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FLAT SURFACES ALONG CUSPIDAL EDGES

SHYUICHI IZUMIYA, KENTARO SAJI, AND NOBUKO TAKEUCHI

Abstract. We consider developable surfaces along the singular set of a cuspidal edge surface

which are regarded as flat approximations of the cuspidal edge surface. For the study of
singularities of such developable surfaces, we introduce the notion of Darboux frames along

cuspidal edges, and introduce invariants. As a by-product, we introduce the notion of higher-
order helices which are generalizations of previous notions of generalized helices (i.e., slant

helices and clad helices). We use this notion to characterize special cuspidal edges.

1. Introduction

In recent decades, there have appeared several articles concerning the differential geometry of
singular surfaces in Euclidean 3-space [5, 6, 19, 20, 21, 25, 27, 28, 32]. Wave fronts are particularly
interesting singular surfaces which always have normal directions, even along singularities. A
cuspidal edge surface is one of the generic wave fronts in Euclidean 3-space. In this paper, we
consider developable surfaces along the singular curve of a cuspidal edge surface in Euclidean
3-space. Such a developable surface is called a developable surface along the cuspidal edge.
Actually there are infinitely many developable surfaces along a cuspidal edge. Since a cuspidal
edge surface has the normal direction at any point (even at a singular point), we focus on two
typical developable surfaces along the cuspidal edge. One of them is a developable surface which
is tangent to the cuspidal edge surface and the other is normal to the cuspidal edge surface.
These two developable surfaces are considered to be flat approximations of the cuspidal edge
surface along the cuspidal edge. We investigate the singularities of these developable surfaces
along the cuspidal edge and introduce new invariants for the cuspidal edge.

For this purpose, we introduce the notion of Darboux frames along cuspidal edges, which
is analogous to the notion of Darboux frames along curves on regular surfaces (cf. [7, 8, 14]).
Since the Darboux frame along a cuspidal edge is an orthonormal frame along the cuspidal edge,
we can obtain structure equations and invariants (cf. Proposition 3.1). We show that these
invariants are equal to the invariants which are known as basic invariants of a cuspidal edge in
[20, 21, 27], in which the normal form of the cuspidal edge was used for the study of geometric
properties. The normal form of the cuspidal edge is a very strong tool from a singularity theory
viewpoint. However, it is rather difficult to understand the geometric meanings intuitively. Here,
we emphasize that we use the Darboux frame instead of the normal form of the cuspidal edge.
By using the Darboux frame, we can directly and intuitively understand geometric properties of
the cuspidal edge.

The precise definition of the cuspidal edge (surface) is given as follows: The unit cotangent
bundle T ∗1R3 of R3 has a canonical contact structure and can be identified with the unit tangent
bundle T1R3. Let α denote that canonical contact form. Let M be a 2-dimensional manifold.
A map i : M → T1R3 is said to be isotropic if the pull-back i∗α vanishes identically. We call
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the image of π ◦ i the wave front set of i, where π : T1R3 → R3 is the canonical projection and
we denote it by W (i). Moreover, i is called the Legendrian lift of W (i). With this framework,
we define the notion of fronts as follows: A map-germ f : (R2, 0)→ (R3, 0) is called a frontal if
there exists a unit vector field ν (called a unit normal of f) of R3 along f such that

L = (f, ν) : (R2, 0)→ (T1R3, 0)

is an isotropic map by an identification T1R3 = R3 × S2, where S2 is the unit sphere in R3 (cf.
[1], see also [18]). A frontal f is a front if the above L can be taken as an immersion. A point
q ∈ (R2, 0) is a singular point if f is not an immersion at q. A map f : M → N between M
and a 3-dimensional manifold N is called a frontal (respectively, a front) if for every p ∈M , the
map-germ f at p is a frontal (respectively, a front). A singular point p of a map f is called a
cuspidal edge if the map-germ f at p is A-equivalent to (u, v) 7→ (u, v2, v3) at 0. (Two map-germs
f1, f2 : (Rn, 0) → (Rm, 0) are A-equivalent if there exist diffeomorphisms S : (Rn, 0) → (Rn, 0)
and T : (Rm, 0)→ (Rm, 0) such that f2 ◦ S = T ◦ f1.) Therefore if the singular point p of f lies
on a cuspidal edge, then f is a front at p, and furthermore, they are one of two possible types
of generic singularities of fronts (the other one is a swallowtail which is a singular point p of f
satisfying that f at p is A-equivalent to (u, v) 7→ (u, u2v + 3u4, 2uv + 4u3) at 0).

On the other hand, a developable surface is known to be a frontal, so that the normal direction
is well-defined at any point. We say that a developable surface is an osculating developable surface
along the cuspidal edge if it contains the singular set of the cuspidal edge such that the normal
direction of the developable surface coincides with the normal direction of the cuspidal edge at
any point of the singular set. We also say that a developable surface is a normal developable
surface along the cuspidal edge if it contains the singular set of the cuspidal edge such that the
normal direction of the developable surface belongs to the tangent plane of the cuspidal edge
at any point of the singular set. In this paper, we study the geometric properties of cuspidal
edges using these two developable surfaces along cuspidal edges. In particular, we show that
the singular values of those developable surfaces characterize some cuspidal edges with special
geometric properties. As a by-product, we introduce the notion of higher order helices which is
a generalization of previous notions of generalized helices (i.e., slant helices and clad helices) in
[13, 30, 31].

This paper is organized as follows: We describe basic properties of cuspidal edges in §2.
The Darboux frame along a cuspidal edge is introduced in §3. Associated to the Darboux
frame, we introduce three basic invariants, which are the same as those of cuspidal edges, as in
[20, 21, 27]. We also introduce two vector fields along a cuspidal edge which will play critical
roles in this paper. In §4, definitions and basic properties of (general) developable surfaces are
described. Moreover, the notion of higher order helices is introduced and characterizations of
those generalized helices by the curvature and the torsion are given (cf. Proposition 4.4, the
Lancret type theorem). We also consider a tangent developable surface of a curve such that
the curve is a kth-order helix. We give a characterization of such tangent developable surfaces
as a corollary of Proposition 4.4 (cf. Theorem 4.6). Returning to the study of cuspidal edges,
we introduce two developable surfaces along a cuspidal edge in §5. In order to classify the
singularities of those two developable surfaces, we introduce four new invariants represented by
the three basic invariants of a cuspidal edge. The classifications are give by those four invariants
(cf. Theorems 5.1 and 5.3). Moreover, if one of the three basic invariants is identically equal
to zero, we have special developable surfaces alone the cuspidal edge, whose singularities are
classified in Corollaries 5.2 and 5.4. If two of these three basic invariants are identically equal
to zero, the cuspidal edge is a subset of a plane (cf. §5.3). If the all three basic invariants
are identically equal to zero, the cuspidal edge is a line. In §6 we investigate cuspidal edges
with special properties. We compare the properties of cuspidal edges with those of curves on
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regular surfaces in §7. In particular, we give a geometric interpretation of the cuspidal torsion.
Finally we briefly describe definitions and properties of support functions of a cuspidal edge
in the appendix. By using support functions, we give geometric interpretations of singularities
from the contact viewpoint.

2. Cuspidal edges

Let f : (R2, 0)→ (R3, 0) be a frontal with a unit normal vector field ν. For a coordinate system
(u, v) on (R2, 0), we define a function λ by λ = det(fu, fv, ν) and call it the signed area density
of f . We say that a singular point 0 ∈ (R2, 0) is a non-degenerate singular point if dλ(0) 6= 0.
Let 0 be a non-degenerate singular point. Then there exists a vector field germ η on (R2, 0) such
that 〈η(p)〉R = ker dfp for any p ∈ S(f), where S(f) is the set germ of the singular points of f.
We call η a null vector field. We say that 0 ∈ (R2, 0) is a singular point of the first kind if it is
non-degenerate and η(0) is transversal to S(f) at 0. The following lemma is well-known.

Lemma 2.1. ([28, Corollary 2.5, p.735], see also [18]) Let 0 be a singular point of a front
f : (R2, 0)→ (R3, 0). Then 0 is a cuspidal edge (respectively, swallowtail) if and only if ηλ 6= 0
(respectively, ηλ = 0 ηηλ 6= 0 and dλ 6= 0) at 0, where ηλ stands for the directional derivative
of λ by η.

By this lemma, if f is a front, then the singular point of the first kind is a cuspidal edge.
The cuspidal cross cap ((u, v) 7→ (u, v2, uv3)) is a singular point of the first kind, which is not a
front. For details see [27].

On the other hand, it is known [20, 21, 27] that there exist several geometric invariants for
cuspidal edges in R3. In [21], these invariants are defined and studied for cuspidal edges in any
Riemannian 3-manifold. See [21] for details.

Let f : (R2, 0) → (R3, 0) be a frontal and ν the unit normal vector field. Suppose that 0 is
a singular point of the first kind. Then one can easily see that there exists a coordinate system
(u, v) of (R2, 0) with the following properties:

(1) S(f) = {v = 0},
(2) u is an arc-length parameter of the curve given by f(u, 0),
(3) ker df(u,0) is generated by ∂/∂v,

(4) (u, v) is compatible with the orientation of R2.

We call a coordinate system satisfying these properties an adapted coordinate system centered at
(u, v) = (0, 0). On an adapted coordinate system, since ∂/∂u is tangent to S(f), it holds that
λu = 0. Thus dλ(0) 6= 0 implies λv 6= 0. Since fv(0) = 0, we see that

det(fu, fvv, ν)(0) = λv(0) 6= 0.

Hence one can choose the direction of ν such that det(fu, fvv, ν)(0) > 0. We always choose the
unit normal vector ν of f on an adapted coordinate system centered at a singular point of the
first kind so that it satisfies det(fu, fvv, ν)(0) > 0.

We define three invariants for f as follows on an adapted coordinate system (u, v):

κs(u) = det
(
γ′(u), γ′′(u), ν(u, 0)

)
, κν(u) = 〈γ′′(u), ν(u, 0)〉 ,

κt(u) =

[
det
(
γ′, fvv, fuvv

)
|γ′ × fvv|2

−
det
(
γ′, fvv, fuu

)
〈γ′, fvv〉

|γ′|2|γ′ × fvv|2

]
v=0

,

where γ(u) = f(u, 0) and 〈 , 〉 is the canonical inner product of R3. We call κs(u) the singular
curvature, κν(u) the normal curvature and κt(u) the cuspidal torsion of f at (u, 0), respectively.
The singular curvature measures convexity or concavity of a cuspidal edge and the cuspidal
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torsion measures the rate of revolution of the direction of incidence of a cusp along a cuspidal
edge. See [20, 27] for details. See [9, 24, 21] for other studies of geometric invariants of cuspidal
edges.

