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EULER CHARACTERISTIC RECIPROCITY FOR CHROMATIC, FLOW

AND ORDER POLYNOMIALS

TAKAHIRO HASEBE, TOSHINORI MIYATANI, AND MASAHIKO YOSHINAGA

Abstract. The Euler characteristic of a semialgebraic set can be considered as a general-
ization of the cardinality of a finite set. An advantage of semialgebraic sets is that we can

define “negative sets” to be the sets with negative Euler characteristics. Applying this idea to

posets, we introduce the notion of semialgebraic posets. Using “negative posets”, we establish
Stanley’s reciprocity theorems for order polynomials at the level of Euler characteristics. We

also formulate the Euler characteristic reciprocities for chromatic and flow polynomials.

1. Introduction

Let P be a finite poset. The order polynomial O≤(P, t) ∈ Q[t] and the strict order polynomial
O<(P, t) ∈ Q[t] are polynomials which satisfy

O≤(P, n) = # Hom≤(P, [n]),

O<(P, n) = # Hom<(P, [n]),
(1)

where [n] = {1, . . . , n} with the usual ordering and

Hom≤(<)(P, [n]) = {f : P −→ [n] | x < y =⇒ f(x) ≤ (<)f(y)}

is the set of increasing (resp. strictly increasing) maps.
These two polynomials are related to each other by the following reciprocity theorem proved

by Stanley ([10, 11], see also [1, 3, 4] for recent surveys).

(2) O<(P, t) = (−1)#P · O≤(P,−t).

By putting t = n, the formula (2) can be informally presented as follows.

(3) “ # Hom<(P, [n]) = (−1)#P ·# Hom≤(P, [−n]). ”

It is a natural problem to extend the above reciprocity to homomorphisms between arbitrary
(finite) posets P and Q. We may expect a formula of the following type.

(4) “ # Hom<(P,Q) = (−1)#P ·# Hom≤(P,−Q). ”

Of course this is not a mathematically justified formula. In fact, we do not have the notion of a
“negative poset −Q.”

In [9], Schanuel discussed what “negative sets” should be. A possible answer is that a negative
set is nothing but a semialgebraic set which has a negative Euler characteristic (Table 1). For

Finite set Semialgebraic set
Cardinality Euler characteristic

Table 1. Negative sets
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example, the open simplex
◦
σd = {(x1, . . . , xd) ∈ Rd | 0 < x1 < · · · < xd < 1}

has the Euler characteristic e(
◦
σd) = (−1)d, and the closed simplex

σd = {(x1, . . . , xd) ∈ Rd | 0 ≤ x1 ≤ · · · ≤ xd ≤ 1}
has e(σd) = 1. Thus we have the following “reciprocity”

(5) e(
◦
σd) = (−1)d · e(σd).

This formula looks like Stanley’s reciprocity (2). This analogy would indicate that (2) could be
explained via the computations of Euler characteristic of certain semialgebraic sets.

In this paper, by introducing the notion of semialgebraic posets, we settle Euler characteristic
reciprocity theorems for poset homomorphisms. Semialgebraic posets also provide a rigorous
formulation for the reciprocity (4). A similar idea works also for reciprocities of chromatic and
flow polynomials.

Briefly, a semialgebraic poset P is a semialgebraic set with poset structure such that the
ordering is defined semialgebraically (see Definition 2.2). Finite posets and the open interval
(0, 1) ⊂ R are examples of semialgebraic posets. A semialgebraic poset P has the Euler charac-
teristic e(P ) ∈ Z which is an invariant of semialgebraic structure of P (see §2.1). In particular,
if P is a finite poset, then e(P ) = #P , and if P is the open interval (0, 1), then e((0, 1)) = −1.

The philosophy presented in the literature [9] leads one to consider the “moduli space”

Hom≤(<)(P,Q) of poset homomorphisms from a finite poset P to a semialgebraic poset Q, and
then to compute the Euler characteristic of the moduli space instead of counting the number of
maps.

