the order of ~.

Example 3.16. Let o € RZ; such that dimg(Qa; + - - - 4+ Qay,) = n i.e., the oy are Q-linearly
independent. Then the value group of v, is the following group:

I'=%Zay+ -+ Za,
and for any ¢ € I' there exists a unique (8;1,...,8in) € Z" such that
i=Bi1a1 4+ Binan.

Thus if i € Tt this means that £2¢ is isomorphic to the one dimensional k, -vector space
generated by x| - - wT’BL” Let us remark here that k,, is equal to k since the «; are Q-linearly
independent. Thus if g3 € pi‘*"’”“ for 1 < k < ¢ we have that

va,dk

Zq—l—ngq_l—l—----i-gq :qud,l '.'{L‘qu,n (Tq+giTq_1+~-~+g;)

where Z = :Cf‘“ Pt T and g1 - gy €k If gy # 0 then Boq 5 € Z for any j but B4 ; = %
may not be an integer. Then the roots of T9 + ¢{T97 % + -+ + g, are algebraic over k. Thus
homogeneous elements with respect to v, are of the form ¢x? where ¢ is algebraic over k and

B € Q" with (o, 8) i= 181+ -+ anBr > 0.

Definition 3.17. Let v be an Abhyankar valuation on k[x]. Let A = G/r,,?y and v be a
homogeneous element with respect to v. Let Q(Z) be its minimal polynomial:

Q2Z) =21+ qZ" + -+ gy
with g, € 222 for 1 < k < q. We say that v is an integral homogeneous element with respect to

v,dk
v if gi is the image of an element of k[x] N p, i for all k.

Example 3.18. Let a € R%; such that dimg(Qo; + --- + Qa,) = n and let us keep the
notations of Example 3.16. Then ~ is an integral homogeneous element with respect to v, if

gr € W for 1 <k < g. Since g4 # 0 this means that 84q,; € Z>¢ for all j. Thus integral

Ve, dk
homogeneous elements with respect to v, are of the form ¢x? where ¢ is algebraic over k and

8 € QL.

Example 3.19. Let v be an Abhyankar valuation on k[x] and let us assume that k is not
algebraically closed. Let ¢ be in the algebraic closure of k, ¢ ¢ k. Then ¢ is a root of a
polynomial equation with coefficients in k and since k is a subfield of k,,, this shows that ¢ is an
integral homogeneous element of order 0 with respect to v.

Remark 3.20. Let v be an Abhyankar valuation on k[x] and let v be a homogeneous element
of order d with respect to v. Let us denote by Q(Z) its minimal polynomial, say

QZ)=2"4+gZ7 "+ +g,

where g, € redt for 1 < k < q. Each g is the image in G/ryvy of some fraction g—’; where fy,
ve,dk

hi € k[x]. Set h := hy ... hg, let hy be the image of h in m and set v’ := hgy. Then ' is a
homogeneous element annihilating Z9+ g4 2971 +- - “+g, where g;, is the image of }{—’;hkfl € k[x]

in Gr,V,,, thus it is an integral homogeneous element with respect to v. Moreover we have

Frac(Gr, V;)[1] = Frac(Gr, V,)[7/].
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Definition 3.21. Let v be an Abhyankar valuation on k[x],
P(Zy,....Zm) € V| Z1,..., 2

and d := (di,...,dn) € RZ,. One says that P(Zi,...,Z,,) is (v,d)-homogeneous of degree
d € R if for every nonzero monomial ngl ... ZPm of P(Z) one has g € ’;1’" with

v,k

Remark 3.22. Let v be an Abhyankar valuation on k[x]. Let v be a homogeneous element of
order d with respect to v. Let us denote by P(Z) its minimal monic polynomial. Then P(Z) is
(v, d)-homogeneous.

Conversely if P(Z) € v, [Z] satisfies P(y) = 0 for some element v algebraic over V,, and if
P(Z) is a nonzero (v, d)-homogeneous, then the divisors of P in V, [Z] are also (v, d)-homogeneous,
thus the minimal polynomial of v is (v, d)-homogeneous. Hence v is a homogeneous element of
order d with respect to v.

Lemma 3.23. Let v; and 2 be two homogeneous elements of order di and dy respectively with
respect to the valuation v and let k € Z. Then

i) v¥ is homogeneous of order kdy,
ii) if e1dy = eads with eq,ea € N, then 7' + 52 is homogeneous of order dyeq,
iii) 172 is homogeneous of order di + ds.

Proof. If  is homogeneous of order d € Q, then *, k € N, is homogeneous of order kd. Indeed
a polynomial having v* as a root is Q(Z) :=Resx(P(X),Z — X*) where P is the minimal
monic polynomial of v over k(x). But P(X) is (v,d)-homogeneous and Z — X* is (v, d, kd)-
homogeneous. Thus Q(Z) is (v, d, kd)-homogeneous, hence (v, kd)-homogeneous since it does
not depend on X. This proves that v* is homogeneous of order kd.

In order to show ii) we may assume, by i), that v; and 75 are homogeneous of same order
d = e1dy; = eady. Let us denote by Pi(Z) and P>(Z) the minimal monic polynomials of v; and
v respectively. Then Q(Z) :=Resx(P1(Z — X), P,(X)) is (v,d, d)-homogeneous, thus (v,d)-
homogeneous since it does not depend on X. Since Q(71 + v2) = 0, 71 + 72 is homogeneous of
order d.

In order to show iii) let us denote by P;(X) the minimal monic polynomial of 4, (this is
a (v, dy)-homogeneous polynomial) and P»(Z) the minimal monic polynomial of v2 ((v,dz)-
homogeneous). Let us denote by k the degree in Z of Pi(Z) and set R(X,Y) := X*P,(Y/X).
Then 712 is a root of Q(Z) :=Resx(R(X,Z), P,(X)). Moreover R(X,Z) is (v,dz,d; + da)-
homogeneous. Thus Q(Z) is (v,d; + da)-homogeneous, which proves that 4172 is homogeneous
of order d; + ds. O

Lemma 3.24. Let P(T, Z) be a nonzero (v, dy, dy)-homogeneous polynomial of V[T, Z] and let
v1 be a homogeneous element of order di with respect to v. If an element v belonging to a finite
extension of k(x) satisfies P(vy1,72) = 0, then ~yo is a homogeneous element of order ds with
respect to v.

Proof. Let Q(T) € V,,|[T] be a nonzero (v, d;)-homogeneous polynomial such that Q(v1) = 0.

Let us denote R(Z) =Resp(P(T,Z),Q(T)). Then R(Z) is a (v, ds)-homogeneous polynomial
such that R(y2) = 0. This proves the result. O

Remark 3.25. Let A be a complete I'"-graded integral domain, let say A is the completion
of A" := @,cp+ Ai, and let v be its order valuation. Let Q(Z) be an irreducible polynomial of
A[Z] having the following form:

Z9+ 27 4+ g,
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where g, € Agx for 1 <k <qgandd € %F*. The ring B := (S([g])) is an integral domain and v

extends to a valuation of this ring by defining v(Z) := d and

v (Z aiZi> = irilf{z/(ai) + di}.
=0

Let us set B’ := A'[Z]/(Q(Z)). Then B is a complete %F-graded domain since B is the com-

pletion of
B = @ @ Ai_ g4 27,
i€l 0<j<min{| Z],q}
jE€HTT
Definition 3.26. Let v be an algebraic element over A whose minimal polynomial is the
polynomial Q(Z) as in the previous remark. Then the integral domain B constructed in the
previous remark is denoted by A[v].

By induction, we can define A[y1,...,7s], where 7,11 is a homogeneous element over
Alv, ..., 7] for 1 <i < s. When v is an Abhyankar valuation on k[x] and A = V,, Ve or Vg,
the valuation v extends to A[yy,...,7;] as in Remark 3.25. Then we denote by A[(y1,...,7s)]
the valuation ring associated to the order valuation of A[yi,...,7s]. In this case the elements
of A[{m1,...,7s)] are the elements which are finite sums of terms of the form bv{l...vgs where

b € Frac(A) and v(b) > —(jiv(y1) + - + Jsv(7s))-
Definition 3.27. If v is an Abhyankar valuation we denote by
V= hj} VV[<’)/1, s a’YS”
the direct limit over all subsets {71,.-.,7s} of homogeneous elements with respect to v and
by K, its fraction field. By Remark 3.20 we may restrict the limit over the subsets of integral

homogeneous elements.
In the same way we define

v

—f .
vVe._ h_r)n V,jfg[<’71,---7’78>]’

alg

V,% = lim VA[(y,...,7)],
—
24 REREN] Ts
the limits being taken over all subsets {71,....,7s} of (integral) homogeneous elements with

=i —al . . .
respect to v, and we denote by K,* and K, ° their respective fraction fields.

The following result provides an upper bound on the number of homogeneous elements we
need to consider:

Proposition 3.28. Let v be an Abhyankar valuation on K[x] and let T' denote its value group.
Set N :=dimg'®zQ and let y1, ..., s be homogeneous elements with respect to v. Then there
exist integral homogeneous elements v, ..., ¥y with respect to v such that

~

Vol{ras -9l = Vol - )l
This equality remains true if we replace ‘2/ by V2le or Vie.

Proof. We will prove this proposition by induction on s. Let 71, ..., yy+1 be nonzero homoge-
neous elements with respect to v. Let d; be the order of ;, for 1 <7 < N+ 1. By assumption on
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N the d; are Q-linearly dependent. Thus, after a permutation of the g; , there exists an integer
1 <1< N and integers p; € Z>o, ¢; € N for all 1 <¢ < N + 1, such that

(3) @d1+...+&dl:midl+1+...+pN+1dN+l_
q1 q1 qi+1 qN+1

Set 7; 1= pl”'pﬂ for 1 <4 < N + 1. Let us denote 7, := ~,"* . Then we have

7

Volin, o)) € Vol v

By (3) and Lemma 3.23, v ---7; and v/, --- 7y, are homogeneous elements of same order.
By the Primitive Element Theorem there exists ¢ € k such that

k()91 Wvga) =KD+ e vl
Moreover «y := 71 -+ + ¢y 1 V41 15 @ homogeneous element with respect to v of same
order as ] ---7; and 7, -+ Yy, by Lemma 3.23. Since

k()5 =kE) - 1Yl
and
k(x) [’Yl/+1a e 773\74»1] = k(x)[’h’ﬂ, YN ’Yl/+1 e "Y§v+1]a
we have
k()[4 Vgl =R, - Ve YVigas - YN0 )
Thus ~; is a finite sum of products of elements a;(x) € k(x) and powers of vi, ..., v/_1, V41,
..y Yh» v and by homogeneity we may assume that a;(x) are (v)-homogeneous. Thus

VVK’YL e 77§V+1>] = VVK’%? e 77{—177{+1a e »75\[77”'
By Remark 3.20 we may assume that the +] are integral homogeneous elements.

The proof is the same if we replace ‘A/l, by V& or Ve,
O

4. NEWTON METHOD AND ALGEBRAIC CLOSURE OF ]k[[Xﬂ WITH RESPECT TO AN ABHYANKAR
VALUATION

4.1. Newton method.

Lemma 4.1. Let (A,m) be a complete graded local ring. Let B be the set of the elements of A
whose support is included in a finitely generated sub-semigroup of R>o. Then B is a Henselian
local domain.

Proof. Let us prove that B is a ring: let b; and by be two elements of B whose supports are
included in Ay and Aj respectively. Thus we can write b; = > Jen, b; ; where b; ; is a homogeneous
element of degree j for any ¢ = 1, 2 and j € Ay or As. Let A be the finitely generated sub-
semigroup of R>( generated by Ay and Ay. Then Supp(by + b2) and Supp(byb2) are included in
A. This proves that B is a ring. Since B C A, B is a domain.

It is clear that m N B is an ideal of B. If b € B\(m N B), then there exists a € A such
that ab = 1. Let us write b = ), b; where b; is homogeneous of degree i and A is a finitely
generated sub-semigroup of R>¢. Since b ¢ m, then by # 0. In this case we have

-1 k

1 b; 1 & b;

_ _]__ K3 _ k; 1

SLE 7 EASD i vl e D D U Vi
i k=1 ieA\{0}

Thus Supp(a) C A. This proves that B is a local ring with maximal ideal m N B.
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Now let P(Z) € B[Z], such that P(0) € m N B and P'(0) ¢ m. We denote by v the
order function of A, ie., if a € A, a # 0, a = >, a; where a; is homogeneous of degree i,
v(a) := inf{i / a; # 0} and the initial term of a is in(a) := a,(,). Since A is a complete local
ring it is a Henselian local ring and there exists a € m such that P(a) = 0. We can construct a
by using the fact that
(4) P(Z) = P(0) + P'(0)Z + Q(%) 2
where Q(Z) € B[Z]. Indeed, let A denote a finitely generated sub-semigroup of R>( containing
the supports of all the coefficients of P(Z). In this case a; :=in(a) = — if((g((%))))
element of degree dy € A, d; > 0. If we set P(Z) := P(Z + a1), we see that

v(P1(0)) = v(P(a1)) > di,

P{(0) = P'(0) = 0 and a — a; is the solution of P;(Z) = 0 given by the Hensel Lemma. Then
we replace P by P; in Equation (4) and repeat the same argument, using the fact that the
coefficients of P;(Z) have support included in A. Thus we see that in(a — a;) = *EEE?ESQ is a

homogeneous element of degree dy € A, dy > d;. We repeat this operation a countable number
of times (since A is countable) in order to construct a and we see that Supp(a) C A.

is a homogeneous

O
Now we can prove the following theorem:

Theorem 4.2. Letk be a field of characteristic zero and v be an Abhyankar valuation of K[x].
Let N :=dimg ' ®7 Q. Let
P(Z) € VE[(1, - w)[Z]

(resp. ‘2,[(71, ., YN)][Z]) be a monic polynomial of degree d where y; is a homogeneous element
with respect to v for 1 < i < N. Then there exist integral homogeneous elements vy, ..., Yy

such that the roots of P(Z) are in VB[(v},...,v\)] (resp. V(... YN
Proof. Let us prove the case P(Z) € V2[(v1,...,vn)][Z]. We write
P(Z)=2Z%+a, 2% + -+ aq.
By replacing Z by Z — éal we can assume that a; = 0. Let igp be an integer such that

) _ vie)

, forevery 2 <i<d.