3. Darboux frames along cuspidal edges

Let f : I × (−ε, ε)→ R3 be a frontal with a unit normal vector ν, where I is an open interval
or a circle, and ε > 0. Assume that I × {0} consists of singular points of the first kind, and we
take a coordinate system (u, v) of I × (−ε, ε) satisfying that

(1) u is an arc-length parameter of the curve given by f(u, 0),
(2) ker df(u,0) is generated by ∂/∂v,

(3) (u, v) is compatible with the orientation of R2.

We also call this coordinate system adapted. In this paper we always choose the unit normal
vector ν of f on an adapted coordinate system so that it satisfies det(fu, fvv, ν)(u, 0) > 0.

We now set γ(u) = f(u, 0) and consider unit vector fields e(u) = fu(u, 0) = γ′(u),
ν(u) = ν(u, 0) and b(u) = −e(u) × ν(u) along γ. Here, a1 × a2 is the exterior product of
a1,a2 in R3. Then {e, b,ν} is a orthonormal frame along γ. We call {e, b,ν} the Darboux frame
along the cuspidal edge γ. As the structure equations for the Darboux frame along the cuspidal
edge, we have the following proposition.

Proposition 3.1 (Frenet-Serret type formulae).

(3.1)

 e
′(u) = κs(u)b(u) + κν(u)ν(u),
b′(u) = −κs(u)e(u) + κt(u)ν(u),
ν′(u) = −κν(u)e(u)− κt(u)b(u).

By using the matrix representation, we havee′b′
ν′

 =

 0 κs κν
−κs 0 κt
−κν −κt 0

eb
ν

 .

Proof. Since {e, b,ν} is an orthonormal frame along γ, we havee′b′
ν′

 =

 0 α β
−α 0 δ
−β −δ 0

eb
ν

 ,

where α = 〈e′, b〉, β = 〈e′,ν〉 and δ = −〈ν′, b〉 . By a straightforward calculation, we have

α = 〈e′, b〉 = −〈e′, e× ν〉 = det(e, e′,ν) = det(γ′,γ′′,ν).

Since det(fu, fvv, ν) > 0, we have α = κs. It follows from β = 〈e′,ν〉 that β = κν . Since f has a
singular point of the first kind at 0 ∈ (R2, 0), fvv, fu are linearly independent. We set

(ũ, ṽ) = φ(u, v) = (u+ a(u)v2, v), a(u) = 〈fu(u, 0), fvv(u, 0)〉 /2.

Then we see that (
uũ uṽ
vũ vṽ

)
=

1

1 + a′(u)v2

(
1 −2a(u)v
0 1 + a′(u)v2

)
◦ φ−1(ũ, ṽ)

fũ = fu. Moreover, since

fṽ = fuuũ + fv = fu
−2a(u)v

1 + a′(u)v2
+ fv,
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it holds that

fṽṽ(ũ, 0) = fṽv(u, 0) =
(
fuv

−2a(u)v

1 + a′(u)v2
+ fu

−2a(u)

1 + a′(u)v2
+ fu

−4a(u)a′(u)v2

(1 + a′(u)v2)2
+ fvv

)
(u, 0)

= −2a(u)fu(u, 0) + fvv(u, 0).

By the definition of a(u), it holds that 〈fũ, fṽṽ〉 (ũ, 0) = 0. Therefore we can choose an adapted
coordinate system (u, v) such that fu, fvv are orthogonal, namely ν = fu× fvv/|fu× fvv| on the
u-axis. Moreover, we have −b = e× ν = fu × (fu × fvv)/|fu × fvv| = −fvv/|fu × fvv|, so that

−δ = 〈ν′, b〉 =
〈fu × fuvv, fvv〉
|fu × fvv|2

=
det(fu, fuvv, fvv)

|fu × fvv|2
= −det(fu, fvv, fuvv)

|fu × fvv|2
= −κt,

on the u-axis. 2

We define a vector field Do(u) along γ by

Do(s) = κt(u)e(u)− κν(u)b(u),

which is called an osculating Darboux vector field along γ. If κ2ν +κ2t 6= 0, we can define the unit
osculating Darboux vector field by

(3.2) Do(u) =
κt(u)e(u)− κν(u)b(u)√

κν(u)2 + κt(u)2
.

We also define a vector field Dr(u) along γ by

Dr(s) = κt(u)e(u) + κs(u)ν(u),

which is called a normal Darboux vector field along γ. If κ2t + κ2s 6= 0, we can also define the
unit normal Darboux vector field by

(3.3) Dr(u) =
κt(u)e(u) + κs(u)ν(u)√

κt(u)2 + κs(u)2
.

We now define the notion of contour edges of cuspidal edges. For a unit vector k ∈ S2, we
say that the cuspidal edge S(f) is the tangential contour edge of the orthogonal projection with
direction k if

S(f) = {(u, 0) ∈ (R2, 0) | 〈ν(u),k〉 = 0}.
We also say that the cuspidal edge S(f) is the normal contour edge of the orthogonal projection
with direction k if

S(f) = {(u, 0) ∈ (R2, 0) | 〈b(u),k〉 = 0}.
Moreover, for a point c ∈ R3, say that the cuspidal edge S(f) is the tangential contour edge of
the central projection (respectively, normal contour edge of the central projection) with center c
if

S(f) = {(u, 0) ∈ (R2, 0) | 〈f(u, 0)− c,ν(u)〉 = 0 }.(
respectively, S(f) = {(u, 0) ∈ (R2, 0) | 〈f(u, 0)− c, b(u)〉 = 0 }.

)
For a regular surface, the notion of contour edges corresponds to the notion of contour generators
[3].

On the other hand, there is a notion of isophotic curves on a regular surfaces. An isophotic
curve of a surface is a curve consisting of points which have the same light intensity from a
given light source. If the light source is infinitely far from the surface, the light rays might be
considered as parallel lines. In this case, an isophotic curve is a curve on a regular surface such
that the normal of the surface along the curve makes a constant angle with a fixed direction.
Therefore, we can define the notion of isophotic curves on the cuspidal edge exactly the same
way as the definition for curves on a regular surface. In particular, the cuspidal edge S(f) is said
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to be a normally isophotic edge if there exists a unit vector d such that 〈d,ν(u)〉 is constant.
We also say that S(f) is a tangential isophotic edge if there exists a unit vector d such that
〈d, b(u)〉 is constant.

We emphasize that notions of contour generators and isophotic curves on regular surfaces
play important roles in the vision theory and visual psychophysics (cf. [3, 15, 16, 17]).

4. Developable surfaces and generalizations of helices

We briefly review the notions and basic properties of ruled surfaces and developable surfaces.
Let γ : I −→ R3 and ξ : I −→ R3 \ {0} be C∞-maps, where I is an open interval or a circle.
Then we define a map F(γ,ξ) : I × R −→ R3 by

F(γ,ξ)(u, t) = γ(u) + tξ(u).

We call the image of F(γ,ξ) a ruled surface, the map γ a base curve and the map ξ a director
curve. The line defined by γ(u) + tξ(u) for a fixed u ∈ I is called a ruling. If the direction
of the director curve ξ is constant, we call F(γ,ξ) a (generalized) cylinder. Using the notation

ξ(u) = ξ(u)/‖ξ(u)‖, we have F(γ,ξ)(I × R) = F(γ,ξ)(I × R). In this case F(γ,ξ) is a cylinder

if and only if ξ̇(u) ≡ 0, where ≡ means that equality holds identically. We say that F(γ,ξ)

is non-cylindrical if ξ̇(u) 6= 0 for any u ∈ I. Suppose that F(γ,ξ) is non-cylindrical. Then a
striction curve is defined to be

(4.1) s(u) = γ(u)− 〈γ̇(u), ξ̇(u)〉
〈ξ̇(u), ξ̇(u)〉

ξ(u).

It is known that a singular point of the non-cylindrical ruled surface is located on the striction
curve. We call the ruled surface with vanishing Gaussian curvature on the regular part a de-
velopable surface. It is known that a ruled surface F(γ,ξ) is a developable surface if and only
if

(4.2) det
(
γ̇(u), ξ(u), ξ̇(u)

)
= 0,

where γ̇(u) = (dγ/du)(u)(cf., [12]). The set of singular points of a non-cylindrical developable
surface coincides with the striction curve[11]. A non-cylindrical ruled surface F(γ,ξ) is a cone if
the striction curve s is constant. It is known (cf., [12]) that a non-cylindrical developable surface
F(γ,ξ) is a wave front if and only if

(4.3) ψ(u) = det
(
ξ(u), ξ̇(u), ξ̈(u)

)
6= 0.

In this case we call F(γ,ξ) a (non-cylindrical) developable front. Let F(γ,ξ)(u, t) be a non-
cylindrical developable surface. Then by (4.2), there exist α(u) and β(u) such that γ̇(u) =

α(u)ξ(u) + β(u)ξ̇(u). The striction curve of F(γ,ξ) is written as s(u) = γ(u)− β(u)ξ(u), and we
see that the signed area density of F(γ,ξ) is proportional to λ = t+ β(u). Thus a singular point
of F(γ,ξ) is always non-degenerate. By Lemma 2.1, we have the following:

Proposition 4.1. With the above notations, a singular point (u,−β(u)) of F(γ,ξ) is a cuspidal
edge (respectively, a swallowtail) if and only if ψ(u) 6= 0 and β′(u) − α(u) 6= 0 (respectively,
ψ(u) 6= 0, β′(u)− α(u) = 0 and β′′(u)− α′(u) 6= 0).

On the other hand, by [4, Corollary 1.5], we have the following:

Proposition 4.2. With the same notations as in Proposition 4.1, a singular point (u,−β(u))
of F(γ,ξ) is a cuspidal cross cap if and only if β′(u)− α(u) 6= 0, ψ(u) = 0 and ψ′(u) 6= 0.
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See [23] for other investigations of developable surfaces with singularities.
Remarkable generalizations of helices in R3 were introduced and investigated in [13, 30, 31].