Considering the space Hom≤(<)(P,Q) itself and its Euler characteristic is not a new idea for
the chromatic theory of finite graphs. For example, in [8], the Euler characteristic of the space
of colorings is explored, and in [14] the functorial aspects of colorings are studied. The essential
reasons why the Euler characteristic works well in these situations are its additivity properties
and its consistency with the inclusion-exclusion principle.

The point of the present paper is to introduce the negative of a poset Q in the category
of semialgebraic posets. We define −Q := Q × (0, 1) (See Definition 3.1). Then we have
e(−Q) = −e(Q). Furthermore, we have the following result.

Theorem 1.1 (Proposition 2.8 and Theorems 3.3, 3.7). Let P be a finite poset and Q be a
semialgebraic poset.

(i) Hom≤(P,Q) and Hom<(P,Q) possess the structure of semialgebraic sets.
(ii) The following reciprocity of Euler characteristics holds,

e(Hom<(P,±Q)) = (−1)#P · e(Hom≤(P,∓Q)).

(iii) Let T be a semialgebraic totally ordered set. Then

e(Hom≤(P, T )) = O≤(P, e(T )),

e(Hom<(P, T )) = O<(P, e(T )).

The most important result is the second assertion (ii) which is a rigorous formulation of the
reciprocity (4). It should be emphasized that (ii) is a substantially new result since Q need not be
a totally ordered set. When we specialize to the totally ordered sets Q = [n] and T = [n]×(0, 1),
our (ii) and (iii) recover Stanley’s reciprocity (2) for order polynomials (see §3.3).

Similar Euler characteristic reciprocities are obtained also for Stanley’s chromatic polynomials
reciprocity [12] and for Breuer and Sanyal’s flow polynomials reciprocity [6].
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This paper is organized as follows. In §2, we introduce semialgebraic posets, semialgebraic
abelian groups and Euler characteristics. In §3, we prove the main result, Theorem 1.1 (ii). The
proof is based on topological (cut and paste) arguments. We also deduce Stanley’s reciprocity (2)
from the main theorem. In §4, we describe other Euler characteristic reciprocities for chromatic
polynomials of simple graphs and flow polynomials of oriented graphs.

2. Semialgebraic posets and Euler characteristics

2.1. Semialgebraic sets. A subset X ⊂ Rn is said to be a semialgebraic set if it is expressed
as a Boolean connection (i.e., a set expressed by a finite combination of ∪,∩ and complements)
of subsets of the form

{x ∈ Rn | p(x) > 0},
where p(x) ∈ R[x1, . . . , xn] is a polynomial. Let f : X −→ Y be a map (not necessarily con-
tinuous) between semialgebraic sets X ⊂ Rn and Y ⊂ Rm. It is called semialgebraic if the
graph

Γ(f) = {(x, f(x)) | x ∈ X} ⊂ Rm+n

is a semialgebraic set. If f is semialgebraic then the pull-back f−1(Y ) and the image f(X) are
also semialgebraic sets (see [2, 5] for details).

Any semialgebraic set X has a finite partition into Nash cells (see [7] for details), namely, a

partition X =
⊔k
α=1Xα such that Xα is Nash diffeomorphic (that is a semialgebraic analytic

diffeomorphism) to the open cell (0, 1)dα for some dα ≥ 0. Then the Euler characteristic

(6) e(X) :=

k∑
α=1

(−1)dα

is independent of the partition [7]. Moreover, the Euler characteristic satisfies

e(X t Y ) = e(X) + e(Y ),

e(X × Y ) = e(X)× e(Y ).

Example 2.1. As mentioned in §1, the closed simplex σd and the open simplex
◦
σd have e(σd) = 1

and e(
◦
σd) = (−1)d.

2.2. Semialgebraic posets.

Definition 2.2. (P,≤) is called a semialgebraic poset if

(a) (P,≤) is a partially ordered set, and
(b) there is an injection i : P ↪→ Rn (n ≥ 0) such that the image i(P ) is a semialgebraic set

and the image of

{(x, y) ∈ P × P | x ≤ y}
by the map i× i : P × P −→ Rn × Rn, is also a semialgebraic subset of Rn × Rn.