Let v be a igth root of in,(a,,), i.e., 7 is a homogeneous element such that 4% = in,(a;,). By
the definition of ig, for every 2 < i < d we can write
a; =v'a;
with a} € V#[(v1,...,7n,7)]. Then we have
P(yZ) =420+ 20,292 + -t ag =" (2% + ab 2 + -+ dl)
Let S(Z) :=Z%+ a4Z% 2 +--- + a/, and let S(Z) be the image of S(Z) in the residue field

L=VE{(n,...,77)]/m

where k, — L is finite and m is the maximal ideal of V.8[(yy,...,7s,7)]. If S(Z) = (Z + a)¢
where @ € L, since a; = 0 and char(LL) = 0, this would imply @ = 0. But S(Z) # Z¢ since
its coefficient of Z¢~% is nonzero . Thus we can factor S(Z) = 51(Z)S2(Z) such that S1(Z)
and Sy(Z) are coprime monic polynomials in L[y'][Z] where 4’ is algebraic over L, i.e., 7/ is a
homogeneous element of degree 0 with respect to v. Since V.2[(y1,...,vn,7,7')] is a Henselian
local ring by Lemma 4.1, by Hensel Lemma the polynomial S(Z) factors as S(Z) = 51(Z2)S2(2)
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where the images of S1(Z) and So(Z) in V#[(y1,...,vn,7,7")] are S1(Z) and S3(Z) and the v-
support of the coefficients of S;(Z) and S2(Z) are contained in a finitely generated sub-semigroup
of Rzo.

Since deg;(S1(2)), deg,(52(2)) < d = deg,(P(Z)), the theorem is proven by induction on
d by using Proposition 3.28 and Remark 3.20.

The case P(Z) € V,[(71,...,7n)][Z] is proven in a similar way by using the fact that

Vol{v,---s7n,7,7')] is a complete local ring, thus a Henselian local ring.
([

Remark 4.3. The proof of this theorem is what we call the Newton-Puiseux method. Usually
the term of Newton-Puiseux method is used when one compute the roots of a monic polynomial
with coeflicients in the ring of power series in one variable: one root is constructed by computing
step by step its coefficients. The fact that the ring of formal power series is a complete local ring
allows to conclude that this process converges. But when we want to find roots of a polynomial
in a local ring that is not complete but only Henselian, it is more convenient to use the Hensel
Lemma as we have done here. The proof we used here appeared for the first time in [BM] (to
the knowledge of the author). Of course if v is a divisorial valuation ‘7,, is isomorphic to the ring
of formal power series in one variable over the residue field k,, and the previous theorem may be
proven by using the classical Newton-Puiseux method.

Corollary 4.4. The field K,f,g (resp. K, ) is algebraically closed and it is the algebraic closure of
K (resp. K, ).

Proof. Let P(Z) € Kfyg[Z] be an irreducible polynomial. By multiplying P(Z) by an element of
V!8 we may assume that

P(Z) € V,E[{m,.... )2

for some homogeneous elements v, ..., vy with respect to v. We write P(Z) = agZ%+- -+ ay,
a; € VB[(y,...,)], 0 < i < d We set Q(Z) := a4 'P(Z/as). Then Q(Z) is a monic
polynomial of V8[(v1,...,vn)][Z] and if z is a root of Q(Z), then Z is aroot of P(Z). Hence
the result comes from Theorem 4.2.

The assertion concerning K, is proven similarly. O

—ale
We have the similar result for K

Lemma 4.5. The algebraic closure of K,, in K, is equal to Kilg. In particular Kilg is alge-
braically closed.

Proof. Let ~1, ..., s be homogeneous elements with respect to v. Let us denote by ¢; 41 the
degree of the minimal polynomial of ;41 over K, [v1,...,7v;] for 0 <i < s—1. Thus any element
2 of Ky [y1,...,7s] can be uniquely written as z = Sier iy iyl where A K
forallie I and I ={0,...,q1 — 1} x --- x {0,...,¢s — 1}.
In order to prove the lemma we need to show that A;, ., € Kglg for any i1, ..., is when
gs—1
2 is algebraic over k[x]. In this case let L := K, [y, ...,7s_1] and let us write z := Z Byt
i=0

..........

where B; € LL for all . Let us set ¢; := s and let (3, ..., (,, be the conjugates of (; over
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gs—1
K, [y1,..+,7s—1]. Let us define z; = Z BZ-C; for 1 < j < gs. Then we have
i=0
1 G e Clrl
( : ) (ENCRRe BoBy
FEZe, ) [0 : : ‘B, 1 '
1 Cqs 35_1
1 G e gls—i
N B C R C L e : : . :
The matrix ] . ) is invertible and its entries are algebraic over k(x), z; is
1 Cqs Cg::*l
algebraic over k[x] for all j, hence B, is algebraic over k[x] for all j. By induction on s we see
that A;, .. ;. € Kﬁlg for any i1, ..., is. O

We can summarize the situation with the following commutative diagram where the bottom
part corresponds to the quotient fields of the rings of the upper part and all the morphisms are
injective:

k[x] C V, Vals Ve v,
N\ AN \
vos Ve v,
| | |
K, Kele Kfs K,
\ AN \
K8 K K,

Example 4.6. Let g(T) = > .2, ¢;T" € Q[T be a formal power series which is not algebraic
over Q[T]. Let a:= (a1, 2) € N™. Let us set

r=a (%) - ix € k(@) (@),

X x

But f ¢ K, : let P(Z) = ag(x)Z% + - - + aq(x) € V,,_[Z] be a polynomial such that P(f) = 0.
Let us write a;(x) = > 5o ai,k(x) where a; (%) is a (o1, az)-homogeneous rational fraction of
degree k. By homogeneity we have

aokft+arpfT 4+ +agr =0 VkeN.
This implies that
ao (1, T)g(T*) + a1 1, (1, T)g(T) 1 + -+ agp(1,T) =0 VkeN.
Thus a; (x) =0 for all 0 <i < d and 0 < k. Hence P(Z) =0 and f ¢ K,_.

m20{2 o0 x2o¢2i N
On the other hand, h := g( L ) = Zcili € K,, but h is not algebraic over

k(1) (x2))-

1=1 2
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4.2. Analytically irreducible polynomials.

Proposition 4.7. Let P(Z) € V'8[Z] (resp. V;2'8[Z]) be an irreducible monic polynomial. Then
P(Z) is irreducible in V,[Z].

Proof. By Corollary 4.4, P(Z) splits in V[(y1,...,7,)] for some homogeneous elements
1, --., ¥s With respect to v. Since

~

Ve[, )NV, = VE
the result follows.
The proof is the same for V22 O

Lemma 4.8. Let o be a K, -automorphism of K,,. For any z € K, we have v(o(z)) =v(z).

Proof. Let z € JKV [v1,--.,7s] where 71, ..., 75 are homogeneous elements with respect to v. Let
us write z := )., z; where z; is homogeneous of degree i for every i and A is a countable subset
of R with no accumulation point (see Remark 3.5). If ig = v(2), then z;, # 0 and v(z;) = 0 for

all i < ip. Since o acts only on the homogeneous elements v, ..., 75, we have o(z) = >, 0(2;).
For all 4, 0(z;) is homogeneous of degree i and o(z;) = 0 if and only if z; = 0. This proves that
i0 =v(o(z)). O

Definition 4.9. Let P(Z) € A[Z] where A is an integral domain. We write
P(Z)=apZ%+ a1 27 + -+ aq.
Let v : A — R>( be a valuation. The Newton polygon of P is the convex hull of the set
{(w(ai),d—i) eR:y /i=0,...,d} + RZ,.

Corollary 4.10. Let P(Z) € V,|Z] be an irreducible monic polynomial. Then the Newton
polygon of P(Z) has only one edge. The result remains valid if we replace V,, by V& or V'8,

Proof. Let z be a root of P(Z) in V. Let o be a K,-automorphism of K,. Then v(a(z)) = v(2)
by Lemma 4.8. The finite product of the distinct linear forms Z — o(z) obtained in this way is

a monic polynomial with coefficients in K, and divides P(Z). Since P(Z) is irreducible, both
polynomials are equal. This proves that all the roots of P(Z) have same valuation, hence the
Newton polygon of P(Z) has only one edge.

The cases V8 and V'8 are deduced from Lemma 4.7. (]

Example 4.11. Let P(Z) := Z3 + 3z122Z — 22} € k[x1,22][Z]. We see that P(Z) has one
root of order 2 and two roots of order 1 in V(f)grd. By Corollary 4.10, P(Z) has at least one root
in V& of order 2.

Let V14+U :=1+ Dois1 a;U?, a; € Q for all 7, the formal powers series whose square is equal

tol+U,andlet v/1+U =1+ 2221 b;U' , b; € Q for all i, the formal power series whose cube
is equal to 1 + U. Then the roots of P(Z) are

a€/q+\/q2+p3+bf/q—\/q2+p?’

with (a,b) = (1,1), (4,72) or (j2,7) and p = x122 and ¢ = z{. But

Vg+eva +pd= i/x‘{ +ey/x3ad + af = Vey/rima + 1

where € = 1 or —1 and ord(n) > 1. Both order 1 roots of P(Z) have initial term of the form

a/T122 where a € C*. Thus P(Z) has only one root in V;lg and even in Kf)grd.
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Let z be the only root of P(Z) in Voarlf. If z € K,, since P(Z) is monic and k[x] is an integral
domain, then z € k[x]. But in(z) = %g ¢ k[x]. Thus z ¢ K, hence P(Z) is irreducible in

K, [Z]. This shows that K,, — K2 is not a normal extension in general.

Corollary 4.12. Let P(Z) := Z%ay(x) 2%+ - -+aq(x) € k[x][Z] be an irreducible polynomial
1

1 1
having its roots in k[xf,...,z5] for some positive integer e. Then the Newton polyhedron of

P(Z) is the convex hull of the cone of N* 1 centered in (0,...,0,d) and generated by the convex
hull of the Newton polyhedra of agz(x) in N™.

A

Proof. Let a € N™. Let
1 1
21y, 2q €EK[zs, . 2]

~ 1 1 1
be the roots of P(Z). Then z; € V,, [zf,...,x5] for any ¢, the ¢ being homogeneous elements
with respect to v,. Let G ~ (Z/eZ)" be the Galois group of the extension

.

The z; are conjugated under the action of G, thus P(Z) := H?Zl(Z — z;) is irreducible in ‘2,@ [Z].

This being true for any o € N, the result follows from Corollary 4.10.

~

~ 1
Vo, — Vi lzs,... 2

3ol

O

We finish this section by giving two results relating the roots of a polynomial P(Z) to the
roots of polynomials approximating P(Z). First of all we give the following definition:

Definition 4.13. Let P(Z) € A[Z] where A is an integral domain and let v be a valuation on
A. We define
v(P(Z)) := minv(a)

where a runs over all the coefficients of P(Z).

The following proposition is the analogue of Proposition 2.6 of [To]:

Proposition 4.14. Let P(Z) € V8[Z] be a monic polynomial with no multiple factor. Let us
write P(Z) = P\(Z)...P.(Z) where P;(Z) € V!8[Z], 1 < i < r, are irreducible monic polynomials.
Let Q(Z) € V'8[Z] be a monic polynomial and let z1, ..., zq be the roots of P(Z). If

deg(Q(Z)) = deg(P(Z))
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and
v(Q(Z) — P(Z)) > drggx{V(zi - z)}

then we may factor Q(Z) = Q1(2)...Q,(Z) such that Q;(Z) € V[8[Z] is an irreducible monic
polynomial, 1 <1 <r, and

n@Qu(2) - P(z) 2 MOELE)
The result is still valid if we replace V'8 by V218 or 17,,.

Proof. Since P(Z) has no multiple factor and since char(k) = 0, we have z; # z; for all i # j. Let
us set r := max;2;{v(z;—z;)}. Let z{, 1 < i <d, be the roots of Q(Z). Let z be aroot of P(Z) in
VE[(y1,...,vn)]. Let us write P(Z) = Z%+a, Z%9 1 +-- - 4agand Q(Z) = Z1+b, Z 1+ - -4 by.
Then
d .
I -2 = Q) = Q) — P(=) = 3 (b — @)=,
1<i<d i=1
Thus there exists at least one 7 such that
mini<i<a{v(a; — b))} _ v(Q(Z) — P(2))

v(z) —z) > y = y > 7

Let ¢ be another root of P(Z). Then
v(izi—t)=v(zi—z+z2—t)=v(z—t)<r

since v(z] — z) > minlg"gd;{i”(ai_bi)} > 1 > v(z —t). Thus for any root of P(Z) denoted by z,
there is only one ¢ such that
minlgigd{l/(ai — bz)}
d
Let 01(2), ..., 0.(2) be the conjugates of z over K&. Set

vz —2z) >

R(Z):=(Z — 2) H(z —oj(2)) € V2[Z].