Let γ : I → R3 be a space curve with an arc-length parameter u. We call γ a Frenet curve if
κ(u) = ‖γ′′(u)‖ 6= 0. For a Frenet curve γ, let {t,nγ , bγ} be the Frenet frame along γ, and κ, τ
the curvature and torsion, respectively. Then γ is said to be a cylindrical helix (or, a generalized
helix ) if there exists a constant vector v such that t(u) makes a constant angle with v. By the
Frenet-Serret formulae, this condition is equivalent to the condition that nγ(u) is orthogonal to
v. Moreover, γ is called a slant helix if there exists a constant vector v such that nγ(u) makes a
constant angle with v [13]. By definition, γ is a slant helix if and only if nγ(u) is a circle in the
unit sphere. Recently, the notion of clad helices have been introduced in [30, 31]. We say that
γ is a clad helix if nγ(u) is a cylindrical helix. Since nγ(u) is a curve in the unit sphere, it is a
spherical cylindrical helix. It is classically known that γ is cylindrical helix if and only if τ/κ is
constant (i.e., the Lancret theorem). If both of τ and κ are constant, γ is a circular helix (i.e.,
an ordinary helix). Therefore, a cylindrical helix is a generalization of circular helix. A curve γ
is a slant helix if and only if

θ(u) =
κ2

(κ2 + τ2)3/2

( τ
κ

)′
(u)

is constant [13]. Moreover, γ is a clad helix if and only if

η(u) =
θ′

(κ2 + τ2)1/2(1 + θ2)3/2
(u)

is constant [30, 31]. See [13, 30, 31] for details. Motivated by the results in [13, 30, 31], we
consider generalizations of these notions of helices. For a Frenet curve γ : I −→ R3, we say that
γ is a 0th-order helix if it is a cylindrical helix, γ is a 1st-order helix if it is a slant helix and γ
is a 2nd-order helix if it is a clad helix, respectively. For k ≥ 1, we inductively define the notion
of kth-order helices. We say that γ is a kth-order helix if t is a (k − 1)th-order helix.

Proposition 4.3. A Frenet curve γ is a kth-order helix if and only if nγ is a (k − 2)th-order
helix.

Proof. For k = 2, γ is a 2nd-order helix if and only if γ is a clad helix. Therefore, nγ is a
cylindrical helix. By definition, it means that nγ is a 0th-order helix. The assertion holds for
k = 2. For k > 2, γ is a kth-order helix if and only if t is a (k − 1)th-order helix. This means
that nγ = t′/‖t′‖ is a (k − 2)th-order helix. This completes the proof. 2

We remark that a cylindrical helix is also called a constant slope curve because its tangent
vector has a constant angle with a constant direction. We can interpret a constant slope as a
0th-order slope. In this sense, we also call a kth-order helix a kth-order slope curve.

On the other hand, we now give a characterization of kth-order helices by the curvature and
the torsion (i.e., the Lancret-type theorem). We define H [γ]0(u) = τ(u)/κ(u), which is called
a 0th-order helical curvature of γ. We have

θ(u) =
κ2

(κ2 + τ2)3/2

( τ
κ

)′
(u) =

1

κ

(
τ
κ

)′(
1 +

(
τ
κ

)2)3/2 (u) =
1

κ

H [γ]
′
0(

1 + (H [γ]0)
2
)3/2 (u).

We set H [γ]1(u) = θ(u), which is called a 1st-order helical curvature. Moreover, the 2nd-order
helical curvature of γ is defined to be

H [γ]2(u) = η(u) =
1

κ(1 + (H [γ])20)1/2
H [γ]

′
1(

1 + (H [γ]1)
2
)3/2 (u).
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For r ≥ 2, we inductively define

H [γ]2r−1(u) =
1

(1 + (H [γ]2r−3)2)1/2
H [γ]

′
2r−2(

1 +
(
H [γ]2r−2

)2)3/2 (u),

which is called a (2r − 1)st-order helical curvature, and

H [γ]2r(u) =
1

(1 + (H [γ]2r−3)2)1/2(1 + (H [γ]2r−2)2)1/2
H [γ]

′
2r−1(

1 +
(
H [γ]2r−1

)2)3/2 (u),

which is called a 2rth-order helical curvature. On the other hand, let κn(u) and τn(u) be the
curvature and the torsion of the principal normal n(u), respectively. Then we can calculate that

κn(u) =
√

1 + (H [γ]1)2(u), τn(u) =

(
H [γ]

′
1

(1 + (H [γ]1)2)(κ2 + τ2)1/2

)
(u).

By using these formulae, we can show that the above inductive definitions are well-defined. Then
we have the following characterization of higher-order helices.

Proposition 4.4. Let γ : I −→ R3 be a Frenet curve. Then the following conditions are
equivalent :

(1) γ is a kth-order helix,
(2) H [γ]k(u) is constant,
(3) H [γ]k+1(u) is identically equal to zero.

Proof. By definition (2) and (3) are equivalent. It follows from [12, 30, 31] that conditions (1)
and (2) are equivalent for k ≤ 2. Let us write H [n]k(u) as the kth-order helical curvature of the
principal normal curve n(u) of γ(u). By Proposition 4.3, γ(u) is a 3rd-order helix if and only if
n(u) is a 1st-order helix. By the result in [12], this is equivalent to

H [n]1(u) =
1

κn

(H [n]0)′(
1 + (H [n]0)

2
)3/2 (u)

being constant. If we substitute κn(u) =
√

1 + (H [γ]1)2(u) and H [n]0 = τn/κn = H [γ]2,
we have H [γ]3(u) = H [n]1(u), so that conditions (1) and (2) are equivalent for k = 3. By
Proposition 4.3, γ(u) is a 4th-order helix if and only if n(u) is a 2nd-order helix. This condition
is equivalent to the condition that

H [n]2(u) =
1

κn(1 + (H [n]0)2)1/2
(H [n]1)′(

1 + (H [n]1)
2
)3/2 (u)

is constant. If we substitute κn(u) =
√

1 + (H [γ]1)2(u), H [n]0 = H [γ]2 and H [n]1 = H [γ]3
into the above formulae, then the above condition is equivalent to the condition that

H [γ]4(u) =
1

(1 + (H [γ]1)2)(1 + (H [γ]2)2)1/2
H [γ]

′
3

(1 + (H [γ]3)2)
3/2

(u)

is constant. Therefore, conditions (1) and (2) are equivalent for k = 4. We can show that
condition (1) and (2) are equivalent by inductive arguments similar to the above cases. 2

We now consider the tangent surface F(γ,t)(u, t) = γ(u) + tt(u) for a Frenet curve γ(u). We
remark that a tangent surface is a developable surface. Here, we consider tangent surfaces of
special curves in R3. We also remark that F(γ,t) is non-cylindrical if and only if γ is a Frenet
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curve. We assume that γ is a Frenet curve and F(γ,t) is said to be a developable surface with
kth-order slope if γ is a kth-order helix. In particular, a developable surface with 0th-order
slope is called a constant angle surface [22] (or, a developable surface of constant slope [26, 6.3]).
By Proposition 4.3, F(γ,t) is a developable surface with kth-order slope if and only if nγ(u) is
a (k − 2)th-order helix. By the Frenet-Serret formula b′γ = −τnγ , this implies that bγ is a

(k − 1)th-order helix. If τ 6= 0, then the converse holds. Let v : I −→ S2 ⊂ R3 be a smooth
unit vector field. For a unit constant vector c, we say that v(u) has a 1st-order angle with c if
〈v(u), c〉 is constant. For k ≥ 2, we say that v(u) has a kth-order angle with c if v′(u)/‖v′(u)‖
has a (k − 1)th-order angle with c. We have the following lemma.

Lemma 4.5. Let v : I −→ S2 ⊂ R3 be a smooth unit vector field. For k ≥ 2, there exists
a unit constant vector c such that v(u) has a kth-order angle with c if and only if v(u) is a
(k − 2)th-order helix.

Proof. We prove this by induction. Since a 0th-order helix is a cylindrical helix, which is
equivalent to the condition that 〈v′(u)/‖v′(u)‖, c〉 is constant for a unit vector c. This means
that v(u) has a 1st-order angle with c. This completes the proof for k = 2. Suppose that the
assertion holds for k − 1. If v(u) has a kth-order angle with c for a unit vector c. By definition,
v′(u)/‖v′(u)‖ has a (k−1)th-order angle with c for a unit vector c, by the inductive assumption,
v′(u)/‖v′(u)‖ is a (k−3)th-order helix. By definition, v is a (k−2)th-order helix. The converse
also holds. 2

We have the following theorem.

Theorem 4.6. Let γ : I −→ R3 be a Frenet curve. Then the following conditions are equivalent :
(1) F(γ,t) is a developable surface with kth-order slope,
(2) H [γ]k(u) is constant,
(3) H [γ]k+1(u) ≡ 0,
(4) t is a (k − 1)th-order helix,
(5) nγ is a (k − 2)th-order helix.

If τ(u) 6= 0, then the following condition is equivalent to the above:
(6) The restriction of the unit normal vector field of F(γ,t) on the striction curve γ has a
(k − 1)th-order angle with a constant unit vector.

Proof. By Propositions 4.3 and 4.4, conditions (1), (2), (3), (4) and (5) are equivalent. Suppose
τ(u) 6= 0. By a straightforward calculation, the restriction of the unit normal vector field of
F(γ,t) on the striction curve γ(u) is the binormal vector field bγ(u) of γ(u). Suppose that k = 2.
Since H [γ]2(u) is constant, γ(u) is a clad helix (i.e., 2nd-order helix), which is equivalent to the
condition that nγ(u) is a cylindrical helix. Since b′γ = −τnγ , this condition is equivalent to the
condition that b′γ(u)/‖b′γ(u)‖ is a cylindrical helix. By definition, bγ(u) has a 1st-order angle
with a unit vector c. For k > 2, by Lemma 4.5, condition (5) is equivalent to the condition that
nγ(u) has a kth-order angle with a unit vector c. By the relation b′γ = −τnγ and definition,
bγ(u) has a (k − 1)th-order angle with c. 2

In the above theorem, we do not consider condition (4) for k = 0 and condition (5) for k = 0, 1
respectively.

5. Developable surfaces along cuspidal edges

In this section we introduce two kinds of flat surfaces along a cuspidal edge. Let
f : I × (−ε, ε) → R3 be a frontal with a unit normal vector ν, where I is an open interval
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or a circle, and ε > 0. Assume that I × {0} consists of singular points of the first kind, and we
take an adapted coordinate system (u, v) on I × (−ε, ε).

5.1. Osculating developable surfaces along cuspidal edges. If (κν(u), κt(u)) 6= (0, 0) on
u ∈ I, we define a map ODf : I × R −→ R3 by

ODf (u, t) = f(u, 0) + tDo(u) = f(u, 0) + t
κt(u)e(u)− κν(u)b(u)√

κt(u)2 + κν(u)2
.

This is a ruled surface. Setting

(5.1) δo = κs(κ
2
ν + κ2t )− κtκ′ν + κνκ

′
t,

where ′ = d/du, by (3.1), we have

(5.2) Do
′

=
δo

(κ2t + κ2ν)3/2
(κνe+ κtb).