Let P and Q be semialgebraic posets. The set of homomorphisms (strict homomorphisms) of
semialgebraic posets is defined by

(7) Hom≤(<)(P,Q) =

{
f : P −→ Q

∣∣∣∣ f is a semialgebraic map s.t.
x < y =⇒ f(x) ≤ (<)f(y)

}
.

Example 2.3. (a) A finite poset (P,≤) admits the structure of a semialgebraic poset, since
any finite subset in Rn is a semialgebraic set. A finite poset has the Euler characteristic
e(P ) = #P .
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(b) The open interval (0, 1) and the closed interval [0, 1] are semialgebraic posets with respect
to the usual ordering induced from R. Their Euler characteristics are e((0, 1)) = −1 and
e([0, 1]) = 1, respectively.

In this paper, we always consider the following lexicographic ordering on the product P ×Q.

Definition 2.4. Let P and Q be posets. Define an ordering on P ×Q by

(p1, q1) ≤ (p2, q2)⇐⇒
{
p1 < p2, or
p1 = p2 and q1 ≤ q2,

for (pi, qi) ∈ P ×Q.

Remark 2.5. There are several ways to define poset structures on the product P ×Q. However,
the lexicographic ordering in Definition 2.4 seems to be the only one that works for our purposes.
In particular, the decomposition (18) in §3.2 is crucial.

Proposition 2.6. Let P and Q be semialgebraic posets. Then the product poset P ×Q (with
lexicographic ordering) admits the structure of a semialgebraic poset.

Proof. Suppose P ⊂ Rn and Q ⊂ Rm. Then

{((p1, q1), (p2, q2)) ∈ (P ×Q)2 | (p1, q1) ≤ (p2, q2)}
= {(p1, q1, p2, q2) ∈ (P ×Q)2 | (p1 < p2) or (p1 = p2 and q1 ≤ q2)}
'
(
{(p1, p2) ∈ P 2 | p1 < p2} ×Q2

)
t
(
P × {(q1, q2) ∈ Q2 | q1 ≤ q2}

)
is also semialgebraic since semialgebraicity is preserved by disjoint union, complement and Carte-
sian products. �

Proposition 2.7. Let P and Q be semialgebraic posets. Then the projection onto the first
factor π : P ×Q −→ P is a homomorphism of semialgebraic posets.

Proof. This is straightforward from the definition of the lexicographic ordering. �

The next result shows that the “moduli space” of homomorphisms from a finite poset to a
semialgebraic poset has the structure of a semialgebraic set.

Proposition 2.8 (Theorem 1.1 (i)). Let P be a finite poset and Q be a semialgebraic poset.

Then Hom≤(P,Q) and Hom<(P,Q) have structures of semialgebraic sets.

Proof. Let us set P = {p1, . . . , pn} and L = {(i, j) | pi < pj}. Since each element

f ∈ Hom≤(P,Q) can be identified with the tuple (f(p1), . . . , f(pn)) ∈ Qn, we have the ex-
pression

Hom≤(P,Q) ' {(q1, . . . , qn) ∈ Qn | qi ≤ qj for (i, j) ∈ L}

=
⋂

(i,j)∈L

{(q1, . . . , qn) ∈ Qn | qi ≤ qj}.

Clearly, the right-hand side is a semialgebraic set.
The semialgebraicity of Hom<(P,Q) is proved similarly. �
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2.3. Semialgebraic abelian groups. An abelian group (A,+) is called a semialgebraic abelian
group if there exists an injection i : A ↪→ Rn (n ≥ 0) such that the image i(A) is a semialgebraic
set and the maps

+: i(A)× i(A) −→ i(A), (i(x), i(y)) 7−→ i(x+ y)

(−1) : i(A) −→ i(A), i(x) 7−→ i(−x)

are semialgebraic maps. Finite abelian groups and the set of all real numbers R are semialgebraic
abelian groups.