Then R(Z) is an irreducible factor of P(Z). Moreover o1(2}), ..., 0.(2}) are conjugates of z;

over K. Let o be a K&-automorphism of Kf . Then o(z) is a conjugate of z thus there exists j
such that o(z) = 0;(2). Moreover o(z) is a root of P(Z) and v(o(2]) —o(z)) > mlnlsigd;{iu(a"’_b"’)}

by Lemma 4.8. Thus we have Z
v(o(z) — 0j(2)) = v(o(z) — 0(2)) = v(z — 2) =

) ming <i<a{v(ai — b))}
v(oj(z;) —o4(2)) = p

and since there is only one root of Q(Z) whose difference with o;(z) has valuation greater than
minlSiSd{y(ai—bi)}

7 , we necessarily have o(z) = 0;(2;). Thus 01(2}), ..., oc(2]) are the conjugates
of z! over K!8. Thus the polynomial
$(2) =2 - 2) [[(Z = o;(=])

j=1

is irreducible in V,'8[Z] and

v(S(Z) — R(Z)) > min1§i§d{cll/(ai — bi)}.
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The proof for 171, is the same and the case V2!# is proven with the help of Lemma 4.7.
O

Remark 4.15. Let us remark that v(Q(Z) — P(Z)) > v(Ap), where Ap is the discriminant
of P(Z), implies that
vQ(Z) = P(2)) > dmax{v(zi — z)}
i#]

Remark 4.16. This result is not true if P(Z) has multiple factors. For example, let v be a
divisorial valuation and let us consider P(Z) = Z? and let Q(Z) = X? + a where v(a) = 2k + 1

and k € N. Since v(a) is odd and since the value group of v is Z, then it is not a square in V,,
and Q(Z) is irreducible but P(Z) is not irreducible.

Proposition 4.17. Let v be an Abhyankar valuation and let
N :=dimgI' ®z Q.

Let P(Z) € 171,[<'71,...,'7N>][Z] be a monic polynomial where v1, ..., YN are homogeneous
elements with respect to v. Then there exist integral homogeneous elementAs with respect to v,
denoted by 1, ..., Yy, and ¢ € Rsg such that the roots of P(Z) are in V,[(7],...,¥N)] and
for any monic polynomial Q(Z) € V,[{(71,...,Yn)][Z] such that deg(Q(Z)) = deg(P(Z)) and
v(P(Z) — Q(Z)) > ¢, the roots of Q(Z) are in V,[(V,---, V)]
Proof. The proof of this proposition is based on the proof of Theorem 4.2. So let us use the
notations of that proof. Let us write Q(Z) = Z% + b, 2% + ... 4 by and let us define
R(Z):=Z4+0, 27 + ... 40
where b} := ,l;— for 1 <i < d. We have Q(vZ) = v?R(Z). Let us assume that v(b; — a’) > 0 for
all 1 <i<d (ie., if v(b; — a;) > v(v?) for all i, thus we assume here that ¢ > dv(y)).
Then R(Z) = S(Z) (R(Z) denotes the image of R(Z) in L[Z]) and the factorization

R(Z) = S1(2)S2(Z) lifts to a factorization R(Z) = Ri(Z)Ry(Z) of R(Z) as the product of
two monic polynomials as in the proof of Theorem 4.2.

Lemma 4.18. In the previous situation there exist two constants a > 0, b > 0 depending only
on S1(Z) and S3(Z) such that for any ¢ > max{b,v(v%)}, we have v(R;(Z) — S;(Z)) > <2 for
i=1,2.

Proof of Lemma 4.18. Let us denote by 7;  the coefficient of Z* of the polynomial R;(Z), for
i=1,2and 0 < k < deg,(R;(Z)), and let us denote by r the vector whose coordinates are
the r; x. The coefficient of Z* of Ri(Z)R2(Z) — 51(Z)S2(Z), for 0 < k < d, is a polynomial
() whose coefficients are in V,[(y1,...,vn5,7,7')] and depend themselves on the coefficients
of S(Z). By Theorem 1.2 [M-B], there exist a > 0, b > 0 such that

Ve > b, Yr € Vo[(v, .. w7, Y042 such that v(fy(r)) > ¢ Vk

3 e Vo[, w7702 such that fi.(r') =0 Vk
and V(rg’j — 1) > %b Vi, 5.
Let us denote by R}(Z) the polynomial whose coefficients are the r; ; where 0 < j < deg(R;).
Then R (Z)R4Y(Z) = S1(Z)S2(Z). Moreover EQ(Z) = R;(Z) = 5;(Z) if =t > 0. Since the
roots of S1(Z) and S5(Z) are different, and since V,[(y1,...,vn,7,7)][Z] is a GCD domain,
then R}(Z) = S;(Z) for i = 1,2. This proves the lemma. d
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Here we remark that, the constants a, b, () depend only on P(Z). Thus the result is proven
by induction on the degree of P(Z) (since deg(S;(Z)) < deg(P(Z)) for i = 1,2) and using
Proposition 3.28 and Remark 3.20.

O
5. MONOMIAL VALUATION CASE: EISENSTEIN THEOREM

We will first construct a subring of V% containing V'8 when v is a monomial valuation.

Definition 5.1. Let a € RZ; and let 6 be a (a)-homogeneous polynomial of degree d. We
define

Vas = {A € ‘71,& / A a finitely generated sub-semigroup of R,

Vi € A Ja; € k[x] («)-homogeneous,
Ja>0,beRVie A Im(i) € Ns.t. m(i) < ai+b,

o (i) =t 4= 3 gt |

With this notation we say that i — ai + b is a bounding function for Z 5m(1

i€EA
By Lemma 3.12 we have k[x] C V.5 C V)8, by identifying a formal power series Z cpa”
ez,
to EZ 5(&;)(2)(1,) with a;(z) = , +¥ , .Cglﬁ et m(i) = 0 for all : € A. We extend in an
i a1 B+t o Br=i

obvious way the addition and multiplication of k[z] to V. s: this defines a k-algebra structure
over V, 5. We have easily the following lemma:

Lemma 5.2. Ifi+—— ai+b is a bounding function of A and B € V, 5 then it is also a bounding
function of A+ B and the function i — ai + 2b is a bounding function of AB.

Proof. Let us write

b;
A= Z 6az+b’ B = Z 6ai+b

i€A i€A
where A is a semigroup and the a; and b; are («)-homogeneous polynomials and

a(&gib)zanWZb):i Vi € A.

a; + bl
A+B= Z Saith
i€A

and AB = Z Z 6aj+cl,;]5az(z]j)+b Z Z aiz:—Qi

€N JEAN,5<i €N jENj<i

Then we have

This proves the lemma. U

Remark 5.3. If A € V, s satisfies v, (A) > 0 then A admits a bounding function which is linear.
Indeed let i — ai + b be a bounding function of A and let iy := v, (A). Then i — (a + %) )
is a bounding function of A.
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Definition 5.4. Let A := Z % € Va5, A#0. Let ig be the least element of A such that
€A
a;, 7 0. We say that yif?o) is the nitial term of A with respect to v, or its («)-initial term.

We denote it by in, (A).

Lemma 5.5. Let § and &' be two (a)-homogeneous polynomials. We have the following proper-
ties:
i) The ((a)-homogeneous) irreducible divisors of § divide &' if and only if Va0 C Va,5. We
denote by V, the inductive limit of the V5.
ii) The valuation v is well defined on Vo 5 and extends to V,. Its valuation ring is exactly
Ve
Proof. 1t is clear that if the irreducible divisors of ¢ divide ¢’ then V4 5 C V4,6. On the other
hand if V45 C Va6, then % € V.67, thus there exist a ()-homogeneous polynomial a € k[z]
and an integer m € N such that % = 57w, hence ad = §’™. This proves i).
If A€V, s and B € V, o satisty vy (B) > v4(A4), let 6&’“)% denote the first nonzero term in
the expansion of A. Then we can check easily that % € Vu.55'a,- This proves ii). [l

Definition 5.6. For any a € RY, we denote by K, the fraction field of V,, and
Ko = lm Kulyi,---,7s)
—

04 EEERE) Ys
the limit being taken over all subsets {71, ...., 75} of (integral) homogeneous elements with respect
to v.
If 1, ..., 7s are homogeneous elements with respect to v, we denote by V, s5[(71,...,7s)]

the ring of elements Y, A;vE where the sum is finite, k := (k1, ..., k), Ay = Y ica sy Where
a; € k[z] is («)-homogeneous, there exist two constants a > 0, b € R such that m(i) < ai+ b for
all 7 and there exists ig € A such that v, ((sy‘fbﬁ) =i —ig and v(yE) > .

This means that V4 s[(71,...,7s)] is the subring of K4[y1,...,7s] whose elements have non
negative valuation v,. In the same way we denote by V,[(71,...,7s)] the ring of elements of
Kalv1,---,7s] having a non negative valuation v,. The field of fractions of V4 [{71,...,7s)] is

exactly Kao[v1,. .-, 7s)-

Remark 5.7. We will see later (see Remark 6.10) that these fields K, coincide with those
introduced in [AI] when dimg (a1 Q+- - -+, Q) = n where it is proven that they are algebraically
closed.

Remark 5.8. For any o € RY it is clear that V, C Vyfcgy but both rings are never equal if
dimg(a1Qq + - - - + @, Q) < n. For instance, let n =2 and o = (1, 1) and set

s ,
zy Y 2}
= Z e 1 +ize’
ieN 2 ieN 1 2
Then obviously z € V'8 but z ¢ V,.
Proposition 5.9. If ay, ..., a, are linearly independent over Q then V, = V,fg.

Proof. Let us denote by a* : Q" — R the Q-linear map defined by a*(u) = (a,u) for any
u € Q". Since the a; are Q-linearly independent then o* is injective.

If A is a finitely generated sub-semigroup of Zay + - - - + Zay, let By, ..., Bs be generators of
A. Then o* ~*(A) is a finitely generated semigroup whose generators are

by = 04*71(61), e b = Oé*il(ﬂs) ez".
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If the support of z € V,ff is in A, since a* is injective z can be written as

E akxklbl+“'+ksbs

kezs,

where a; € k for all k = (k1,--+,ks). Let us remark that the monomial ajxk101+Fksbs g
(a)-homogeneous of degree k151 + -+ + ksfs.

Let us write b; = b1,; — by ; where by 4, by ; € Z’ZLO. Then we have

xhkibiatFksbi s
kb1t tksbs
xkib2, 14 +ksba s
xck1b11++ksbr s +(max;{ki}—k1)ba 1+ +(maxi{ki} —ks )bz s

x(b2,1+ - +b2 s) max; {k; }

Moreover

max{k < max { 61]

hhm+ k).

This shows that 2z € V _bs,+--+bs,, and

z%max{ﬂj}

is a bounding function of z. O

Then we give the following version of the Implicit Function Theorem inspired by Lemma 1.2
[Gal (see also Lemma 2.2. [To]):

Proposition 5.10. Let o € RY and let P(Z) € Vas[(n,---.7s)][Z], P(Z) = ZZ:O VA
where y; is homogeneous for all i with respect to v, and d > 2.

Let u € Vo 5[(71, .-, 7s)] such that vo(P(u)) > 2vs(P'(u)). Let 53 denote the initial term of
P’(u) with respect to v,
Then there exists a unique solution @ in V, s[(71,...,7s)] of P(Z) =0 such that

Val@ — 1) > va(P(w)) — va(P'(1)).
Proof. e By replacing P(Z) by P(u+ Z) we can assume that v = 0. In this case we have that
P(u) = P(0) = ag and P'(u) = P'(0) = a3.
The valuation v, is defined on the ring V, s[(71,--.,7s)] and we denote by V its valuation

ring. We denote by V the completion of V. Let V& be the subring of V of all elements of V
whose v,-support is included in a ﬁnitely generated semigroup. Then V8 is a Henselian local

ring by Lemma 4.1. We set Z = 37 9 Y. Thus we are looking for solving the following equation:

. 62m ’5 §2m §m 2 gd—Q J
PY):= P<6MY>_aOg +a1gY+a2Y "‘radmy =0.
From now on we denote by @y the coefficients of P(Y):
e
ag ::akm k:(),,d

Since

<2
Va(ao) = VQ(P(O)) > 2VQ(P/(O)) = 2ya(a1) = V4 <552m>
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we have that @y € V. By assumption we have that v, (a;) = 0 thus a; € V. Since v, ( (5) >0
we have that @, € V' for all k£ > 2. Moreover we have
Vo (P(0)) > 0 and v4(P'(0)) = 0.

Thus by Hensel Lemma this equation has a unique solution y € V8 such that
52m

VoY) = Vo <a052) = 14(P(0)) — 2v4(P'(0)) > 0.

Hence there exists a unique solution z := %y € V' of the equation P(Z) = 0 such that
Va(2) = va(P(u)) — va(P'(u).

Now we have to show that z or y € V_ s5[(71,...,7s)]-

e We can write y = Goy where y € V'8 and v, (%) = 0. Then ¥ is a root of the polynomial

P(aoY) = @ + a1aoY + a2az¥? + - + agagy?
=ao (L+ @Y +adeaoY? + -+ +aqag YY)

andy €V, 5l{y1,...,7)] ifand only if gy €V s5[(71,. .., 7s)]-

Since v, (@o) > 0, by replacing P (resp. y) by 1+ a1V + daaoY? + - - + agag Y4 (resp. 7),
we may assume that

va(a;) >0 for i > 2.

In this case we have agp = 1, in,(a1) = 1 and in,(y) = —1.

Let A be a finitely generated sub-semigroup of R>( containing the v,-supports of y and the
ay. We denote by A, | € Z>g, its elements ordered as follows:

>\0::O<)\1<)\2<"'<>\l<)\l+1<"‘~

Let us expand the coefficients of P(Y) as
A=Y G
l€Z>0

where @y », is homogeneous of degree A; with respect to v,. For every I € N let Y), be a
new variable and set Y* := 3, (Y),. We extend the valuation v, to V®[Yy,,...,Yy,,..] by
setting v (Yy,) := A for any I € N. We may write formally P(Y*) = >, Py,(Y*) where
Py, (Y™) € Z]ag »,][Y»,] is the homogeneous term of degree \; with respect to v,.