Here and in what follows, we omit “(u)” if it does not create misunderstandings. By (5.2), we

have det
(
γ′, Do, Do

′)
= 0. This means that ODf (I ×R) is a developable surface. We call ODf

an osculating developable surface of f along S(f). By (5.2), ODf is non-cylindrical if and only
if δo 6= 0. The osculating developable surface of f approximates f along S(f) as a developable
surface, and it has common tangent planes with f along S(f) (see Figure 1). Let sOD be the

Figure 1. A cuspidal edge (green) with its osculating developable surface (purple)

striction curve of ODf , which is defined by sOD(u) = ODf

(
u,−

√
κν(u)2 + κt(u)2κν(u)/δo(u)

)
.

By a straightforward calculation, we see that

(5.3) s′OD =
σo
δ2o

(κte− κνb),

where we set

σo = κνδ
′
o + (κsκt − 2κ′ν)δo

= κt(κ
2
ν + κ2t )κ

2
s + 3κt(−κtκ′ν + κνκ

′
t)κs

+κ′sκ
3
ν + κ′′t κ

2
ν + (κ2tκ

′
s − 2κ′νκ

′
t − κtκ′′ν)κν + 2κt(κ

′
ν)2.

By Propositions 4.1 and 4.2, we have the following theorem:

Theorem 5.1. Suppose that ODf is non-cylindrical. Then a singular point (u,−κν(u)/δo(u))
of ODf is

(1) a cuspidal edge if and only if δo(u) 6= 0 and σo(u) 6= 0,
(2) a swallowtail if and only if δo(u) 6= 0, σo(u) = 0 and σ′o(u) 6= 0.
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Moreover, cuspidal cross caps never appear.

Proof. Since D′o = (κνκs + κ′t)e + (κsκt − κ′ν)b, and D′′o = ∗e + ∗b + δ0ν, we see that ψ = δ2o ,
where ∗ stands for some function. On the other hand, since

e =
1

δ

(
(κsκt − κ′ν)Do + κνD

′
o

)
,

α, β in Proposition 4.1 can be taken as (α, β) = (κsκt − κ′ν , κν)/δo. Thus we see that
β′−α = σ/δ2o . By Proposition 4.1, we see assertions (1) and (2). Since ψ = δ2o , if ψ(u) = 0 then
ψ′(u) = 0 for u ∈ I. This proves the last assertion. �

Since ODf is a developable surface, the striction curve sOD coincides with ODf |S(ODf ), and

is a curve in R3. By (5.3), sOD is regular if σo 6= 0. We denote by κOD (respectively, τOD)
the curvature (respectively, the torsion) of sOD the torsions of ODf |S(ODf ) and NDf |S(ODf ),
respectively. By (5.3) and

s′′OD =
1

δ3o

[(
δo(σ

′
oκt + σoκ

′
t + σoκsκν)− 2κtσoδ

′
o

)
e+

(
δo(−σ′oκν − σoκ′ν + σoκsκt) + 2κνσoδ

′
o

)
b

]
,

s′′′OD = ∗e+ ∗b+
σo
δ2o

(
κs(κ

2
ν + κ2t )− κ′νκt + κνκ

′
t

)
ν, if σo 6= 0, then it holds that

(5.4) κOD =
|δo|3

(κ2ν + κ2t )
3/2|σo|

, τOD =
δ2o
σo
.

Therefore, sOD is a Frenet curve if σo 6= 0 and δo 6= 0. If κν ≡ 0, then sOD is equal to f(S(f)).
Moreover, if the cuspidal edge f is a tangent developable surface F(γ,t), then e = t, b = nγ and

ν = bγ . By the Frenet-Serret formulae, we have κν ≡ 0, κs = κ and κt = τ. Then Do(u) = ±e(u)

and the image of sOD coincides with f(S(f)). If κt ≡ 0 and κν 6= 0, then Do(u) = ∓b(u). We
have the following corollary of Theorem 5.1.

Corollary 5.2. Let f be a cuspidal edge. Then we have the following :
(A) Suppose that κν ≡ 0 and κt 6= 0. Then sOD(I) = f(S(f)) (i.e., ODf is the tangent
developable of S(f)) and a singular point (u, 0) ∈ S(f) of ODf is a cuspidal edge if and only if
κs(u) 6= 0. Moreover, swallowtails never appear.
(B) Suppose that κt ≡ 0 and κν 6= 0. Then ODf (u, t) = f(u, 0) + tb(u). If κs(u0) = 0, then
ODf is cylindrical at u0. If ODf is non-cylindrical ( i.e., κs 6= 0), then

sOD(u) = ODf (u,−|κν(u)|/κν(u)κs(u))

and a singular point (u,−|κν(u)|/κν(u)κs(u)) of ODf is
(1) a cuspidal edge if and only if κ′s(u) 6= 0,
(2) a swallowtail if and only if κ′s(u) = 0 and κ′′s (u) 6= 0.

Proof. (A) Since κν ≡ 0, δo = κsκ
2
t and σo = κ3tκ

2
s, and then the results follow from Theorem

5.1.
(B) Since κt ≡ 0 and κν 6= 0, δo = κsκ

2
ν and σo = κ3νκ

′
s, so that σ′o = 3κ2νκ

′
νκ
′
s + κ3νκ

′′
s , and

then the results follow from Theorem 5.1. 2

Let f be a cuspidal edge with κν ≡ 0. Then by Corollary 5.2, S(f) = S(ODf ). If κs > 0
(respectively, κs < 0), then S(ODf ) locates the opposite side across the f(S(f)) (respectively,
the same side with f with respect to f(S(f))). See Figure 2. For a cuspidal edge f with

κν 6= 0, this is investigated in [24], and a cuspidal edge f̂ which is isometric to f and satisfies

f(S(f)) = f̂(S(f̂)). See [24] for detail.
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Figure 2. Left(respectively, right): Cuspidal edge f with κν ≡ 0 and κs > 0
(respectively, κs < 0) (green), and ODf (purple).

5.2. Normal developable surfaces along cuspidal edges. If (κt(u), κs(u)) 6= (0, 0), we
define a map NDf : I × R −→ R3 by

NDf (u, t) = f(u, 0) + tDr(u) = f(u, 0) + t
κt(u)e(u) + κs(u)ν(u)√

κt(u)2 + κs(u)2
.

Since

(5.5) D
′
r =

δn
(κ2t + κ2s)

3/2
(−κse+ κtν),

where

(5.6) δn = κν(κ2s + κ2t )− κsκ′t + κtκ
′
s,

we can also show that NDf (I × R) is a developable surface (See Figure 3). By (5.5), NDf is

Figure 3. A cuspidal edge (green) with its normal developable surface (purple)

non-cylindrical if and only if δn 6= 0. Let sND be the striction curve of NDf , which is defined

by sND(u) = NDf

(
u,−

√
κs(u)2 + κt(u)2κs(u)/δn(u)

)
. Again by a straightforward calculation,

we have

(5.7) s′ND =
σn
δ2n

(κte+ κsν),

where we set

σn = −κsδ′n + (κνκt + 2κ′s)δn
= κt(κ

2
s + κ2t )κ

2
ν + 3κt(κtκ

′
s − κsκ′t)κν

−κsκ′νκ2t + (2κ′2s − κsκ′′s )κt + κs(−κ2sκ′ν − 2κ′sκ
′
t + κsκ

′′
t ).

Similar to Section 5.1, by Propositions 4.1 and 4.2, we have the following theorem:
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Theorem 5.3. Suppose that NDf is non-cylindrical. Then a singular point (u,−κs(u)/δn(u))
of NDf is

(1) a cuspidal edge if and only if δn(u) 6= 0 and σn(u) 6= 0,
(2) a swallowtail if and only if δn(u) 6= 0, σn(u) = 0 and σ′n(u) 6= 0.

Moreover, cuspidal cross caps never appear.

If κs ≡ 0, then Dn(u) = ±e(u) and the image of sND coincides with f(S(f)). If κt ≡ 0 and
κs 6= 0, then Dn(u) = ±ν(u).

Therefore we have the following corollary of Theorem 5.3.

Corollary 5.4. Let f be a cuspidal edge. Then we have the following :
(A) Suppose that κs ≡ 0 and κt 6= 0. Then sND(I) = f(S(f)) (i.e., NDf is the tangent
developable of S(f)) and a singular point (u, 0) ∈ S(f) of NDf is a cuspidal edge if and only
if κν(u) 6= 0. Moreover, swallowtails never appear.
(B) Suppose that κt ≡ 0 and κs 6= 0. Then NDf (u, t) = f(u, 0) + tν(u). If κν(u0) = 0, then
NDf is cylindrical at u0. If NDf is non-cylindrical (i.e., κν 6= 0), then

sND(u) = NDf (u,−|κν(u)|/κν(u)κs(u))

and a singular point (u,−|κν(u)|/κν(u)κs(u)) of NDf is
(1) a cuspidal edge if and only if κν(u) 6= 0,
(2) a swallowtail if and only if κν 6= 0, κ′ν = 0 and κ′′ν(u) 6= 0.

Proof. (A) Since κs ≡ 0, δn = κνκ
2
t and σn = κ3tκ

2
ν . Then the results follow from Theorem 5.1.

(B) If κt ≡ 0, then we have δn = κνκ
2
s and σn = −κ3sκ′ν , so that σ′n = −3κ2sκ

′
sκ
′
ν − κ3sκ′′ν . 2

On the other hand, also similar to Section 5.1, if σn 6= 0, then the curvature κND and the
torsion τND of sND are given by

(5.8) κND =
|δn|3

(κ2s + κ2t )
3/2|σn|

, τND =
δ2n
σn
.

We close this subsection giving examples of ODf and NDf having cuspidal edges and swallow-
tails.

Example 5.5. Let us consider a space curve

(5.9) γ(u) =

(
cos

u√
2
, sin

u√
2
,
u√
2

)
.

Let eγ ,nγ , bγ be the Frenet frame of γ. We set

(5.10) f(u, v) = γ + v2
(

cos θ(u)nγ − sin θ(u)bγ

)
+ v3

(
sin θ(u)nγ − cos θ(u)bγ

)
,

for a function θ(u). Then we see that S(f) = {v = 0} and it consists of cuspidal edges. If
θ(u) = π/4, then

sOD(0) = ODf (0,−2
√

2/3), sND(0) = NDf (0, 2
√

2/3), and σo(0) = σn(0) = 3/128.

Thus singular points of ODf near (0,−2
√

2/3) and NDf near (0, 2
√

2/3) consist of a cuspidal
edge. See Figures 4 and 5. In these pictures, f is colored in green, and ODf and NDf are
colored in purple.