It is easy to see that if A1 and A2 are semialgebraic abelian groups, then so is the product
A1 ×A2.

3. Euler characteristic reciprocity

3.1. The main result.

Definition 3.1. For a semialgebraic poset Q, let us define the negative by −Q := Q × (0, 1).
(Recall that we consider the lexicographic ordering on −Q.)

Remark 3.2. Note that since −(−Q) = (Q× (0, 1))× (0, 1), −(−Q) is not equal to Q.

The main theorem of this paper is the following.

Theorem 3.3 (Theorem 1.1 (ii)). Let P be a finite poset and Q be a semialgebraic poset. Then

e(Hom<(P,±Q)) = (−1)#P · e(Hom≤(P,∓Q)).

In other words,

(8) e(Hom<(P,Q)) = (−1)#P · e(Hom≤(P,Q× (0, 1)))

and

(9) e(Hom<(P,Q× (0, 1))) = (−1)#P · e(Hom≤(P,Q))

hold.

Note that since −(−Q) 6= Q (Remark 3.2), two formulas (8) and (9) are not equivalent.
Before the proof of Theorem 3.3, we present an example which illustrates the main idea of

the proof.

Example 3.4. Let P = Q = {1, 2} with 1 < 2. Clearly we have

Hom<(P,Q) = {id}.

Let us describe Hom≤(P,Q × (0, 1)). Note that Q × (0, 1) is isomorphic to the semialgebraic
totally ordered set (1, 32 ) t (2, 52 ) by the isomorphism

ϕ : Q× (0, 1) −→
(

1,
3

2

)
t
(

2,
5

2

)
, (a, t) 7−→ a+

t

2
.

A homomorphism f ∈ Hom≤(P,Q × (0, 1)) is described by the two values f(1) = (a1, t1) and
f(2) = (a2, t2) ∈ Q × (0, 1). The condition imposed on a1, a2, t1 and t2 (by the inequality
f(1) ≤ f(2)) is

(a1 < a2), or (a1 = a2 and t1 ≤ t2),

which is equivalent to a1 + t1
2 ≤ a2 + t2

2 . Therefore, the semialgebraic set Hom≤(P,Q × (0, 1))

can be described as in Figure 1. Each diagonal triangle in Figure 1 has a stratification
◦
σ2 t

◦
σ1.

Therefore the Euler characteristic is e(
◦
σ2 t

◦
σ1) = e(

◦
σ2) + e(

◦
σ1) = (−1)2 + (−1)1 = 0. On the
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a1 < a2

a1 = a2 = 1, t1 ≤ t2

a1 = a2 = 2, t1 ≤ t2

Figure 1. f(1) ≤ f(2).

other hand, the square region corresponding to a1 < a2 has the Euler characteristic (−1)2 = 1.
Hence we have

e(Hom≤(P,Q× (0, 1))) = 1 = e(Hom<(P,Q)).

The following lemma will be used in the proof of Theorem 3.3.

Lemma 3.5. Let P ⊂ Rn be a d-dimensional polytope which has a hyperplane description

P = {α1 ≥ 0} ∩ · · · ∩ {αN ≥ 0}

of P where αi are affine maps from Rn to R (see [16]). For a given x0 ∈ P , define the associated
locally closed subset Px0 of P (see Figure 2) by

Px0
=

⋂
αi(x0)=0

{αi ≥ 0} ∩
⋂

αi(x0)>0

{αi > 0}.

Then the Euler characteristic is

e(Px0
) =

{
(−1)d, if x0 ∈

◦
P

0, otherwise (x0 ∈ ∂P ),

where
◦
P is the relative interior of P and ∂P = P r

◦
P .

x0

x0

Figure 2. Px0
.
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Proof. If x0 ∈
◦
P , then Px0 =

◦
P . The Euler characteristic is e(

◦
P ) = (−1)d.