Since in,(a1) = 1 the equation

(5) P(Y)=Gdo+ @Y +aY?+ - +a3Y? =0,
where Y is replaced by Y*, yields the following equation, for every | € Zx>:

(6) PA(Y*) =Yy, +Qx (Y") =0.
where Q, (Y™*) € Z[ay,,][Y),] is a polynomial depending only on the variables ax x, (As < A;)
and Yy, (j <1). Since y is a solution of Equation (5), by replacing Y* by y we have ]BAL (y) =0,
hence
Yn = —Qxn (Y5 <) VIEN,
So by induction on [ we see that we may write
Cl

W= aymon
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for some ¢; € k[z][y1,...,7s] and m(N\;) € N for all [.
Let ¢ — ai+ b be a common bounding functions of the coefficients of ag, ai, as, ..., aq seen
as elements of V s<[(71,...,7s)]. By Remark 5.3 we may assume that b = 0 since vq(ax) > 0
for k > 2 and in,(ag) = in,(a1) = 1.
Thus we have
(68) NGk, € k[2][y1,---57s] Vi

Let m();) be the least integer such that (60)™*)yy, € k[2][v1,. . .,7s]. We will show by induction
on [ that

(7) m()\l) S a)\l.

This inequality is satisfied for I = 0 since in,(y) = —1 implies that m(Ao) = 0.
We fix an integer [ > 0 and we assume that (7) is satisfied for any integer less than .
Let @ be a monomial of Q;(Y™*). We may write
Q = ar . Yn;, " Yns,
where k < d, j1 <--- <jp <land \j+ Aj, +---+ X5, = A
Then
((5(5)a)\i+a(>\jl +...+)\jk)Q _ (55)(1)\LQ c k[[l‘ﬂ [717 . ’,ys].

This proves (7). So y € V%(;g[(%, e Y- H

We deduce from this proposition the main result of this part (Theorem 5.12) which is a
general version of Eisenstein Theorem for algebraic power series over Q. First we recall the
classical Eisenstein Theorem:

Theorem 5.11. [Ei| Let Z ar,T" € Q[T] be a power series algebraic over Q[T). Then there
keZZO
exists an integers a € N such that

ak+1ak €7

for every integer k.

Theorem 5.12 (Eisenstein Theorem). Let k be a field of characteristic zero. Let a € R and
let us set N = dimg(Qay + -+ + Qo). Let

P(Z) € Valin,---7s)]1Z]

be a monic polynomial where v1, ..., vs are homogeneous elements with respect to v,. Then
there exist integral homogeneous elements with respect to v,, denoted by vi,... ¥, such that
P(Z) has all its roots in Vo [(¥1, - YN)]-

Proof. By replacing P(Z) by one of its irreducible factors we may assume that P(Z) is irre-
ducible. Let

2 € VB[, )]
be a root of P(Z) where 7/ is an integral homogeneous with respect to v, (by Theorem 4.2 such
a z exists). Since P(Z) is irreducible, then P’(z) # 0. Let us set ig := max{v,(z—2')} where the

maximum is taken over all the roots z’ of P different from z. Let us take z € V,[(71, .-, Vy)]
such that

(8) Ve (Z — 2) > max{2v4(P'(2)),i0 + va(P'(2))}.
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For instance if we expand z = ), , 2; where A is a finitely generated sub-semigroup of R and
z; is a homogeneous element of degree ¢ with respect to v, we can choose

i<max{2vq (P’ (2)),i0+va (P’ (2))}
By replacing P(Z) by P(Z + Z) we may assume that Z = 0. In this case P'(2) = P'(0) = aq—1
if we write
P(Z)=2"+a1Z% 4+t ag 1 Z + aq.

Now in,, (ag—1) € k(x)[71,...,7N] so if we denote by a the product of the conjugates of
in,_ (aq—1) over k(x) different from in,_(aq—1) we have in, (aaq—1) € k(x) and a is a homo-
geneous element with respect to v, by Lemma 4.8. Let b be a homogeneous element such that
b1 = a. By Proposition 3.28 we may assume that b € V,8[(v],...,~vy)]. We have that

Z 1 a ad—
d d Zd 1 Zd 1 d—1
=274 b2 v ag 1 Z 4 bay.

By replacing P(Z) by b%P (%) we may assume that in,, (P'(2)) = in,, (aq—1) € k(x).
Since P(Z) — P(z) € (Z — z) then by Inequality (8)

va(P(2)) > 2va(P'(2))

and
va(P(2)) > io + va(P'(2)).
In the same way, since P'(Z) — P'(z) € (Z — z), Inequality (8) yields
Vol P (3) = va(P'(2))
Then we apply Proposition 5.10 (with w := Z = 0), and we get a root Z € Vu[{¥],...,Yn)] of
P(Z) such that
Val(Z = %) 2 va(P(3)) — val(P'(2)) > io.

Thus
Va2 —Z2)=Va(z—Z+2Z—2) >ig = ,r;?ax {va(z — 2')}.
P(z')=0
Hence z =Z € Vo [(V1, -+, V) - O

Corollary 5.13. The field Kﬁlag s a subfield of K.

Proof. Let z € K¢ and let P(Z) = agZ%+- - -+aq € k[x][Z] be a polynomial such that P(z) = 0.
Then agz € K2 is a root of the polynomial al™'P(Z/ap) = Z% a1 Z* Hagag 242+ - +agal?
which is a monic polynomial. Hence agz € V,, by Theorem 5.12 and z € IC,,.

O

Example 5.14. Let us assume that Discz(P(Z)) is normal crossing after a formal change of

coordinates and let us assume that k is algebraically closed. This means that there exist power

series z;(y) € (Y)k[y] (y = (y1,--.,Yn)), for 1 < i < n, such that the morphism of k-algebras

¢ : k[x] — k[y] defined by o(f(x)) = f(21(y),...,2,(y)) is an isomorphism, and such that
p(Discz(P(2)))kly] = v1* - -y kly], m <n.

By Abhyankar-Jung Theorem [Ab] (or [KV], [PR], [MS]), the roots of P(Z) can be written as

d
ty = Z k1 (}’)Wl
1=0
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where w = y” for some 8 € QT x {0}"~™, d € Z>( and the t;,(y) are power series with

coefficients in k. Let us write:
b b
B = (1,...,’”,0,...,0)
e e

for some non negative integers by, ..., b, and e € N. Let us denote by f;(x), 1 < i < n, the
power series satisfying o(f;(x)) = y;.
Let o € N™ and write fi(x) = l;o(X) + €;,a(x) where [; o(x) is (a)-homogeneous and

Vo (€4(x)) > va(li,o(x)) for any i. Thus we have for 1 <i <m:

1
.:li’a(x)%u?,a(x)):mxz 1+l z

E>1 lia

<
ol

Hence

by o m ‘axk »laxk
lla( )T ma b H 1+Z cn s ( )me7é] P, ( )
. =1"pP

We remark that Discz(P(Z)) = [[1, lp,a (%) + £(x) with

b
Let v:= [T, lj.o(X)* be a root of the polynomial

Jj=1"7
m
— [l
j=1

(in particular it is an integral homogeneous element with respect to v, ), and set

§:=[]ljax)
j=1

Here ¢ is the («)-initial term of the discriminant of P(Z). Hence we obtain the following three
cases:

i) If ¢ is a linear change of coordinates (i.e., « = (1,...,1) and €; o, = 0 Vi), then the roots
of P(Z) are in k[x][v] (since in this case w = 7).
ii) If ¢ is a quasi-linear change of variables (i.e., « € N and ¢; , = 0 Vi), then the roots of
P(Z) are still in k[x][v] (since in this case we also have w = 7).
iii) If (at least) one of the ¢; o is not zero, then the roots of P(Z) are in V, s[(7)]-

This example will be generalized later (see Theorem 7.7).

Example 5.15. Let P(Z) = Z? + 2aZ + b where a and b are power series over k and let
a € Q. Let ¢ denote the (a)-initial term of the discriminant of P(Z), i.e., the («)-initial term
of a®> — b. Then the roots of P(Z) are of the form —a + Va2 —b € V, 5[(7)] where 7 is a root
square of §.
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Example 5.16. Let P(Z) = Z3 + 3237 — 2(a} + ) where ¢ is a homogeneous polynomial of
degree greater or equal to 4. Its discriminant is D := 29 + 2§ + 223e + ¢? whose initial term is
28 + 5. The roots of P are

a/ed+e+VD+bi/at+e— VD
with (a,b) = (1,1), (4,72) or (52,7). But we have

203¢e + €2
\S/x%+€+@:71§/1+8+x3f7 L+ = —xgvjv
2 1 2

1
with 75 = 2§ + 28, 73 = 23 + 2 and § = 2% + 2§ is the initial term of D. Thus

5
Vi +e+ VD eVan, K’h”mwﬂ .

o} + 72

By doing the same remark for {/z3 + ¢ — VD, we see that there exist 71, ..., 75 homogeneous
elements with respect to ord such that the roots of P(Z) are in V(1 1)s[(71,-.,75)]. But there is
no reason that the roots of P(Z) are in V, s[(y)] where + is one (integral) homogeneous element
with respect to v,.

6. APPROXIMATION OF MONOMIAL VALUATIONS BY DIVISORIAL MONOMIAL VALUATIONS

In several cases, it will be easier to work with a monomial valuation v, which is divisorial,
i.e., such that dimg(Qay + - - -+ Qay,) = 1. In order to extend some results which are proven for
divisorial monomial valuations to general monomial valuations, we will approximate monomial
valuations by divisorial monomial valuations. The aim of this section is to explain how this can
be done.

Definition 6.1. Let @ € RZ,. Let a* : Q" — R be the Q-linear morphism defined by
a*(q1,...,qn) =), @;q;. We denote by Rel, the kernel of this morphism.
For any ¢ > 0 and g € N, we define the following set:
< qs} .

Example 6.2. If n =4, and oy = ﬂ, g = \/g, as = 13v2+ \/5, as =2+ 757\/3, then any
o’ of the form (n1,ng,13ny + na,ny + 757ny), where nq, ny € Ny, will satisfy Rel, C Rely.

!

-

3

Rel(a, g,¢) == {o/ € N" / Rel, C Rel, and max

Remark 6.3. For o and 3 € RY; we have
Rel, CRelg <= eV ®gR

where V := (Kera*)t C Q". By definition we have that @ € V ®g R. Since V is dense in
V ®qg R there exists 3 € V such that
Bi

1-2
Q;

max < €.

1<i<n

Let us write 8; = %; where the o/ and ¢ are positive integers. This implies that

’
_

%)

max

< ge.
1<i<n

Since 8 € V' we have that o’ € V' thus Rel, C Rel,/. This shows that for any given a € RZ,
and € > 0 there always exists ¢ € N such that Rel(, g, €) # 0.
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Moreover if & € N™ then Rel(a, ¢, &) = {qa} if 0 <e <
o/ € N" satisfying max |qa; — o] < qaue is o = qa.
K3

— L Indeed in this case the only
gmax{a;}

Lemma 6.4. Let o, o € R%,. Then Rel, C Rely if and only if every (a)-homogeneous
polynomial is a (a’)-homogeneous polynomial.
Moreover if o' € Rel(a, q,¢€) and if a(x) is a («)-homogeneous polynomial then

(1 = e)rvala(x)) < var(a(x)) < q(1 +&)vala(x)).

Proof. First let us assume that Rel, C Rely and let a(x) be a (a)-homogeneous polynomial.
This means that for any p, ¢ € N, if xP and x? are two nonzero monomials of a(x), then
Yo ipi = Y, a;q;. In particular p — ¢ € Ker(a*), thus ), afp; = >, fg;. Thus a(x) is a
(a’)-homogeneous.

On the other hand let us assume that every («)-homogeneous polynomial is a (o’)-homogeneous
polynomial. Let r € Rel,. We can write r = p— ¢ where p, ¢ € Q%,. By multiplying r by a posi-
tive integer m, we may assume that mp, mq € N”. By assumption on r, the polynomial x"P x4
is (a)-homogeneous. Thus it is (o’)-homogeneous. This means that ). oimp; = ), aimg;.
Hence ), o(p; —¢;) =0 and 7 = p — ¢ € Rely.

Now let xP be a monomial. Then

Vo' (Xp) = Z O[;pl
i
But ¢(1 —e)a; < of < ¢q(1 +¢)a; for any 1 <4 < n. This proves both inequalities.
O

Example 6.5. Let o € N” and o/ € R%,. Then Rel, C Rely if and only if there exists A € R
such that o/ = Aa. Indeed we have dimg(Rel,) = n — 1 hence either dimg(Rely) = n and
o/ =0, either dimg(Rely’) = n — 1 and there exists A € R* such that o/ = Aa.

Lemma 6.6. Let « € RY;, and let A € V,. Let us write
a;(x)

A=y Gt

e 000

where A is a finitely generated sub-semigroup of R>o and i — m(i) is bounded by an affine
function. Then there exists €4 > 0 such that for all 0 < ¢ < g4, for all ¢ € N, for all

o' € Rel(a, q,€), the element Z M is in the fraction field of V.
e )
Moreover if A €V, is not invertible, i.e., v, (A) > 0, then we may even choose €4 > 0 such
that for all 0 < e < ey, for all ¢ € N, for all o/ € Rel(a, q,¢), Z& € Vo and this
2 g

element is not invertible in V.

Proof. Let a, b > 0 such that m(i) < ai+ b for any ¢ € A. By Lemma 6.4 we have

o (5t ) = vora(0) = ) (6 2 (1 = £ (a3 = a1+ EJm ()00
=q(1 — &)i — 2gem (i) (6(x)).

Let €4 be a positive real number such that €4 < ) and set

1
14+2avq (6(
n:=1—ea(l+ 2av,(6(x))) > 0.
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Then for any 0 < e < ey, any ¢ € N and any o’ € Rel(a, ¢,&) we have

v ((5(6;)(2)(0 > ngi — 2qbeva(5(x)) Vi€ A.