Example 5.6. Let us consider the case θ = π/4 + u/4 in (5.10) of Example 5.5. We see that

sOD(0) = ODf (0,−2
√

3), sND(0) = NDf (0, 2
√

3), σo(0) = σn(0) = 0, and σ′o(0) = −1/256,

σ′n(0) = 1/256. Thus each singular point of ODf at (0,−2
√

3) and NDf at (0, 2
√

3) is a
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Figure 4. Left to right: Cuspidal edge f of θ = π/4, ODf and combined
picture of f and ODf

Figure 5. Left to right: Cuspidal edge f of θ = π/4, NDf and combined
picture of f and NDf

Figure 6. Left to right: Cuspidal edge f of θ = π/4+u/4, ODf and combined
picture of f and ODf

Figure 7. Left to right: Cuspidal edge f of θ = π/4+u/4, NDf and combined
picture of f and NDf

swallowtail. See Figures 6 and 7. In these pictures, f is colored in green, and ODf and NDf

are colored in purple.

5.3. Planer cuspidal edges. In the previous subsections we investigated the singularities of
ODf and NDf with the condition (κν(u), κt(u)) 6= (0, 0) and (κt(u), κs(u)) 6= (0, 0) for any
u ∈ I. Moreover, we also investigated the case when one of κs, κν and κt is identically equal
to zero as special cases (cf. Corollaries 5.2 and 5.4). Here, we study cuspidal edges with
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(κν(u), κt(u)) = (0, 0) and (κt(u), κs(u)) = (0, 0) for any u ∈ I. With the same setting to the
above subsections, let us assume (κν(u), κt(u)) = (0, 0) and κs 6= 0 for any u ∈ I. Since the
curvature κ and the torsion τ of the curve f(u, 0) as a curve in R3 satisfy

(5.11) κ2 = κ2s + κ2ν , τ =
κsκ
′
ν − κνκ′s
κ2s + κ2ν

+ κt,

(see [20]) and ν′(u) ≡ 0, we see that f(u, 0) lies on a plane which is perpendicular to the constant
vector ν. In this case, ODf can be considered as a subset of this plane and

NDf (u, t) = f(u, 0) + tν

is a cylinder. By the same argument as the above, we see that if (κt(u), κs(u)) ≡ (0, 0) and
κν 6= 0, then f(u, 0) lies on a plane which is perpendicular to the constant vector b. In this case,
NDf can be considered as a subset of this plane and NDf (u, t) = f(u, 0) + tb is a cylinder.
Moreover, if we assume (κs(u), κν(u), κt(u)) ≡ (0, 0, 0), then f(u, 0) is a straight line, and
ν′ ≡ b′ ≡ 0. In this case, ODf should be defined as the plane perpendicular to ν and NDf

as the plane perpendicular to b. Since ODf and NDf intersect orthogonally, the cuspidal edge
S(f) is a line in this case.

5.4. Normalized derivate director curves and derivate striction curves. We set

Do
′

=

(
Do

)′∣∣(Do

)′∣∣ =
κνe+ κtb√
κ2ν + κ2t

, D
′
r =

(
Dr

)′∣∣(Dr

)′∣∣ =
−κse+ κtb√

κ2s + κ2t
,

and call them the normalized Do
′

and normalized D
′
r, respectively. They are curves in the unit

sphere in R3. Here, we calculate their geodesic curvatures. Since(
Do
′
)′

=
δo

κ2ν + κ2t

(
− κte+ κνb

)
+

ν√
κ2ν + κ2t

,(
Do
′
)′′

=
1√

κ2ν + κ2t
5

{
−
[(
κ3νκs + κ2νκ

′
t + κνκt(κsκt − 3κ′ν)− 2κ2tκ

′
t

)
δo

+(κ2ν + κ2t )(κ
5
ν + 2κ3νκ

2
t + κνκ

4
t + κtδ

′
o)

]
e

−
[(
κ3tκs − κ2tκ′ν + κtκν(κνκs + 3κ′t) + 2κ2νκ

′
ν

)
δo

+(κ2ν + κ2t )(κ
4
νκt + 2κ2νκ

3
t + κ5t − κνδ′o)

]
b

+(κ2ν + κ2t )
2(κνκ

′
ν + κtκ

′
t)ν

}
,

we obtain the geodesic curvature of Do
′

as follows:(
δ2o + 1

κ2ν + κ2t

)3/2 (
− (κ2ν + κ2t )δ

′
o + 3(κνκ

′
ν + κtκ

′
t)δo

)
,

and in a similar manner, we obtain the geodesic curvature D
′
r as follows:(

δ2n + 1

κ2s + κ2t

)3/2 (
− (κ2s + κ2t )δ

′
n + 3(κsκ

′
s + κtκ

′
t)δn

)
.
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Next we consider normalized striction curves. By (3.2), (5.3), and (3.3), (5.7), we see that

s′OD =
s′OD
|s′OD|

= Do, s′ND =
s′ND
|s′ND|

= Dr.

Thus the normalized derivate striction curves coincide with the normalized director curves.
Moreover, since Do and ν (respectively, Dr and b) are dual to each other as curves in the unit

sphere in R3, s′OD and ν (respectively, s′ND and b) are dual to each other.

6. Special cuspidal edges

In this section we consider the case when the singular values of ODf and NDf are special
curves in R3. Let f : (R2, 0)→ (R3, 0) be a cuspidal edge and {e, b,ν} Darboux frame along the
cuspidal edge γ, where γ = f |S(f).

6.1. Contour edges. In this subsection we give characterizations of contour edges by using the
invariants of cuspidal edges. We have the following theorem.

Theorem 6.1. With the same notations as the previous sections, we have the following :
(A) Suppose that κ2ν + κ2t 6= 0. Then the following properties are equivalent :

(1) ODf is a cylinder,
(2) δo ≡ 0,
(3) ν is a part of a great circle in S2.
(4) S(f) is a tangential contour edge with respect to an orthogonal projection.
(5) Do is a constant vector.

(B) Suppose that κ2s + κ2t 6= 0. Then the following properties are equivalent :

(1) NDf is a cylinder,
(2) δn(u) ≡ 0,
(3) b is a part of a great circle in S2,
(4) S(f) is a normal contour edge with respect to an orthogonal projection.
(5) Dr is a constant vector.

Proof. We show the assertion (A). By (5.2), we see the equivalency of (1) and (2). The condition
κ2t + κ2ν 6= 0 means that ν is a non-singular spherical curve. Moreover, since

ν′′ = (κsκt − κ′ν)e+ (−κνκs − κ′t)b,
we see that det(ν, ν′, ν′′) = δo. This implies that the geodesic curvature of ν is δo(κ

2
t + κ2ν)−3/2,

and it shows that the equivalency of (2) and (3). We assume (2). Then Do(u) is a constant
vector Do. Thus

〈
ν(u), Do

〉
= 0 for any u. This implies that S(f) is a tangential contour edge

with respect to Do. This implies (4). Conversely, we assume (4). Then there exists a vector k
such that 〈ν(u),k〉 = 0 holds for any u. This implies that ν(u) belongs to the normal plane of k
passing through the origin, and it implies (3). Since ν and Do are dual each other as spherical
curves by (3.2) and (5.2), we see that the equivalency of (3) and (5). Thus the assertion (A)
holds. One can show the assertion (B) by the same method as in the proof of (A), using (3.3)
and (5.5) instead of (3.2) and (5.2). 2

Theorem 6.2. With the same notations as above, we have the following :
(A) Suppose that κ2t + κ2ν 6= 0 and δo 6= 0 for any u ∈ I. Then the following properties are
equivalent :

(1) ODf is a cone,
(2) σo ≡ 0,
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Figure 8. Cuspidal edge whose osculating developable surface is a cylinder

Figure 9. Cuspidal edge whose normal developable surface is a cylinder

(3) S(f) is a tangential contour edge with respect to a central projection.
(4) sOD is a constant vector.

(B) Suppose that κ2t + κ2s 6= 0 and δn 6= 0 for any u ∈ I. Then the following properties are
equivalent :

(1) NDf is a cone,
(2) σn ≡ 0,
(3) S(f) is a normal contour edge with respect to a central projection.
(4) sND is a constant vector.

Proof. By (5.3), we see that the equivalency of (1) and (2). We assume (2). Then sOD(u)
is a constant vector for any u. We set c = sOD(u). Then by (4.1), f(u, 0) − c is parallel
to Do(u). Thus 〈f(u, 0)− c,ν(u)〉 =

〈
Do(u),ν(u)

〉
= 0 holds for any u. This implies (3).

Conversely, we assume (3). Then there exists a vector c such that 〈f(u, 0)− c,ν(u)〉 ≡ 0.
By (4.1), sOD(u) − f(u, 0) is parallel to Do(u), 〈sOD(u)− c,ν(u)〉 ≡ 0. Differentiating this
equation by u, and noticing 〈s′OD(u),ν(u)〉 ≡ 0 by (5.3), we have 〈sOD(u),ν′(u)〉 ≡ 0. By (5.3)
and (3.1), we see that 〈s′OD(u),ν′(u)〉 ≡ 0. Thus, differentiating 〈sOD(u),ν′(u)〉 ≡ 0 by u, we
have 〈sOD(u),ν′′(u)〉 ≡ 0. On the other hand, by (3.1), the three vectors ν(u),ν′(u),ν′′(u) are
linearly independent if and only if δo(u) 6= 0. Hence

〈sOD(u)− c,ν(u)〉 ≡ 〈sOD(u)− c,ν′(u)〉 ≡ 〈sOD(u)− c,ν′′(u)〉 ≡ 0

implies sOD(u) − c ≡ 0, and this implies (1). Thus the assertion (A) holds. One can show the
assertion (B) by the same method as in the proof of (A) using (5.7) instead of (5.3). 2

6.2. Isophotic edges. Recall that the curve γ is called the (normal) isophotic edge (respectively,
the tangent isophotic edge) if there exists a constant vector v such that ν (respectively, b) makes
a constant angle with v.
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Figure 10. Cuspidal edge whose osculating developable surface is a cone

Figure 11. Cuspidal edge whose normal developable surface is a cone

Let us turn to our setting. With the same notations as those of Section 5, by a straightforward
calculation, we have

(6.1)

(
τOD
κOD

)2

=
(κ2ν + κ2t )

3

δ2o
and

(
τND
κND

)2

=
(κ2s + κ2t )

3

δ2n
.