This proves that Z 5(x (X) is in the fraction field of V.

i€EA
If vo(A) > 0, then ao(x) = 0. Let 49 :== v4(A). Let € > 0 be such that ¢ <e4 and
i0 > € (14 2av4(0(x)))ig + 2bv4(6(x))) .

a;(x)
§(x)™m (D)

In this case vy ( ) > 0 for any i € A, i > 4. This proves the second assertion. ([l

Definition 6.7. Let a € RZ; and o’ € Rel, "N™. Then every («)-homogeneous polynomial
p(x) is (¢/)-homogenous by Lemma 6.4. In particular if §(x) is an other («)-homogeneous
polynomial and s € N then

P(z16(x)°1%, ..., 2,8(x) %) = p(x)d(x) e PE))

is also a («)- homogeneous polynomial.
If A= ZleA 6(x)m( s € Va5 and o' € Rel, NN, we will set

a/l Ot/ S (X/ S
Par s (A) ;:ZW(:@&(X) 15 (X)),
ieA O
Then ¢q,s : Va,s — Va,s is a ring morphism. We also define
wa/75(14) = 58@0/,8(14) VA (S Va,(;.

Lemma 6.8. Let o € R%, and A € V, 5. For any € > 0 small enough there exists s(¢) € N
such that for every q € N, o € Rel(a, q,€) and s > s(e):

Yo s(A) € k[x].
If vo(A) > 0 we may even assume that por s(A) € k[x] for every ¢ € N, o € Rel(e, q,¢) and
s> s(e).
Proof. Let a(x), d(x) € k[x] be («)-homogeneous polynomials and let m € N be such that

Vg, (5‘(1)(:)‘,),1) =14. Let s € N and @’ € N” such that Rel, C Rel,. By Lemma 6.4 we have

a(z16(X)™15, ..., 2, 0(x) %) _ _
9 . — 5 slvgr(a(x))—vyr (6(x))m]—m
©) 5(x15(x)a15, ey )

Now let A = Z 5 € Va5 with m(i) < ai + b for any ¢ € A, A being a finitely generated
€A

sub-semigroup of RZO. Set do := Vo(0). Thus ve(a;) = dom(i) + i for any ¢ € A. Hence by

Lemma 6.4 we have that

Vo (a;) = m(0)ve (8) = q(1 =€) [dam(i) + 1] — q(1 + &)m(i)d,

(10) Vor(a;) — m(i)ve (6) > q(1 — )i — 2gqedom(7).

Since (1 — )i — 2edom(i) > (1 — )i — 2ed,(ai +b), for every e small enough there exists a. > 0
such that

Dé'(a’i) - m(i)ya’ (5) > qagt
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for all ¢ € N, all o € Rel(w,q,¢) and all i € A, 4 > 0. Thus for s € N and i € A\{0} we have
that

(v (a5) = m(i)ver (8)) —m(i) > sqazi —m(i) > (sqa —a)i —b > (q —e m/l\)\{O}>

In particular if s > (a + /a. then

b
min A\{O})
s(Var (a;) — m(i)ve (0)) —m(i) >0

and %(mlé(x)ais,...,xné(x)o‘;s) € k[x] for all ¢ > 0. Thus if v,(4) > 0, ap = 0 and

Yo s(A) € k[x] for s > (a + m) /ac.
In the general case where ag # 0, if we assume moreover that s > b, we have that

5@)8%@15(@&35, 28 (%)) € K[x].

0

This proves the lemma.
O

When the components of o are Q-linearly independent, by using Lemma 6.8, Theorem 5.12
gives the following generalization of the main result of [McD]:

Theorem 6.9. [McD| Let k be a field of characteristic zero and o € RZ such that
dimg(Qa; + - - - + Qay,) = n.

Then
K c |k (=, 8 € onZ™))

where the first union runs over all rational strongly convex cones o such that {«,7) > 0 for any
T €0, T #0. Moreover we have:

& c YUK ((ﬂ ean 1zn>)
o k' geN q

where the first union runs over all rational strongly convex cones o such that (a, ) > 0 for any
T €0, T#0, and the second union runs over all the fields k' finite over k.

Proof. In order to prove the first inclusion, by Corollary 5.13 it is enough to prove that

Ko C | k(2?8 € onZ™)

or Vo CU, k[27,8€0nZ"].
Since the «; are Q-linearly independent the only (a)-homogeneous polynomials are the mono-

mials. Let w € N” and A be an element of Vy v : A = Zie/\ ):ff% where A is a finitely
generated sub-semigroup of R>o. We have to prove that A € (J, k [[x'B ,B0€0 ﬂZ”]]. Since
1A € U,k [2%,8 € onZ"] implies that A € |J,k[+”,8 € 0NZ"] we may assume that
Vo (A) > 0.

By Lemma 6.8, we see that the monomial map ¢,/ s defined by z; — aijsa;'“’ maps A onto
an element of k[x] for o’ € Rel(«, q,¢), € > 0 small enough and s large enough. Such a monomial
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map is induced by a linear map on the set of monomials and its matrix is

14 swia)  swiah Swi o - swia,
Swa) 14 swoa,  Swaalh - Swaat),
M, = Swaa Sw3ah 1+ swgaf -+ swaa,
!/ !/ !/ /
SWn O S0ty S0z oo 1+ swpa,
Set
—swie  —swiah  —swiah o0 —swial,
—Swa)  —swaah  —swaad -+ —swaal,
My = —Sw3a)  —swsah —swsah - —swsal,
/ / / /
—SWn Q) —SWnQlh  —SwpQly e —Swpl,
and let x(t) be the characteristic polynomial of My. Then x(1) = det(M;). If x(1) = 0, then
the vector w := (w1,...,wy,) is an eigenvector of My with eigenvalue 1 since the image of My is

generated by w. Thus —s(wia) + -+ +wpal,) = 1 which is not possible since w; > 0 and o} > 0

for any i. Thus det(M;) # 0 and M, is invertible. In particular o := Mfl(RQO) is a rational

strongly convex cone. Moreover, since A € V, 5, we have (a, 7) > 0 for any 7 € o, 7 # 0. Hence

Aek[[zﬁ,ﬁ €eonz".

By Example 3.18 integral homogeneous elements with respect to v, are either finite over k,
ny nn n

either of the form cz,* ---x,* for some integers nq, ..., n, € Z>g, ¢ € Nsuch that Z ajng > 0.
j=1

Using Theorem 5.12 and since K, = h_n>1 K&8[yy,...,7s] where the v; are homogeneous with

RS REEET) Ts
respect to v,, we have the second inclusion by replacing ¢ by the rational strongly convex
cone generated by o and the n-uples (ng,...,n,) corresponding to the homogeneous elements

71""773'
(]

Remark 6.10. In fact the proof shows that the field K, as soon as
dimg(Qay + -+ + Qo) = n,

is the field of Puiseux power series with support in rational strongly convex cones o such that
(a,y) > 0 for all v € 0. Thus K, is the field of a-positive Puiseuz series according to [AI].

Lemma 6.11. Let a € RY; and o/ € Rel, AN". Then

'l/}o/,t o %w,s = wa’,ua/(é)st-i-s—&-t Vs, t € ZZO~

Proof. Let A= Z % € Va.s. Then we have (see Equation (9) in the proof of Lemma 6.8):
ieA
(53(,00/ s(A) — Zai(X>(5(X)S(1+VU/(ai(x))_y‘*’(6(x))m(i))_m(i).

€A
If t € Z>o and | € Z>g, and a(x) and §(x) are (o’)-homogeneous, we have that
par,i(a(x)8(x)") = a(x)§(x) o (e O,
Thus by denoting
Pa (1) = Vo (@i (X)) — Vor (8(x))m(i) and dy := vor (6(x))
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we obtain
8" @ar 1(07par s(A))
= 603 en @i(@1890t, L 2, 0%nt) X §(210Y, L 2, 000t )PV (@i () =vr ()m(D) =m (i)
= 3 p @idtHVar @)+ (st opar (D=m(@))(tdor +1)

=>ica ;6% t5Par (D +tpar ()+spas (1) —m(i)+darts+its
1€ .

In particular we have
(11) 8 Qo t(0° Par,s(A)) = 84T g0 4 stasii(A) VE € Lo,

O

Lemma 6.12. Let o € R%, and o’ € Rel, "\N"™. For all s1, sy € N there exist t1, to € N such
that

wa’,tl o ’L/)a’,sl = ’L/)a’,tg o '(/)a’,sz .

Proof. Let d denote v4/(5). Let p be a prime number and k € N such that p* divides ds; + 1
and dsy + 1. Then ged(p,d) = 1 and p* divides ds; — dsy. Thus p¥ divides s; — so. This
proves that ged(ds; + 1,dss + 1) divides s1 — s3. Thus there exist t; € Z and to € Z such that
(ds1 4+ 1)t1 — (dsy + 1)ta = so — s1. If t1te < 0, let say ¢; > 0 and ¢5 < 0, then

(d51 + ].)tl — (d82 + 1)t2 > 81+ 89 > |81 — 82‘

which is not possible. Thus we have that t1¢2 > 0. If t; < 0 and t2 < 0, we can replace t; (resp.
to) by t1 + k(dss + 1) (resp. by to + k(dsy + 1)) for some positive integer k large enough. This
will allows to assume that ¢; and ¢o are positive integers. Hence

E'tl,tg € N, dsit1 + s1 +t1 = dsoty + s9 + to.

This proves the lemma by Lemma 6.11.
O

Definition 6.13. Now we consider a subring R of k[x] that is an excellent Henselian local ring
with maximal ideal mpg and satisfying the following properties:

(A) k[ml, . ,xn](x) C R,

(B) mg = (x)R and R = k[x],
(C) if p(x) € k[x] is (a)-homogeneous for some o € RZ then

fx)e R = f(p(x)21,...,p(x)zn) € R.

Remark 6.14. If k is a field, the ring of algebraic power series k(x) is an excellent Henselian
local ring satisfying Properties (A), (B) and (C). If k is a valued field, then the field of convergent
power series k{x} does also.

For a field k, the ring k[z1,..., 2. J{®r41,...,2,) for formal power series algebraic over
k[z1,..., 2z ][®r41,...,2,] is also an excellent Henselian local ring satisfying Properties (A),
(B) and (C).
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Definition 6.15. Let o € RZ; and let § be a (a)-homogeneous polynomial. Let R be a ring
satisfying Definition 6.13. We set

Vﬁ 5= {A € ‘A/Va / 3A a finitely generated sub-semigroup of R,

Vi € A Ja; € k[x] («)-homogeneous, Ja,b >0 Vi € A Im(i) € N s.t.
Qi

m(i) < ai+ b, vg (%) =1, A= z{; §m(i)
ie

and Je > 0Vg e NVa' € Rel(a, ¢,e) Is € N such that ¢, s(A) € R} .

Then VZ is the union of the sets Vf’ 5 When 0 runs over all the (a)-homogeneous polynomials.

Lemma 6.16. The sets Voli(; and Vf are subrings of Vo5 and V,.

Q; - b; R .

Proof. Let A = ; 0] and B = g 0] € V, 5. Then there exists € > 0 such that Vg € N,
K3 7

Vo € Rel(a, ¢, ¢), there exist s1,s2 € N such that

¢a',81 (A)7 wal752 (B) € R.

Then by Lemma 6.11, Lemma 6.12 and condition (C) of Definition 6.13 there exists s € N such
that

wa',s(A)v wa’7s(B) S R
This shows that o/ <(A + B) = Y «(A) + o s(B) € Rand A+ B € V.

Now by Lemma 6.8 we can assume that there exists s(¢) € N such that ¢, ;(AB) € k[x] for
all s > s(¢), forallg € Nand all &’ € Rel(e, ¢, €). On the other hand since ¥y s(A), Yo s(B) € R
then Yoy, (8)st4s+t(A); Yar v, (5)st+s+¢(B) € R for all t € N by Lemma 6.11 and Condition (C)
of Definition 6.13. Thus there exists s € N such that

Var,s(A), Yo ,s(B) € R and Yo s(AB) € k[x].
But we have that
%/,S(A)%/,S(B) = 5S¢a/,s(AB) €R.
Hence by Artin Approximation Theorem (cf. [Po|, [Sp2]|) ¥a s(AB) € R.
Thus AB € V(ﬁ&. This proves that Vf’é is a ring.
Since VI is the direct limit of the Volzé it is also a ring. (]

Example 6.17. If o € N® and R = C{x} is the ring of convergent power series over C, we
claim that

PCix} _ Z % / Vi a; € C[x] is («)-homogeneous,

a,d
iEZZO

a;

vo (Fativm) = @ €22

and 3C,r > 0 such that |a;(z)] < Cri|z||%=(%) Vz e cr}

1

o

J
Z.

;7| for any z € C".

where ||z||o := max
j=1,....,n

First of all every element A of V, s is of the form

a;
A= Z sm()

i€ZL>0
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where v, (%) = ¢ and m(z) < ai + b for some a, b € Z>¢. By multiplying the numerator

and the denominator of by §%4t0=m(1) and replacing al by a;04tb=m()  we may assume

Sy
that m(i) = ai +b. If a > b, we may replace 55 by % 5m+a , if @ < b we may replace 7
by ai?f}%;’ Thus any element of V, s is of the form Z 5a ’L+1) where v, (50(‘17“)) =1 for all

1€Z>0
i € Z>p. In this case vy (a;) = (ava(d) + 1)i + av,(6) for any i € N.
By Remark 6.3 Rel(a, q,¢) = {qa} for £ > 0 small enough since &« € N". Then we have (with
s = a in Lemma 6.8):

F(X) = Ya.a(4) = 3(x)" Y 5 H—l) (210(x)1%, . 2,0(x)) = Y a(x)
1€L>0 1€2L>0
and f(x) € C[x]. Moreover we have for every q € N
Fo(%) = Yaa(4) = 6(x)" Y 5a(z+1 P18 e d(x) 1) = Y a(x)8(x) T
1€ZL>0 1€L>0

Thus f € C{x} if and only if this power series is convergent on a neighborhood of the origin.
This neighborhood may be chosen of the form:

Bo(0,r) :=={2€C" / |z]| <r%, j=1,...,n}.
For any z € B,(0,r) set t?j =zjfor j=1,...,n and b;(t) = a;(2) for any ¢ € N. Then f is
convergent on B, (0,r) if and only Z b;(t) is convergent on
€30
BO,r):={teC" /|t;|<r, j=1,...,n}.