These are squares of the geodesic curvatures of ν and b, respectively. Thus we obtain:

Theorem 6.3. With the same notations as those of Section 5, we have the following :
(A) Suppose that κ2t + κ2ν 6= 0, δo 6= 0 and σo 6= 0 for any u ∈ I. Then the following properties
are equivalent :

(1) ODf is a constant angle surface,
(2) ν is a part of a small circle,
(3) S(f) is a normal isophotic edge,
(4) Do is a part of a small circle,

(5) s′OD is a part of a small circle,

(6) δo/(κ
2
ν + κ2t )

3/2 is constant,
(7) sOD is a cylindrical helix.

(B) Suppose that κ2s + κ2ν 6= 0, δn 6= 0 and σn 6= 0 for any u ∈ I. Then the following properties
are equivalent :

(1) NDf is a constant angle surface,
(2) b is a part of a small circle,
(3) γ is a tangent isophotic edge,
(4) Dr is a part of a small circle,

(5) s′ND is a part of a small circle,

(6) δn/(κ
2
s + κ2t )

3/2 is constant,
(7) sND is a cylindrical helix.

Proof. By the definition and (6.1), the equivalency of (1) and (6) is obvious. By the proof of
Theorem 5.3, δo/(κ

2
ν + κ2t )

3/2 is the geodesic curvature of ν, so that (2) and (6) are equivalent.
Since ν is a curve on the unit sphere, we see the equivalency of (2) and (3). By (5.2), ν and Do

are spherical dual each other. Hence we see equivalency of (2) and (4). Equivalency of (2) and
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(5) is obvious since Do and s′OD are parallel. By definition, (5) and (7) are equivalent. Thus the
assertion (A) holds.

One can show the assertion (B) by arguments similar to those for (A). �

6.3. General order sloped edges. In this subsection we consider cuspidal edges such that the
osculating or the normal developables of cuspidal edges are general order sloped, where we say
that S(f) is a k-th order sloped edge with respect to Do (respectively, Dr) if Do (respectively,
Dr) is a (k − 1)th-order (spherical) helix. We denote the kth-order helical curvature of sOD(u)
(respectively, sND(u)) by H [sOD]k(u) (respectively, H [sND]k(u)). By (6.1), we have

H [sOD]0(u) =
(κ2ν + κ2t )

3/2

|δo|
,

H [sND]0(u) =
(κ2s + κ2t )

3/2

|δn|
,

H [sOD]1(u) =

√
κ2ν + κ2t

δ2o + (κ2ν + κ2t )
3

(
3κνκ

′
ν + 3κtκ

′
t − (κ2ν + κ2t )δ

′
o

)
,

H [sND]1(u) =

√
κ2s + κ2t

δ2n + (κ2s + κ2t )
3

(
3κsκ

′
s + 3κtκ

′
t − (κ2s + κ2t )δ

′
n

)
and

H [sOD]2(u) =
σo(κ

2
ν + κ2t )

3/2θ′OD
δo
√
δ2o + (κ2ν + κ2t )

3(1 + θ2OD)3/2
,

H [sND]2(u) =
σn(κ2s + κ2t )

3/2θ′ND
δn
√
δ2n + (κ2s + κ2t )

3(1 + θ2ND)3/2
.

Higher order helical curvatures of sOD(u) and sND(u) are inductively defined. However, these
are very complicated, so we omit explanations by using basic invariants for the cuspidal edge.
Then we have the following theorem as a simple corollary of Theorem 4.6.

Theorem 6.4. With the same notations as those of Sections 4 and 5, we have the following :
(A) Suppose that κ2t + κ2ν 6= 0, δo 6= 0 and σo 6= 0 for any u ∈ I. Then the following properties
are equivalent :

(1) ODf is a developable surface with kth-order slope,
(2) sOD is a kth-order helix,

(3) Do
′

is a (k − 2)th-order (spherical) helix,

(4) s′OD is a (k − 1)th-order (spherical) helix,
(5) H [sOD]k is constant,
(6) H [sOD]k+1 ≡ 0,

(7) S(f) is a k-th order sloped edge with respect to Do.

(B) Suppose that κ2t + κ2s 6= 0, δn 6= 0 and σn 6= 0 for any u ∈ I. Then the following properties
are equivalent :

(1) NDf is a developable surface with kth-order slope,
(2) sND is a kth-order helix,

(3) Dr
′

is a (k − 2)th-order (spherical) helix,
(4) Dr is a (k − 1)th-order (spherical) helix,

(5) s′ND is a (k − 1)th-order (spherical) helix,
(6) H [sND]k is constant,
(7) H [sND]k+1 ≡ 0.
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(8) S(f) is a k-th order sloped edge with respect to Dr.

Proof. (A) With assumptions κ2t + κ2ν 6= 0 and δo 6= 0, sOD is a Frenet curve. By definition,

Do
′

is the unit principal normal vector field of sOD. Since sOD is the striation curve of ODf ,
the director curve of ODf is equal to s′OD, so that we can apply Theorem 4.6 to sOD. By
definition, (4) and (8) are equivalent. For (B), we have arguments similar to the case (A) and
apply Theorem 4.6 to sND. 2

If we consider the case when one of κν , κt, κs is identically equal to zero, we have the following
representations of helical curvatures of sOD and sND, respectively:
(1) Suppose that κν ≡ 0 and κt 6= 0. Then δo = κsκ

2
t and σo = κ3tκ

2
s. If κs 6= 0, then

Do(u) = ±e(u) and sOD(I) = f(S(f)). If we denote by κ and τ the curvature and the tor-
sion of S(f) respectively, then κ(u) = |κs(u)| and τ(u) = κt(u). Therefore we have

H [sOD]0(u) = H [S(f)]0(u) = κt(u)/|κs(u)|.
Moreover, we have

H [S(f)]1(u) =
1

|κs(u)|
H [S(f)]

′
0(u)

(1 + (H [S(f)]0(u))2)3/2
,

H [S(f)]2(u) =
1

|κs(u)|(1 + (H [S(f)]0(u))2)1/2
H [S(f)]

′
1(u)

(1 + (H [S(f)]1(u))2)3/2
.

Higher order helical curvatures of S(f) are inductively defined. Moreover, ODf is the tangent
developable of f(S(f)).
(2) Suppose that κt ≡ 0 and κν 6= 0. Then δo(u) = κs(u)κν(u)2 and σo(u) = κν(u)3κ′s(u). If
κs 6= 0 and κ′s 6= 0, then Do(u) = ±b(u) and sOD(u) = ODf (u,−|κν(u)|/κν(u)κs(u)). Moreover,
we have

κOD(u) =
|κs(u)|3|κν(u)|3

|σo(u)|
and τOD(u) =

κs(u)2κν(u)4

σo(u)
,

so that H [sOD]0(u) = τOD(u)/κOD(u) = |κt(u)|/κs(u). We can define kth-order helical curva-
ture H [sOD]k(u) inductively. In this case NDf (u, t) = f(u, 0) + tb(u).
(3) Suppose that κs ≡ 0 and κt 6= 0. Then δn = κνκ

2
t and σn = κ3tκ

2
ν . If κs 6= 0, then

Dr(u) = ±e(u), sND(I) = f(S(f)) and κ(u) = |κν(u)| and τ(u) = κt(u). Therefore we
have H [sND]0(u) = H [S(f)]0(u) = κt(u)/|κν(u)|. We can define kth-order helical curvature
H [S(f)]k(u) inductively. In this case NDf is the tangent developable of f(S(f)).
(4) Suppose that κt ≡ 0 and κs 6= 0. Then δn = κνκ

2
s and σn = −κ3sκ′ν . If κν 6= 0 and κ′ν 6= 0,

then Do(u) = ±n(u) and sND(u) = NDf (u,−|κν(u)|/κν(u)κs(u)). Moreover, we have

κND(u) =
|κν(u)|3|κs(u)|3

|σn(u)|
and τND(u) =

κν(u)2κt(u)4

σn(u)
,

so that H [sND]0(u) = |κs(u)|/κν(u). We can define kth-order helical curvature H [sND]k(u)
inductively. In this case NDf (u, t) = f(u, 0) + tν(u).

Corollary 6.5. With the same notations as those in the above theorem, we have the following :
(A) Suppose that κν ≡ 0, κt 6= 0, and κs 6= 0. Then ODf is the tangent developable of S(f)
and the following properties are equivalent :

(1) ODf is a developable surface with kth-order slope,
(2) S(f) is a kth-order helix,
(3) b is a (k − 2)th-order (spherical) helix,
(4) e is a (k − 1)th-order (spherical) helix,
(5) H [S(f)]k is constant,
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(6) H [S(f)]k+1 ≡ 0.

(B) Suppose that κt ≡ 0, κν 6= 0, κs 6= 0 and κ′s 6= 0. Then ODf is the tangent developable of
S(f) and the following properties are equivalent :

(1) ODf is a developable surface with kth-order slope,
(2) sOD is a kth-order helix,
(3) e is a (k − 2)th-order (spherical) helix,
(4) b is a (k − 1)th-order (spherical) helix,

(5) s′OD is a (k − 1)th-order (spherical) helix,
(6) H [sOD]k is constant,
(7) H [sOD]k+1 ≡ 0.
(8) S(f) is a k-th order sloped edge with respect to b.

(C) Suppose that κs ≡ 0, κt 6= 0, and κν 6= 0. Then NDf is the tangent developable of S(f)
and the following properties are equivalent :

(1) NDf is a developable surface with kth-order slope,
(2) S(f) is a kth-order helix,
(3) ν is a (k − 2)th-order (spherical) helix,
(4) e is a (k − 1)th-order (spherical) helix,
(5) H [S(f)]k is constant,
(6) H [S(f)]k+1 ≡ 0.

(D) Suppose that κt ≡ 0, κs 6= 0, κν 6= 0 and κ′ν 6= 0. Then NDf (u, t) = f(u, 0) + tν(u) and the
following properties are equivalent :

(1) NDf is a developable surface with kth-order slope,
(2) sND is a kth-order helix,
(3) e is a (k − 2)th-order (spherical) helix,
(4) ν is a (k − 1)th-order (spherical) helix,

(5) s′ND is a (k − 1)th-order (spherical) helix,
(6) H [sND]k is constant,
(7) H [sND]k+1 ≡ 0.
(8) S(f) is a k-th order sloped edge with respect to ν.

7. Curves on regular surfaces and relationships with cuspidal edges

In this section we consider curves on regular surfaces and investigate the relationship with
the previous results on cuspidal edges. In [8, 14], developable surfaces along a curve on a
regular surface are investigated. We consider a regular surface M parametrized by an embedding
X : U → R3 with a unit normal vector field n (i.e., M = X(U)). For a curve c : I → U , we
define γ = X ◦c as a curve on M. We assume that γ is parametrized by the arc-length parameter
s. The Darboux frame {t,d,n} along γ is defined to be the unit tangent vector t of γ, n = n◦γ,
and d = −t× n. Then we have  t′ = κgd+ κnn

d′ = −κgt+ τgn
n′ = −κnt− τgd.

The invariants κg, κn and τg are called the geodesic curvature, the normal curvature and the
geodesic torsion respectively. It is known that γ is a geodesic of M if and only if κg ≡ 0, γ is an
asymptotic curve of M if and only if κn ≡ 0 and γ is a principal curve of M if and only if τg ≡ 0.
Here, γ is said to be a geodesic if the curvature vector t′(s) has only a normal component of the
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surface M, an asymptotic curve if t′(s) has only a tangential component of the surface M and
a line of curvature if ν′(s) is parallel to t(s), respectively.

In [14], an invariant δ̃o = κg + (κnτ
′
g − κ′nτg)(κ2n + τ2g )−1 is introduced1 and it is shown that

δ̃o ≡ 0 if and only if (τgt − κnd)(κ2n + τ2g )−1/2 is a constant vector. Moreover, it is shown that

δ̃o ≡ 0 if and only if γ is a contour generator (i.e., singular set) with respect to an orthogonal
projection such that its kernel is generated by τgt − κnd. Furthermore, in [7], it is shown that

δ̃o(κ
2
n + τ2g )−1/2 is constant if and only if γ is an isophotic curve (i.e., n ◦ γ makes a constant

angle with a constant vector (τgt+ κgn)(κ2g + τ2g )−1/2.).

On the other hand, in [7], an invariant δ̃r = κn + (κ′gτg −κgτ ′g)(κ2g + τ2g )−1 is introduced2 and

it is shown that δ̃r ≡ 0 if and only if (τgt+ κgn)(κ2g + τ2g )−1/2 is a constant.

Actually, (τgt−κnd)(κ2n+τ2g )−1/2 (respectively, (τgt+κgn)(κ2g+τ2g )−1/2) is called a normalized
osculating Darboux vector (respectively, a normalized rectifying Darboux vector) along γ in
[7, 14]. Therefore, the osculating Darboux vector and the rectifying Darboux vector along a
cuspidal edge are the notions analogous to those of the case for a regular curve on a regular
surface. In this section we compare their properties along regular curves on regular surfaces
with those along cuspidal edges.

On the other hand, with the same setting as in Section 5, S(f) is not only a curve on f
but also a curve on ODf and NDf . In particular, if κν 6= 0, then S(f) is a regular curve on
the regular part of ODf . Moreover, S(f) is always a regular curve on the regular part of NDf .
Therefore, we consider the invariants of S(f) as a regular curve on ODf and NDf , respectively.
Let κ̃g, κ̃ν and τ̃g be the geodesic curvature, normal curvature and geodesic torsion of

S(f) = {f(u, 0) = ODf (u, 0) |u ∈ I}
as a curve on ODf , respectively. Also let κg, κν and τg denote the geodesic curvature, normal
curvature and geodesic torsion of S(f) = {f(u, 0) = NDf (u, 0)| u ∈ I} as a curve on NDf ,
respectively.

Since ν is a unit normal vector of ODf , we see that κ̃g = κs, κ̃n = κν and τ̃g = κt. Also,
since b is a unit normal vector of NDf , we see that κg = −κν , κn = κs and τg = κt. Hence we

see that the invariants δ̃o and δ̃r of f(u, 0) = ODf (u, 0) as a curve on ODf are

δ̃o =
δo

κ2ν + κ2t
, δ̃r =

δn
κ2s + κ2t

,

respectively. On the other hand, the invariants δ̃o and δ̃r of f(u, 0) = NDf (u, 0) as a curve on
NDf are

δ̃o = − δn
κ2s + κ2t

, δ̃r =
δo

κ2ν + κ2t
.

For the invariants κg, κn, τg of a curve γ on a regular surface, γ is an asymptotic curve of f
if and only if κn ≡ 0, γ is a geodesic of f if and only if κg ≡ 0, and γ is a line of curvature of f
if and only if τg ≡ 0. It is natural to expect this type of explanation about invariants κs, κν , κt
of cuspidal edge. The singular curvature κs (respectively, the limiting normal curvature κν) is
defined as a limit of the geodesic curvatures with sign (respectively, the normal curvatures) of
curves approaching the singular set of the cuspidal edge, and one can see the same explanation
about κs and κν [27, 20]. Here, we study κt from this point of view. For a regular curve
c : I −→ U, it is classically known that γ = X ◦ c is a line of curvature if and only if the ruled
surface with the normal director curve γ(s) + tn(s) is a developable surface (i.e., Theorem of

1In [14], δ̃o is denoted by δ.
2In [7], δ̃r is denoted by δr.
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Bonnet [29, Page 295]). On the other hand, let f : I × R −→ R3 be a frontal, and suppose
S(f) = I × {0} consists of singular points of the first kind. Assume that κt ≡ 0 on I. Then
Dr(u) = ±ν(u), so that NDf is a ruled surface with base curve f |S(f) and director curve ν,
and it is, by definition, developable. Thus it is natural to expect that S(f) of a frontal with
vanishing κt can be considered as a line of curvature.

Let f : (R2, 0) → (R3, 0) be a map-germ and 0 a cuspidal edge. Suppose that (u, v) is
an adapted coordinate system. Since fv(u, 0) = 0, there exists a vector h(u, v) such that
fv(u, v) = vh(u, v). Set

Ẽ = 〈fu, fu〉 , F̃ = 〈fu, h〉 , G̃ = 〈h, h〉 , L̃ = −〈fu, νu〉 , M̃ = −〈h, νu〉 , Ñ = −〈h, νv〉 .
Then

(7.1) E = Ẽ, F = vF̃ , G = v2G̃, L = L̃, M = vM̃, N = vÑ

holds, where E,F,G (respectively, L,M,N) are the coefficients of the first fundamental form
(respectively, the second fundamental form). Consider the equation

(7.2) (EM − FL) du2 + (EN −GL) dudv + (FN −GM) dv2 = 0

for a tangent vector a(u, v)∂u+b(u, v)∂v ∈ T(u,v)R2. It is known that if u′(t)∂u+v′(t)∂v satisfies
(7.2), then the curve (u(t), v(t)) is a principal curve of f . Substituting (7.1) to (7.2) and factoring
v out, we obtain the equation

(ẼM̃ − F̃ L̃) du2 + (ẼÑ − vG̃L̃) dudv + (vF̃ Ñ − v2G̃M̃) dv2 = 0.

Thus if (ẼM̃ − F̃ L̃)(u, 0) ≡ 0, then we can regard the curve (u, 0) as a line of curvature. By

(5.1) of [20], κt(u) is proportional to (ẼM̃− F̃ L̃)(u, 0). Summarizing the above arguments, S(f)
can be regarded as a line of curvature if κt ≡ 0 holds.

Appendix A. Support functions

In this appendix we study invariants of a cuspidal edge using a family of functions on a
curve. It is well-known that this method is useful for studying singular curves on singular
surfaces. Although the results are the same as we have obtained above, we believe that it is
worth mentioning that one can get the same result as Theorems 5.1 and 5.3 by this method.

For a unit speed curve γ : I −→ M ⊂ R3 and a vector field k : I → TM along γ, we define
a function Gk : I ×R3 −→ R by Gk(u,x) = 〈x− γ(u),k(u)〉. We call Gk a support function on
γ with respect to k. We denote that gk,x0

(u) = Gk(u,x0) for any x0 ∈ R3.
Let f : I × (−ε, ε)→ R3 be a frontal with a unit normal vector ν, where I is an open interval

or a circle, and ε > 0. Assume that I × {0} consists of singular points of the first kind, and
we take an adapted coordinate system (u, v) of I × (−ε, ε). Let e, b,ν be the Darboux frame of
S(f). We consider

Gν(u,x), gν,x0
(u), Gb(u,x), gb,x0

(u)

We have the following propositions.

Proposition A.1. Under the above setting, we have the following :
(A) Suppose that κν(u)2 + κt(u)2 6= 0. Then

(A1) gν,x0(u) = 0 if and only if there exist α(u) and β(u) such that

x0 − f(u, 0) = αe(u) + βb(u).

(A2) gν,x0
(u) = gν,x0

(u)′ = 0 if and only if there exists l(u) such that

x0 − f(u, 0) = −l(u)Do(u).

(AI) Suppose that δo(u) 6= 0. Then
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(A3) gν,x0
(u) = gν,x0

(u)′ = gν,x0
(u)′ = 0 if and only if

(A.1) x0 − f(u, 0) = −κν
δo
Do(u).

(A4) gν,x0(u) = gν,x0(u)′ = gν,x0(u)′ = gν,x0(u)′′ = 0 if and only if (A.1) and σo = 0.
(A5) gν,x0

(u) = gν,x0
(u)′ = gν,x0

(u)′ = gν,x0
(u)′′ = gν,x0

(u)′′′ = 0 if and only if (A.1)
and σo = σ′o = 0.

(AII) Suppose that δo(u) = 0. Then
(A3’) gν,x0(u) = gν,x0(u)′ = gν,x0(u)′′ = 0 if and only if κν = 0. We remark that under

this condition, δo = κsκt − κ′ν .
(AII-1) Set δν1 = κtκ

′
s + 2κsκ

′
t − κ′′ν and suppose that δo(u) = 0, δν1(u) 6= 0. Then

(A4’) gν,x0
(u) = gν,x0

(u)′ = gν,x0
(u)′′ = gν,x0

(u)′′′ = 0 if and only if κs = 0 and
x0 − f(u, 0) = −κsκte(u)/δν1.

(A5’) gν,x0(u) = gν,x0(u)′ = gν,x0(u)′′ = gν,x0(u)′′′ = gν,x0(u)′′′′ = 0 if and only if
κs = 0, x0 − f(u, 0) = −κνκte(u)/δν1 and

−2κ4sκ
2
t−(2κtκ

′
s−3κ′′ν)(κtκ

′
s−κ′′ν)−3κ2s(2(κ′t)

2+κtκ
′′
t )−κs(κ2tκ′′s−9κ′tκ

′′
ν−κt(−10κ′sκ

′
t+κ

′′′
ν )) = 0.

(AII-2) Suppose that δo(u) = 0, δν1(u) = 0. Then
(A4”) gν,x0(u) = gν,x0(u)′ = gν,x0(u)′′ = gν,x0(u)′′′ = 0 if and only if κs = κν = 0

and there exists l(u) such that x0 − f(u, 0) = l(u)e(u). We remark that under this
condition, δν1 = −κtκ′s + κ′′ν .