But this series is convergent if and only if there exist ¢ > 0 and p < 1 such that |b;(¢)| < cp® for
all i € Z>¢ and all t € B(0,r). Since b;(t) is a homogeneous polynomial of degree

vo(a;) = (ad+1)i+ ad
where d := v,(0), we have

sup |bi(t)| = plodtbitad sup |b: (t)]-

[tj|<r.j=1,...n [t|<1,j=1,...,n
We see that f is convergent if and only if there exist C' > 0 and R > 0 such that
sup la;(z)] = sup |bi(t)] < CR'.

|2j|<1,4=1,....n It;|<1,5=1,...n
This is equivalent to the following inequality for any z € C™:
(12) a(2)| = (0] < max |6 swp [b(t)] < ORIz,
J=Los [tj1<1,5=1,....n
On the other hand if f € C{x} we have seen that there exist C > 0 and R > 0 such that
sup lai(2)| < CR".
lzj1<1,j=1,....n

Thus 4 .
sup  Jai(2)6(2)207 V1| < C(RS)
|2;|<1,5=1,...,n
where S 1= max|, <1 j-1,..n 6(2)|*@@~1). Hence f, € C{x} for every ¢ € N. This proves the
claim.

We have the following analogue of Theorem 5.12 in the Henselian case:
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Theorem 6.18. Let k be a field of characteristic zero and let R be a subring of K[x] satisfying
Definition 6.13. Let o € R% and let us set N = dimg(Qai + - - - + Qo).

Let P(Z) € VE[(y1,...,7:)][Z] be a distinguished polynomial of degree d where the v; are
homogeneous elements with respect to v,. Then the roots of P(Z) are in VE[(vi,...,v\)] for
some integral homogeneous elements vy, ..., Y with respect to vy.

Proof. Let P(Z) = Z+ a1 Z4 '+ - +aq with a; € VE[(y1,...,7,)] for 1 < j < d. By Theorem
5.12 we may assume that P(Z) has a root z € V, s[(71,-..,vn)]. We denote

_ i1 IN
a; = E Aiiy et o with Ai iy € Vaos,
i1 iN

z = Z Zi,..., iN’}/ltil e ’Y;\jy with Zit,...in € Vaﬁ.
11,0 yiN
Let usfixe > 0, ¢ € N, o € Rel(w, q,¢) and s satisfying Lemma 6.8 for the A, ;, . ;, and for the
Ziy,....in+ For convenience we denote by ¢ the morphism ¢, s defined in Definition 6.7. Then if
A denotes one of the A;;, ;. or the Z; ;. we have ¢(A) € V, s by Lemma 6.8. We set

R:=VosN¢ ' Vars)

and R’ denotes the subring of V4 [(71,...,7s)] of elements Zil Aih___Jnyil 'y]’\’,V whose
coefficients A4;,, . ;. arein R.

Of course ¢ induces a morphism R — V. s but we have the following lemma:

s N

Lemma 6.19. Let y; be homogeneous elements with respect to v, for 1 < i < N. Then there
exist homogeneous element . with respect to vor, 1 < i < N, such that, for any finite number
of elements Ay, ... in € Vass

¥ Z Ail,.A.,iN'Ylil""YNiN = Z P(Aiy, i) N

i1yein W15y
defines an extension of ¢ from R’ to Vo s[(V1,- - 7N

Proof of Lemma 6.19. Let us assume that 7; is a homogeneous element of degree e; with respect
to v,. Let

Qi(Z) = gi0(x)Z% + gin (X) 2T + - + gi g, (%)
be a polynomial such that Q;(;) = 0 and such that g; ;(x) is a («)-homogeneous polynomial of
degree d; + je; for some d;.

Then g; ;(x) is a (o/)-homogeneous polynomial of degree d; + je; for some constants d; and e;.
Indeed, if a, b and ¢ are (a)-homogeneous polynomials and v4(a) — 4 (b) = v4(b) — v4(c), then
ac and b? are two (a)-homogeneous polynomials of same degree, i.e., ac—b? is (a)-homogeneous.
Then, by Lemma 6.4, ac — b? is (o/)-homogeneous, thus v, (a) — var (b) = var (b) — vor(c).

Set Q,(Z) = 6°¢i:Q; (5%) We have

Qil2) 1= 90X 2% + 93 (R)5(x)" 257 + -+ 4 95, (x)3() .

For any i let 7/ denote a root of Q;(Z). So 7/ is a homogeneous element of degree e’ (141, (5(x))s)
with respect to v,/. Then it is straightforward to check that

defines an extension of ¢ from R’ to Var 5[(71,-- - Yn)]- O
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By Lemmas 6.19, 6.11 and 6.12, and Property (C) we can assume that s is large enough for
having that

§°0(Aj) € RV, ..., 7]

for 1 < j <d. Again by applying Lemmas 6.19, 6.11 and 6.12 we may even assume that
5°p(z) € k[x][1,-- -, 7w
by taking s large enough. Thus 2z’ := 6°¢(2) € k[x][V],...,¥n] is a root of the polynomial
P(Z) =2+ 6°0(A) 27 + .-+ 6%p(Ag) € R[Z].

Let us write

. / AT A 2
Z = Zi1,in N1 N

with z; ;€ k[z] for any iy, ..., in. Let us set

.....

L ) WA / iN
Z:= E Ziy,inV1 T IN
D1, 00N

where Z;, ;. are new variables. Solving P(Z) = 0 is equivalent to solve a finite system (S)
of polynomial equations in the variables Z;, . ;, with coeflicients in R, just by replacing Z by
Zil,-uﬂ;N Ziy. i1 - yn'™ and replacing the high powers of the v; by smaller ones using the
division by the Q;(Z;). By Artin Approximation Theorem (cf. [Po|, [Sp2]), the set of solutions
of (§) in R is dense in the set of solutions in k[x], but since P(Z) = 0 has a finite number of
solutions, then (S) has a finite number of solutions and they are in R. Thus z;, ;€ R for all
i1, ..., in, hence 2’ € R[y1,...,7y]. This proves that z € VI s[(v1,..., 7). O

7. A GENERALIZATION OF ABHYANKAR-JUNG THEOREM

Definition 7.1. Let a € N” and let § € C[x] be a (a)-homogeneous polynomial. Let a > 0,
C >0andn>0. Set :

Docani=| U Cxe|[)BOmM)
K>0,e>0
e<K*C

where B(0,7) is the open ball centered in 0 and of radius 7 and
Cre:={z€C" /do(x,07'(0)) > K|z|s and ||z, <}

where ||.||o is defined in Example 6.17 and d,, is defined as follows: for any z, y € C" let us

denote by m{r (resp. y[T) a complex o;-th root of z; (resp. y;) and let U; be the set of a;-roots of

1 1

x; =&y ’ and do(2,07(0)) := inf  du(x,2).
z’€0-1(0)

unity. Then we define d, (z,y) := max gié% v
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Then Dy, c,q,, is the complement of a hornshaped neighborhood of {# = 0} as we can see on
the following picture (here n =2 and «a = (1,1)):

T2

Lemma 7.2. Leta € N" and A € Vf{gx}. Then there exist constants a > 0 and C' > 0 such that
A is analytic on Do c,a,y for every n > 0.

Proof. We write A =}, sty where a; is (a)-homogeneous for every i € N. By multiplying a;
by a convenient power of § we may even assume that there exist positive constants a and b such
that m(i) = ai + b for every i.

If vy (a;) = d; there exist C > 0 and r > 0 such that

(13) lai(z)| < Cri||z||% Vo eCm

by Theorem 6.18, Example 6.17 and Inequality (12) of Example 6.17. On the other hand we
claim that there exists a constant C’ > 0 such that

(14) 10(x)| > C'do(x,071(0))7>@ vz ecCn.
Indeed if we embed C{x} in C{y} by sending z; onto y;"*, we have

0(x) =0y, ..., yn") =7(Y1,- - ¥n)
and 7 is a homogeneous polynomial of degree v, (). After a linear change of coordinates, we
may assume that 7 is a monic polynomial in y,, of degree v, (#) multiplied by a constant. Then,
for all y1,...,y, € C™, we have
Vo (9)
1Ty, yn)| = C H (Yn = @i(y1, -, Yn—1))
i=1
where ¢; is a homogeneous function which is locally analytic outside the discriminant locus of
7, for some constant C’ > 0. Thus
. (0
7 y)| = € minfyn = @i(yr, - yu)
o 1 val(0) v -1 Ve (0)
>C"  inf  max|yr — vl = C'd(y, 777(0))
y'er—1(0) k

since (Y1, -+ s Yn-1,9i(Y1, - Yn—1)) € 7-1(0) for any i. This proves (14).
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Hence we have (for positive constants €, K and z € Ck .):

aif@) |__C ey € i
gm(i) (37) - ¢'m(i) da(x79—1(0))ua(9)m(i) - C'm(i) da(x’e—l(o))l/a(e)m(i)
Cri||z|?, < C(re)’ B C re )Z
— O'm() Kva(@)m(i) — Orm(i) [va(0)m(i) - C'b Kva(0)b (ClaKVa(G)a

Then if ¢ < Ko=) (<~ , A defines an analytic function on the domain Ck .. Thus A defines

i
an analytic function on the domain Dy cra /r au, (6),y for every n > 0. O

This following proposition has been proven by Tougeron in the case a = (1,...,1) (see
Proposition 2.8 [To]):

Proposition 7.3. Let o € N and let P(Z) € C{x}[Z] be a monic polynomial whose discrim-
inant is equal to du where § € Clx] is («)-homogeneous and v € C{x} is invertible. If P(Z)
factors as P(Z) = Pi(Z)--- P.(Z) where P,(Z) € C{x}[Z] is an irreducible monic polynomial
of C{x}[Z] for all i, then P;(Z) is irreducible in ye b [Z].

Proof. Let Q(Z) be an irreducible monic factor of P(Z) in V,[Z]. By Theorem 5.12 there exists
a (a)-homogeneous polynomial § € C[z] such that the coefficients of Q(Z) are in V, 9. Let us
denote by A one of these coefficients.

Since V4,0 C V4,05 We may assume that ¢ divides 6, thus

6~ 10)N B(0,¢) c 671(0) N B(0,¢)

for every € > 0.
Let 7 > 0 small enough such that the roots of P(Z) are locally analytic on the domain

D,y := B(0,7)\07"(0) € B(0,n)\d~*(0).

Since A is a polynomial depending on the roots of P(Z) it is locally analytic on Dy .

On the other hand by Lemma 7.2 A defines an analytic function on a domain Dy ¢ q,z-

Thus by Lemma 7.4 given below A is global analytic on Dy ,. Since the roots of P(Z) are
bounded near the origin, A is bounded near the origin, thus A extends to an analytic function near
the origin. This proves that A is analytic on a neighborhood of the origin and Q(Z) € C{x}[Z].

O

Lemma 7.4. Set C >0, a >0 and n > 0 and let 6 € C[x]| be a (a)-homogeneous polynomial.
Let A : Dy, — C be a multivalued function. Let us assume that A is analytic on Dy .cqr and
locally analytic on Dy . Then A is analytic on Dy .

Proof. Since A is locally analytic on Dg ,, then A extends to an analytic function on a small
neighborhood of every path in Dg,. If A is not analytic on Dy ,, then there exists a loop
based at a point p of Dy, denoted by ¢ : [0,1] — Dy, with ¢(0) = ¢(1) = p, such that A
extends to an analytic function on a neighborhood of ¢ but A o ¢(0) # A o ¢(1). Let us write
o(t) = (p1(t), ..., pn(t)) and let us define ® : [0,1] x S — C™ by

O(t,5) == (s"@1(t),..., s pu(t))
where S :={2€ C / |2| <1,R(z) > 0}.
Then we have that
3(2(t,s)) = 8"~ D5(p(t)) # 0
for any (t,s) € [0,1] x S since Im(yp) C Dy, and s # 0. Thus the image of ® is included in Dy ,,.
Moreover, for any ¢ € [0, 1], let ®; : S — Dy, be the function defined by ®;(s) := ®(t,s). Its
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image is simply connected since S is simply connected and ®; is analytic. Thus A o ®;, which is
locally analytic, extends to an analytic function on S by the Monodromy Theorem.
Let us denote by h the holomorphic function on S defined by

h(s) == Ao ®(0,s) — Ao ®(1,s)

for any s € S.
For any s € S and any ¢ € [0, 1] we have

1 (2, 8)llo = [3[l1(E) o

and
do (B(t,5),071(0)) = |s|da (¢(t),071(0)) -
Let us set
L da(2(65),0700) 1 da (9(0.071(0)
T 2w 2 9)]a 2¢e01]  [lo(®)]la '

Thus for any s belonging to the domain S N {|s| < K*C}, we have ®(t,s) € Dy c,q,. Since
O(t,s) € Dy,c,a,n, and A is analytic on Dy ¢ 4., then Ao ®(0,s) = Ao ®(1,s), thus h(s) =0 on
SN{s < K*C}. Since h is holomorphic on the connected domain S, then h = 0 on S. This
contradicts the assumption. Hence A is analytic on D ,,. [l

Then we can extend Proposition 7.3 to the formal setting over any field of characteristic zero:

Theorem 7.5. Let k be a field of characteristic zero and o € RZ,. Let P(Z) € k[x][Z] be
a monic polynomial whose discriminant is equal to du where § € k[x] is (o)-homogeneous and
u € k[x] is a unit. If P(Z) factors as P(Z) = Pi(Z)--- Ps(Z) where the P;(Z) are irreducible
monic polynomials of kK[x][Z], then the P;(Z) remain irreducible in V,[Z].