(AII-2-1) Set δν2 = 3κ′sκ
′
t + κtκ

′′
s − κ′′′ν , and suppose that δo(u) = 0, δν1(u) = 0, δν2(u) 6= 0. Then

(A5”) gν,x0
(u) = gν,x0

(u)′ = gν,x0
(u)′′ = gν,x0

(u)′′′ = gν,x0
(u)′′′′ = 0 if and only if

κs = κν = 0 and x0 − f(u, 0) = −κtκ′se(u)/δν2.
(AII-2-2) Suppose that δo(u) = 0, δν1(u) = 0, δν2(u) = 0. Then

(A5”’) gν,x0
(u) = gν,x0

(u)′ = gν,x0
(u)′′ = gν,x0

(u)′′′ = gν,x0
(u)′′′′ = 0 if and only if

κs = κν = κ′s = 0 and there exists l(u) such that x0 − f(u, 0) = l(u)e(u). We
remark that under this condition, δν2 = κtκ

′′
s − κ′′′ν .

(B) Suppose that κs(u)2 + κt(u)2 6= 0. Then
(B1) gb,x0

(u) = 0 if and only if there exist α(u) and β(u) such that

x0 − f(u, 0) = αe(u) + βν(u).

(B2) gb,x0
(u) = gb,x0

(u)′ = 0 if and only if there exists l(u) such that

x0 − f(u, 0) = l(u)Dr(u).

(BI) Suppose that δn(u) 6= 0. Then
(B3) gb,x0

(u) = gb,x0
(u)′ = gb,x0

(u)′′ = 0 if and only if

(A.2) x0 − f(u, 0) =
−κs
δn

Dr(u).

(B4) gb,x0
(u) = gb,x0

(u)′ = gb,x0
(u)′′ = gb,x0

(u)′′′ = 0 if and only if (A.2)
and σn(u) = 0.

(B5) gb,x0
(u) = gb,x0

(u)′ = gb,x0
(u)′′ = gb,x0

(u)′′′ = gb,x0
(u)′′′′ = 0 if and

only if (A.2) and σn(u) = σ′n(u) = 0.
(BII) Suppose that δn(u) = 0. Then

(B3’) gb,x0
(u) = gb,x0

(u)′ = gb,x0
(u)′′ = 0 if and only if κs = 0. We remark

that under this condition, δn = κνκ
2
t + κtκ

′
s.

(BII-1) Set δb1 = κtκ
′
ν + 2κνκ

′
t + κ′′s and suppose that δn(u) = 0, δb1(u) 6= 0. Then

(B4’) gb,x0(u) = gb,x0(u)′ = gb,x0(u)′′ = gb,x0(u)′′′ = 0 if and only if κs = 0
and x0 − f(u, 0) = −κνκte/δb1.
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(B5’) gb,x0
(u) = gb,x0

(u)′ = gb,x0
(u)′′ = gb,x0

(u)′′′ = gb,x0
(u)′′′′ = 0 if and

only if κs = 0, x0 − f(u, 0) = −κνκte/δb1 and

2κ4νκ
2
t+(κtκ

′
ν+κ′′s )(2κtκν+3κ′′s )+3κ2ν(2(κ′t)

2+κtκ
′′
t )+κν

(
9κ′tκ

′′
s+κ2tκ

′′
ν−κt(−10κ′νκ

′
t−κ′′′s )

)
= 0.

(BII-2) Suppose that δn(u) = 0, δb1(u) = 0. Then
(B4”) gb,x0

(u) = gb,x0
(u)′ = gb,x0

(u)′′ = gb,x0
(u)′′′ = 0 if and only if

κs(u) = κν(u) = 0. We remark that under this condition,
δb1 = κtκ

′
ν + κ′′s .

(BII-2-1) Set δb2 = 3κ′νκ
′
t + κtκ

′′
ν + κ′′′s , and suppose that δn(u) = 0, δb1(u) = 0,

δb2(u) 6= 0. Then
(B5”) gb,x0(u) = gb,x0(u)′ = gb,x0(u)′′ = gb,x0(u)′′′ = gb,x0(u)′′′′ = 0 if and

only if κs = κν = 0 and x0 − f(u, 0) = −κ′νκte(u)/δb2.
(BII-2-2) Suppose that δn(u) = 0, δb1(u) = 0, δb2(u) = 0. Then

(B5”’) gb,x0
(u) = gb,x0

(u)′ = gb,x0
(u)′′ = gb,x0

(u)′′′ = gb,x0
(u)′′′′ = 0 if and

only if κs = κν = κ′ν = 0 and, there exists l(u) such that

x0 − f(u, 0) = l(u)e(u).

We remark that under this condition, δb2 = κtκ
′′
ν + κ′′′s .

If gb,x0(u) = gb,x0(u)′ = gb,x0(u)′′ = 0, gb,x0(u)′′′ 6= 0 or

gb,x0
(u) = gb,x0

(u)′ = gb,x0
(u)′′ = gb,x0

(u)′′′ = 0,

gb,x0
(u)′′′′ = 0 hold, then Gb is a K-versal unfolding of gb,x0

at (u,x0).

If gν,x0
(u) = gν,x0

(u)′ = gν,x0
(u)′′ = 0, gν,x0

(u)′′′ 6= 0 or

gν,x0
(u) = gν,x0

(u)′ = gν,x0
(u)′′ = gν,x0

(u)′′′ = 0,

gν,x0
(u)′′′′ 6= 0 hold, then Gν is a K-versal unfoldings of gν,x0

at (u,x0).

See [1] or [10, Appendix] for K-versal unfolding (written as K-versal deformations). Using
Proposition A.1, and by some general results for the singularity theory for families of function
germs, one can also show Theorems 5.1 and 5.3. Detailed descriptions on general results in the
singularity theory are found in the book[2].

On the other hand, the calculations by using support functions are rather complicated com-
paring with the direct use of the criteria for frontals in the proof of Theorems 5.1 and 5.3.
However, one of the advantages of the method using the support functions is that we can clarify
the geometric meanings of the singularities from the contact viewpoint. Let Γ : I −→ R3×S2 be
a regular curve and F : R3×S2 −→ R a submersion. We say that Γ and F−1(0) have contact of at
least order k for t = t0 if the function g(t) = F ◦Γ(t) satisfies g(t0) = g′(t0) = · · · = g(k)(t0) = 0.
If γ and F−1(0) have contact of at least order k for t = t0 and satisfy the condition that
g(k+1)(t0) 6= 0, then we say that Γ and F−1(0) have contact of order k for t = t0. For any
x ∈ R3, we define a function gx : R3 × S2 −→ R by gx(u,v) = 〈x− u,v〉. Then we have

g−1x (0) = {(u,v) ∈ R3 × S2 |〈u,v〉 = 〈x,v〉}.
If we fix v ∈ S2, then g−1x (0)|R3×{v} is an affine plane defined by 〈u,v〉 = c, where c = 〈x,v〉.
Since this plane is orthogonal to v, it is parallel to the tangent plane TvS

2 at v. Here we have
a representation of the tangent bundle of S2 as follows:

TS2 = {(u,v) ∈ R3 × S2 |〈u,v〉 = 1}.
We consider the canonical projection π2|g−1x (0) : g−1x (0) −→ S2, where π2 : R3 × S2 −→ S2.

Then π2|g−1x (0) : g−1x (0) −→ S2 is a plane bundle over S2. Moreover, we define a map

Ψ : g−1x (0) −→ TS2
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by Φ(u,v) = (u/〈x,v〉,v). Then Φ is a bundle isomorphism. Therefore, we write
TS2(x) = g−1x (0) and call it an affine tangent bundle over S2 through x. With the same nota-
tions as above, we distinguish two cases.

(A) Suppose that (κν(u), κt(u)) 6= (0, 0) and δo(u) 6= 0. We consider

sOD(u) = f(u, 0)− κν(u)

δo(u)
Do(u).

By (5.3), we have

s′OD(u) =
σo(u)

δo(u)
(κt(u)e(u)− κν(u)b(u)).

If we assume that σo(u) ≡ 0, then sOD is a constant vector x0. Then

f(u, 0)− x0 =
κν(u)

δo(s)
Do(u)

Therefore
gx0(f(u, 0),ν(u)) = gν,x0(s) = 〈x0 − f(u, 0),ν(u)〉 = 0.

If there exists x0 ∈ R3 such that gx0
(f(u, 0),ν(u)) = 0, then we have

f(u, 0)− x0 =
κν(u)

δo(s)
Do(u).

and σo(u) ≡ 0. We consider a regular curve (f |S(f),ν) : I −→ R3 × S2.
(B) Suppose that (κs(u), κt(u)) 6= (0, 0) and δn(u) 6= 0. Then we have similar results to case

(A), so that we have the following proposition.

Proposition A.2. With the same notations as above, we have the following :
(A) Suppose that (κν(u), κt(u) 6= (0, 0) and δo(u) 6= 0. Then there exists x0 ∈ R3 such that
(f |S(f),ν)(I) ⊂ TS2(x0) if and only if σo ≡ 0.

(B) Suppose that (κs(u), κt(u) 6= (0, 0) and δn(u) 6= 0. Then there exists x0 ∈ R3 such that
(f |S(f), b)(I) ⊂ TS2(x0) if and only if σn ≡ 0.

The results of Proposition A.1 can be interpreted from the contact viewpoint as follows.

Proposition A.3. With the same notations as above, we have the following :
(A) Suppose that (κν(u), κt(u) 6= (0, 0) and δo(u) 6= 0. For x0 = ODf (u0, t0), we have the
following:
(1) The order of contact of (f |S(f),ν) with TS2(x0) at u = u0 is two if and only if

(A.3) t0 = −κν(u0)

δo(u0)

and σo(u0) 6= 0. In this case ODf is a cuspidal edge at (u0, t0).
(2) The order of contact of (f |S(f),ν) with TS2(x0) at u = u0 is three if and only if (A.3) and
σo(u0) = 0 and σ′o(u0) 6= 0. In this case ODf is a swallowtail at (u0, t0).
(B) Suppose that (κs(u), κt(u) 6= (0, 0) and δn(u) 6= 0. For x0 = NDf (u0, t0), we have the
following:
(1) The order of contact of (f |S(f), b) with TS2(x0) at u = u0 is two if and only if

(A.4) t0 = −κs(u0)

δn(u0)

and σn(u0) 6= 0. In this case NDf is a cuspidal edge at (u0, t0).
(2) The order of contact of (f |S(f), b) with TS2(x0) at u = u0 is three if and only if (A.4) and
σn(u0) = 0 and σ′n(u0) 6= 0. In this case NDf is a swallowtail at (u0, t0).
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