Proof. Let us prove this theorem when P(Z) € C{x}[Z]. If a € N, this is exactly Proposition
7.3. If o ¢ N, then by Lemma 6.6, any decomposition P(Z) = Q1(Z) --- Q,(Z) in V,[Z] is also
a decomposition in V,/[Z] for o’ € Rel(a, ¢,e) where ¢ is small enough. Then every irreducible
monic factor of Q;(Z) in V,[Z] is in C{x}[Z] by Proposition 7.3, thus Q;(Z) € C{x}[Z] for every
i. In particular since the @Q;(Z) are irreducible in V,[Z] then they are irreducible polynomials
of C{x}[Z].

Now let us consider the general case. Let
P(Z)=2%+aq_1(x) 21 + -+ ag(x)

be a polynomial satisfying the hypothesis of the theorem with ax(x) € k[x] for 0 < k < d — 1.
Since P(Z) is defined over a field extension of Q generated by countably many elements and
since such a field extension embeds in C, we may assume that C is a field extension of k and
P(Z) € C[x].

The discriminant of P(Z) is a polynomial depending on the coefficients ag(x), ..., ag—1(x)
that we denote by D(ag(x),...,aq-1(x)). Let

R(AO, B Ad—lv U) = ‘D(AO, B Ad—l) - 5(X)U € C[X][Ao, R Ad—la U]

Then R(ag(x),...,aq4—1(x),u(x)) = 0.
On the other hand, saying that P(Z) factors as P = P; --- Ps is equivalent to

by (x), ..., br(x) such that a;(x) = R;(b1(x),...,br(x)) Vi

for some polynomials R;(By,...,B,) € Q[B1,...,B;],0 < i< d—1 (these R; are the coefficients
of Z% in the product Py(Z)--- Ps(Z) and the b; are the coefficients of the Py(Z)).
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By Artin Approximation Theorem [Art], for any integer ¢ > 0 there exist convergent power
series

G0,c(X);s -+, Tg—1,e(X), Ue(X), b1 o(X), . .. ,Bnc(x) e C{x}

such that

(15) R(Go,c(%), ..., 04-1,¢(X),Tc(x)) =0,

(16) @i o(x) — Ri(b1,e(X), ... bre(x)) =0for 0<i<d—1
and

Tk.e(X) — ap(x), Ue(x) — u(x), bro(x) — b(x) € (x)°
for0<k<d1<I<r. Set

Poy(2) = 2%+ Ga-1,(x) 2"+ + T e(x).
Then P.y(Z) factors as

P(c)(Z) = Pl,(c)(Z) o Ps,(c)(Z)
in C{x}[Z] because of Equation (16) (the coefficients of the P; .(Z) are the b, ) , and

P (0)(Z2) = Pi(Z) € (x)k[x][Z]

for 1 < i < s. Moreover the discriminant of P(.)(Z) is of the form §(x)u) where u, is a
unit in C{x} if ¢ > 1 by Equation (15). Since P;(Z) is irreducible in k[x][Z], then P; )(Z) is
irreducible in k[x][Z] for all i for ¢ large enough (let us say for ¢ > ¢y). Moreover we can remark
that v4(a) > min;{a;} ord(a) for any a € k[x], thus v, (bg .(x) — bg(x)) > min;{a; }c .

Let ¢ > ¢ and let us assume that P; (.y(Z) is not irreducible in V,[Z]. Thus it is the product
of two monic polynomials: let us say

P ()(Z) = Pi()1(Z2) Py () 2(Z)
with P (0)1(Z), P (c),2(Z) € Va[Z] and degz(P; (¢),x(Z)) > 0 for k = 1,2. In fact by Theorem
6.18 we may assume that P ) 1(Z), P () 2(Z) € VES{"} [Z]. By Proposition 7.3 we see that

P;()1(Z), P; () 2(Z) € C{z}[Z], and by Proposition 7.6 P; (;y1(Z), P; ()2(Z) € L{x}[Z] where
L is a subfield of C which is finite over k. Thus L. = k[y] by the Primitive Element Theorem
where 7 is a homogeneous element of degree 0 with respect to v, by Example 3.19. But we
have Vo k[ = k. Thus P, (0)1(Z), P (0),2(Z) € k{x}[Z] C k[x][Z] which contradicts the
assumption that P; () is irreducible in k[x][Z]. Thus P; (.)(Z) is irreducible in V,[Z]. Hence, by
Corollary 4.14, P;(Z) is irreducible in V,[Z] since v, (b (x) — bx(x)) increases at least linearly
with c.

O

The next proposition is a generalization of a result of S. Cutkosky and O. Kashcheyeva [CK]
(see also Proposition 1 [AM]) and we will use it to prove Theorem 7.7. It is again an application
of Theorem 5.12.

Proposition 7.6. Letk — k' be a characteristic zero field extension. Let f € kK'[x] be algebraic
over k[x] and let L be the field extension of k generated by all the coefficients of f. Thenk — L
is a finite field extension.

Proof. Let oo € RZ such that dimg(Qa; + - - - + Qo) = n. By Theorem 5.12 the roots of the
minimal polynomial of f are in V,[(71,...,7Vs)] for some homogeneous elements 71, ..., ¥, with
respect to v,. Let us denote by V!, the ring defined in Definition 5.1 and Lemma 5.5 where k is
replaced by k’. Then k'[x] and V,[(71,. .., Vn)] are subrings of V/,[{(v1, ..., ¥s)]. Thus by unicity
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of the roots of the minimal polynomial of f we have that f € V,[(71,-..,7n)]. By Example 3.16
the homogeneous elements ; may be written as v; = ¢;x% where ¢; is algebraic over k’ (and so
over k) and 8; € Q" for 1 < i < n.

By expanding f either as a formal power series of k'[x], f = 3, b;j(x) where b;(x) € k'[x] is
a (a)-homogeneous polynomial for any 4, either as an element of Vo [{71,...,Vn)],

_ M k(i) kn(4)
f - Z 6<X)7n(i) M I )

and by identifying the homogeneous terms of same valuation (which are monomials by Example
3.16), we obtain a countable number of relations of the following form:

(17) b(x)™ (%) = Y g oo, ()

where b(x) (corresponding to the b;(x)), an, .. n.(x) (corresponding to the a;(x)) and J§ are
monomials, b(x) € K'[x], an,,...n,(x) € k[x], m € N, and the sum is finite. By dividing Equality
(17) by x? for B well chosen, we see that the coefficient of b(x) is in k[cy,...,c,] and L is a
subfield of k[c1, ..., ¢y O

We can strengthen Theorem 7.5 as follows:

Theorem 7.7. Let o € RZ, and let P(Z) € k[x][Z] be a monic polynomial such that its
discriminant A = du where § € k[x] is (a)-homogeneous and u € K[x] is a unit. Let us set
N :=dimg(Qay + - - - + Qo). Then there exist y1, ..., YN integral homogeneous elements with
respect to v, and a («)-homogeneous polynomial c(x) € K[x] such that the roots of P(Z) are in
LK [x][y1,---,vn] where k — K is finite.

c(x)

Remark 7.8. This result shows that for a given root z of the polynomial P(Z) the other roots
of P(Z) are obtained from z by the action of the elements of the Galois groups of the elements
Y1, ..., yn on z. For instance if « € N™ (so N =1 — we can always assume this by Lemma 6.4),
then the Galois group of P(Z) is a quotient of the Galois group of the minimal polynomial of
v1, i.e., the Galois group of one weighted homogeneous polynomial.

Proof of Theorem 7.7. If Q(Z) is a monic polynomial dividing P(Z) in k[x][Z], then the discrim-
inant of Q(Z) divides the discriminant of P(Z). Thus we may assume that P(Z) is irreducible.
We will consider three cases: first the case where the coefficients of P(Z) are complex analytic

with oo € N”, then with o € RZ, and finally the general case.
e Let us assume that o € N and that P(Z) € C{x}[Z]. By Theorem 5.12 the roots of P(Z)

are of the form
i1 i
E Ail,m,isfyl s
i1y

where 71, ..., 75 are integral homogeneous elements with respect to v, and A;, . ;. € ICS{X} for
any 41, ..., ts. We may even choose s = 1 by Proposition 3.28, but we treat here the general
case s > 1 that will be used in the sequel.

We replace 71, ..., s by other integral homogeneous elements with respect to v, as follows:
let us denote by v1,1 := 71, ..., 71,¢, the conjugates of y1 over K,,. If vo € Ky [y1,1,...,71,4,] We
denote by v2.1 := Y2, ..., V2,4, its conjugates over K, [y1,1,...,71,4,] and so on. So for 1 <1 <s,
q; denotes the degree of the minimal polynomial of ; over K,, ['Yi,j]lgi<l,1§j§qi7 and for 1 <[ < s,
Vi1, - -5 V,q denote the conjugates of v; = ;1 over K, [vi jli<i<i,1<j<q;- Then we may assume
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that the roots of P(Z) are of the form
Do Ani it s,
OSi.ln<¢h
0<is<qs
where A4;, ;. € ICS{X}, Vo (Aiy..., is’yifjl ’y;]s) >0 for any iy, ..., is, and 1 < j; < g; for any
1.
Let us assume that P(Z) factors into a product of monic irreducible polynomials as

P(Z) = Py(Z) - P.(2)

qs—1
in K£SE [Vijli<i<s,1<j<q; [Z]. We write the roots of Pi(Z) as z; = Z Bi’y;j where
i=0
B; € K§™ i jhi<ics1<j<a;
gs—1
for all 4. Then the roots of the other P,(Z) are Z Bhé,j where (Bj, ..., By _;) is the image

=0
(Bo,...,Bq,—1) by a K5t automorphism of A5 [Vi,jl1<i<s,0<j<q- If the roots of P;(Z) sat-
isfy the theorem, then we see that the roots of the other P,(Z) will also satisfy the theorem since
they are conjugates of the roots of P(Z) by Kg{x}—automorphisms of ICS{X} Vi jl1<i<s,0<j<qi-
Thus it is enough to prove the result for the roots of P;(Z). We have

o1
Toyen - oy X
( _ ) I L T vy Bo By
et Do Bo-1 )
1 Yeq o0 v
D oyer e Al
qs—1
Vs,2 e /73,2 . .
Let us set M := ) ) ] . The determinant of M is a homogeneous element
O
c with respect to v, where vq(c) = 2qs(gs — 1)Va(7s). Thus we have
1
B; = - (Rin(Vs,15- 5 ¥sia )21+ 4 Ris (V5,15 - -+, Vs,0.) 24, )
where the R; ; are polynomials with coefficients in Q and the element R; ;(Vs.1,.--,%s,q,) 1S

homogeneous with respect to v,. By multiplying ¢ and

Rin(Vs,15- 5 ¥s,g )21 + 00+ Ris(Ys,15 -+, Vs,00) 240

by the conjugates of ¢ over k[x] we may assume that ¢ = ¢(x) € k[x] is a («)-homogeneous
polynomial. The z; and the 75 ; are locally analytic on Dy, = B(0,17)\0~'(0) and bounded
near the origin, where {6 = 0} contains the discriminant locus of P(Z) and of the minimal
polynomials of the v; and 7 is small enough. Thus ¢(x)B; is locally analytic on Dy ,, for 1 < < g,
and is bounded near the origin. Moreover c¢(x)B; is algebraic over k[x] since the g, ; and the
z), are algebraic over k[x]. By induction on s (we replace z1, ..., 24, by ¢(x)Bo, ..., ¢(x)Bg,—1
- here we just used the fact that the roots of P(Z) are algebraic over k[x] and locally analytic
over a domain of the form Dy ,) we see that there exists a («)-homogeneous polynomial ¢(x)
such that ¢(x)A, is locally analytic on Dy, and bounded near the origin for any i := (i1, ..., 1s).
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Since c(x)A; € KSP and it is bounded near the origin, we see that c(x)4; € VY Thus it
is analytic on Dy ¢ 4,y for C, a and n well chosen (see Lemma 7.2). Hence by Lemma 7.4 it is
analytic on Dy, and since it is bounded near the origin, ¢(x)A; € C{x} for any i.

e Now let us consider any a € R%, and P(Z) € C{x}[Z]. Then the roots of P(Z) are in
Val(71,--.,7s)] for some integral homogeneous elements with respect to v, which we denote by
Y1, ..., Vs. Let us denote these roots by z1, ..., z4. For any o/ € N” such that Rel, C Rel,,
Y1, ..., Vs are integral homogeneous elements with respect to v,/. Thus, for any € > 0 small
enough (say € < ¢g), for any ¢ € N and any o/ € Rel(a, q,€), 21, ..., 24 € Vor[(71,-.-,7s)] by
Proposition 6.6. Moreover, by the previous case, we see that

Ve €]0,e0[, Vg € N, Vo' € Rel(a, q,¢),
Jeqr (x) an (a’)-homogeneous polynomial such that

Cor(X)21, ..., Car(X)24 € C{x}[71,..., 7]

Moreover we see that that ¢, (x) may be chosen as being the product of the determinants of
Vandermonde matrices as M depending only on 71, ..., 7s, thus ¢,/ (x) does not depend on «’.
Let us denote ¢(x) := co/(%). Since ¢(x) is a (o’)-homogeneous polynomial for all o/ € Rel(a, ¢, €)
then c¢(x) is a (a)-homogeneous polynomial. This proves the result.

e Now let us consider the general case, « € R%; and P(Z) € k[x][Z] where k is a field of
characteristic zero.

Let us write P(Z) = Z%4aq_1(x)Z4 1 + -+ + ap(x). Exactly as in the proof of Theorem 7.5
we may assume that C is a field extension of k. Let us use the notations of the proof of Theorem
7.5. Let

R(AOa ceey Ad—17 U) = D(Ao, ceey Ad—l) - 5(X)U € C[X][Ao, s 7Ad—17 U]
where D is the universal discriminant of a monic polynomial of degree d. Then
R(agp(x),...,aq-1(x),u(x)) = 0.

By Artin Approximation Theorem [Art], for any integer ¢ > 0, there exist convergent power

series Gg,c(X), ..., Gd—1,c(X), TUc(x) € C{x} such that
(18) R(@p,c(X), ..., G4—1,¢(X),Uc(x)) =0,
and

Tp.o(x) — ap(x), Te(x) —u(x) € (x)¢ for 0 <k <d.

Let Poy(Z) == Z% + Gg_1,(x)Z% " + -+ + @ c(x). Then Py(Z) is irreducible for ¢ large
enough (say ¢ > cp). Moreover the discriminant of P (Z) is of the form §(x)u(,) where u
is a unit in C{x} if ¢ > 1 by Equation (18). By the previous case, the roots of P (Z) are in
ﬁ@{x}[’yl’c, .. oyYN,c) where v ¢, ..., YN, are integral homogeneous elements with respect
to v, and c.(x) is a (a)-homogeneous polynomial. By Proposition 4.17 and the previous cases,
we may assume that the 7; . does not depend on ¢, thus let us denote v; . by ;. Moreover
¢(x) may be chosen as being the product of the determinants of Vandermonde matrices as M
depending only on 71, ..., vs, thus ¢.(x) does not depend on ¢. Let us denote by c(x) this
common («)-homogeneous polynomial.

Thus, when ¢ goes to infinity, we see that the roots of P(Z) are in ﬁ@[{x]] [v1,---,7n]. Such

a root has the form Zil N Ail,...,m’ﬁl 7]’\§V where i runs from 0 to g — 1. In this case
c(x)A;, . in € C[x] is algebraic over k[x], thus c(x)A;, ... iy € K'[x] where k — K’ is finite by
Proposition 7.6. Thus the roots of P(Z) are in ﬁk’ [xv1s---syn]-

U
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In the case where the «; are linearly independent over QQ, we can choose ¢(x) = 1. This is
exactly the Abhyankar-Jung Theorem:

Corollary 7.9 (Abhyankar-Jung Theorem). Let P(Z) € k[x]|[Z] be a monic polynomial whose
discriminant has the form xPu(x) where f € N* and u(0) # 0. Then there ea;zst an mtege'r g€eN

and a finite field extension k — k' such that the roots of P(Z) are in ]k’[[a;1 Yo xn]]

Proof. By the previous theorem apphed to any o € RZ satistying dimg(Qa1 + - - - + Qo) = n,

the roots of P(Z) are in x—k’[[xl . xn]} for some g € N, ¢ € N and k — k' a finite field
extension. Since the discriminant of any monic factor of P(Z) in kK'[z1,...,z,][Z] divides the
discriminant of P(Z), we may assume that P(Z) is irreducible in k’[[a:l, .o, 2, ][Z], thus we
assume that k' = k.

Let z be a root of P(Z) and let us denote by NP(z) its Newton polyhedron. Then

NP(z) C =y + RZ,.
Let us assume that NP(z) ¢ R%,. This means that there exists 7' € NP(2) such that one its
coordinates, let us say v/, is negative. But since z is a root of P(Z) that is a monic polynomial

with coefficients in k[x] then v,(z) > 0 for any a € RZ. But in this case there exists o € RZ,
such that (o, ') < 0 which is a contradiction. Thus NP( ) C RL, which proves the corollary. D

Let us finish this part by giving a few results which are analogous to the fact that if z € (C{t%}
for some k € N, ¢ being a single variable, then its minimal polynomial over C[t] is a polynomial
with convergent power series. The next result can also be seen as the converse of Theorem 6.18:

Corollary 7.10. Let P(Z) € k[x][Z] be an irreducible monic polynomial whose discriminant
has the form 6(x)u(x), where §(x) is a (o)-homogeneous polynomial, o € R, and u(x) € k[x]
is invertible. Let us assume that P(Z) has a root in VE[(vy1,...,7s)] where R is an excellent

Henselian local ring satisfying Properties (A), (B) and (C) and 1, ..., s are homogeneous
elements with respect to v,. Then the coefficients of P(Z) are in R.

Proof. By Theorem 7.5, P(Z) is irreducible in V,[Z]. Let
2 €V, 7))

be a root of P(Z) as given in the statement. We can write z = 3> A;, ;. 7i' --- % where the
sum is finite and A4;, . ;. € Vf. Then the others roots of P(Z) are of the form

Z Aiy,i '71 T 0'('78)%

where o is a ]Kf}lag—automorphism of KV . Thus all the roots of P(Z) are in Vf. Hence the
coefficients of P(Z) are in ij Nk[x] = R. O
Definition 7.11. Let k be a valued field and let o be a strongly convex rational cone of R"
containing R%,. There exists an invertible n x n matrix M = (my,j)1<i,j<n such that M~ € R%,
for any v € . We denote by k{x”?, 3 € 0 NZ"} the subring of k[x”, 3 € 0 N Z"] of power series
f(x) such that f(7(x)) € k{x} where 7 is the map defined by

(T(z1)y .y T(wp) = (2™ ogmm g g men),

By Example 6.17 k{x?, 3 € 0 N Z"} is a subring of Va,{a} for any « such that («,v) > 0 for all
~v € o\{0}.

Let us mention the following theorem proven by A. Gabrielov and J.-Cl. Tougeron by using
transcendental methods (they use in a crucial way the maximum principle for analytic functions):
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Theorem 7.12. [Gal|[To| Let P(Z) € C[x][Z] be an irreducible monic polynomial. If one root
of P(Z) is in C{x",8 € o N %Z”} where o is a strongly convex rational cone and ¢ € N, then
P(Z) e C{x}[Z].

Using what we have done we extend this theorem to any algebraically closed valued field of
characteristic zero under the assumption that the discriminant of P(Z) is close to be weighted
homogeneous. First we need the following lemma:

Lemma 7.13. Let P(Z) € k[x][Z] be an irreducible monic polynomial wherek is a characteristic
zero algebraically closed valued field. Let o € RZ such that dimg(Qoq + --- 4+ Qa,) = n and
P(Z) is irreducible in V,[Z]. By Theorem 6.9, the roots of P(Z) are ink[x?,3 € oN %Z”]] where
o s a strongly convex rational cone such that («,7) > 0 for any vy € o, v #0, and ¢ € N. If one
root of P(Z) is in k{x®,3 € o N %Z”}, then the others roots of P(Z) are ink{x” 5 € an %Z”}
and P(Z) € k{x}[Z].

Proof. Let z € k{x?, 8 € o N %Z"} be a root of P(Z). For any & = (&1, ...,&,) vector of g-th
roots of unity let us denote by z¢ the element of k{x? Beon %Z"} obtain from z by replacing

(mlé, e ,xé) by (amf,...,gnxﬁ). In particular z¢ € k{x?,8 € 0N %Z"}. Then for any &, z¢ is
a root of P(Z). Let I be a subset of Uy, where U, is the group of g-th root of unity, such that
ze # zg forany £, & €1, #¢E,
and V¢ € Uy, 3¢" € 1, zer = ze.

Let us set Q(Z) = [[¢c;(Z — z¢). Then Q(Z) is a monic polynomial of V,[Z] whose roots are

roots of P(Z). Thus it divides P(Z) in V,[Z] hence, since P(Z) is irreducible, Q(Z) = P(Z).
Thus the other roots of P(Z) are in k{x”,3 € 0N %Z”} and P(Z) € k{x}[Z]. O

Corollary 7.14. Let P(Z) € k[x][Z] be an irreducible monic polynomial of degree d where k is
a characteristic zero algebraically closed valued field. Let o € RY such that

dimg(Qay + - - - + Qay,) = n.

Let us assume that there exists an irreducible monic polynomial Q(Z) € K[x]|[Z] of degree d
whose discriminant Ag is a monomial times a unit and such that

valPZ) - QZ)) 2 §ralBa),

Let us assume moreover that one of the roots of P(Z) is ink{x? 5 € an %Z"} for some strongly

convez rational cone o, where {«,v) > 0 for any v € o\{0}, and ¢ € N. Then the coefficients of
P(Z) are in k{x}.

Proof. By Remark 4.15 and Proposition 4.14, the polynomial P(Z) is irreducible in V4 [Z]. Thus
we can apply the previous Lemma. O

8. DIOPHANTINE APPROXIMATION
Here we give a necessary condition for an element of K, to be algebraic over K,,:

Theorem 8.1. [Rol|[ll] Let v be an Abhyankar valuation and let = € K8, Then there exist
two constants C > 0 and a > 1 such that

f
.

> Clgly Vf,g €k[x].

v
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Proof. Let P(Z) := agZ% + a1 Z91 + --- + a4 € K,,[Z] be an irreducible polynomial such that
P(z) =0. Let h € k[x] and set
_ Z
Pu(Z) = h%ad™tP <}m0) .
Then Py (Z) = Z% + a1hZ% ' + agagh®? 292 4 - - + adag_lhd and zhag is a root of Pp(Z). It
is straightforward to check that z satisfies the theorem if and only if zhay does. Thus we may
assume that P(Z) is a monic polynomial and v(z) > 0 by choosing h such that v(h) is large

enough. Let us set Q(Z1, Zy) := Z{P(Z5/Z1). By Theorem 3.1 [Rol] there exist two constants
a > d and b > 0 such that

ord(Q(f,9)) < amin{ord(f),ord(g)} +b Vf,g € k[x].

Moreover, by Izumi’s Theorem ([Iz], [Re], [ELS]), there exists a constant ¢ > 1 such that for all
fek[x], ord(f) < v(f) < cord(f). Thus

v(Q(f,9)) < acmin{v(f),v(g)} +bc Vf,g € k[x].
Since P(Z) is irreducible in K,[Z] and K,, is a characteristic zero field, P(Z) has no multiple

~

roots in V,, and we may write

P(Z) = R(Z)(Z - 2)
where R(Z) € V,[Z] and R(z) # 0. Set r := v(z). Let f,g € k[x] with g # 0. Two cases may
occur: either

(19)

either v (z - g) > r. In the last case we have v (5) = v(z) > 0. In particular v (R (5)) >0
and v(f) > v(g). Thus

(ac — dyw(g) + be > v (p <£>> >y (g _ z) .
Thus we have

(20) Au(g)+Bzu<£z) or ‘25

with A = ac — d and B = be. Then (19) and (20) prove the theorem.

> eiB|g|v

v

O

Example 8.2. Let 0 := (—1,1)R>¢ + (1,0)R>o C R2. This is a rational strongly convex cone
of R2. Let f(z1,x2) be a power series, f(z1,x2) € k[z1,z2]. Let us set

g(w1,w2) 1= Z <x2> v+ f(a1,23) € k[a”, 8 € 0 NZ].

T
i=0 N1

Then g € V, for any a € R2>0 such that ag > . Moreover

Vo, (g— f- Z <fj> ) =nm+ 1Dl ag—aq) = ozz; o (n 4+ Dy (7).
=0

1

Thus there do not exist constants A and B such that

Ava(z1) + B > v, (g—f—zn: <fj>l> Vn € N.

=0
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Hence g(x1,22) is not algebraic over Fy by Theorem 8.1.

NOTATIONS

Vo is the monomial valuation defined by v, (x;) := a; for any i (cf. Example 2.4).
V, is the valuation ring associated to v.

‘7,, is the completion of V.

K,, is the fraction field of k[x] and V.

KV is the fraction field of ‘A/l,.

Gr,V,, is the graded ring associated to V,, (cf. Part 3).

V218 is the algebraic closure (or the Henselization) of V,, in V,, (see Lemma 2.10).
K28 is the fraction field of V8.

V1% is the subring of V,, whose elements have v-support included in a finitely generated
sub-semigroup of R>¢ (cf. Definition 3.14).

K'8 is the fraction field of V8.

e For any o € RZ;, a (a)-homogeneous polynomial is a weighted homogeneous polynomial

for the weights a1, ..., a, (see Definition 2.8).

A[(y1,...,7s)] is the valuation ring associated to A[y1,...,7s] when A = V,,, V& or V2l
(cf. Definition 3.26).

V., is the direct limit of the rings V,, [{(71,.-.,7s)] where the 7; are homogeneous elements
with respect to v (cf. Definition 3.27).

K, is the fraction field of V,,.

leg is the direct limit of the rings V28[(y1,...,7s)] where the ; are homogeneous
elements with respect to v.

K™*® is the fraction field of Vilg.

14
—f
V2 is the direct limit of the rings V/'8[(v1, . .., v,)] where the ; are homogeneous elements

with respect to v.
—f . —f
K,? is the fraction field of V,’.

Va,s is the subring of Vl,ff of elements of the form Z % where A C R is a finitely
ieA

generated semigroup, v, (5247 ) = i and i — m(i) is bounded by an affine function (see

Definition 5.1).

Ve is the direct limit of the V, s over all the (a)-homogeneous polynomials §. It is a

valuation ring (cf. Proposition 5.5).

o [, is the fraction field of V, (cf. Definition 5.6).

o [Cq is the direct limit of the fields K[{7y1, . ..,7s)] where the ; are homogeneous elements

with respect to v (cf. Definition 5.6).
Vﬁ s is the subring V., s whose elements are in the Henselian ring R after a suitable

transform (cf. Definition 6.15).
VE is the direct limit of the V5 over all the («)-homogeneous polynomials 4.
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