Suppose x0 ∈ ∂P . Then Px0
can be expressed as

(10) Px0
=
⊔
F3x0

◦
F ,

where F runs over the faces of P containing x0 and
◦
F denotes its relative interior. Then we

obtain the decomposition

Px0 =
◦
P t

⊔
F3x0,F⊂∂P

◦
F .

We look at the structure of the second component Z :=
⊔
F3x0,F⊂∂P

◦
F . For any point y ∈ Z,

the segment [x0, y] is contained in Z. Hence Z is contractible open subset of ∂P , which is
homeomorphic to the (d− 1)-dimensional open disk. The Euler characteristic is computed as

e(Px0
) = e(

◦
P ) + e(Z)

= (−1)d + (−1)d−1

= 0.

�

3.2. Proof of the main result. Now we prove Theorem 3.3. The strategy is to decompose
the space Hom≤(P,−Q) into appropriate semialgebraic subsets, and then to apply Lemma 3.5
to compute the Euler characteristics.

We first prove (8). Let ϕ ∈ Hom<(P,Q× (0, 1)). Then ϕ is a pair of maps

ϕ = (f, g),

where f : P −→ Q and g : P −→ (0, 1). Let π1 : Q × (0, 1) −→ Q be the projection onto
the first factor. Since π1 is order-preserving (Proposition 2.7), so is f = π1 ◦ ϕ, and hence

f ∈ Hom≤(P,Q).
In order to compute the Euler characteristics, we consider the map

(11) π1∗ : Hom≤(P,Q× (0, 1)) −→ Hom≤(P,Q), ϕ 7−→ π1 ◦ ϕ = f.

Let us set

M := Hom≤(P,Q) r Hom<(P,Q)

={f ∈ Hom≤(P,Q) | ∃x < y ∈ P s.t. f(x) = f(y)}.
(12)

Then obviously, we have

(13) Hom≤(P,Q) = Hom<(P,Q) tM.

This decomposition induces that of Hom≤(P,Q× (0, 1)),

(14) Hom≤(P,Q× (0, 1)) = π−11∗
(
Hom<(P,Q)

)
t π−11∗ (M).

By the additivity of the Euler characteristics, we obtain

(15) e
(
Hom≤(P,Q× (0, 1))

)
= e

(
π−11∗

(
Hom<(P,Q)

))
+ e(π−11∗ (M)).

We claim the following two equalities which are sufficient for the proof of (8).

e
(
π−11∗

(
Hom<(P,Q)

))
= (−1)#P · e

(
Hom<(P,Q)

)
,(16)

e(π−11∗ (M)) = 0.(17)
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We first prove (16). Let ϕ ∈ π−11∗
(
Hom<(P,Q)

)
, that is ϕ = (f, g) with f ∈ Hom<(P,Q). By

the definition of the ordering of Q× (0, 1), for every g : P −→ (0, 1) the pair (f, g) is contained
in π−11∗

(
Hom<(P,Q)

)
. This implies

(18) π−11∗
(
Hom<(P,Q)

)
' Hom<(P,Q)× (0, 1)#P ,

which yields (16).
The proof of (17) requires further stratification of M . Let

L(P ) := {(p1, p2) ∈ P × P | p1 < p2}.
For given f ∈M , consider the set of collapsing pairs,

K(f) := {(p1, p2) ∈ L(P ) | f(p1) = f(p2)}.
Note that f ∈ M if and only if K(f) 6= ∅. We decompose M according to K(f). Namely, for
any nonempty subset X ⊂ L(P ) define a subset MX ⊂M by

MX := {f ∈M | K(f) = X}.
Since L(P ) is a finite set,

(19) M =
⊔

X⊂L(P )
X 6=∅

MX

is a decomposition of M into finitely many semialgebraic sets. Therefore, we obtain

e(π−11∗ (M)) =
∑

X⊂L(P )
X 6=∅

e(π−11∗ (MX)).

Thus it is enough to show e(π−11∗ (MX)) = 0 for all X ⊂ L(P ) as long as π−11∗ (MX) 6= ∅ (note
that π−11∗ (MX) = ∅ can occur for a nonempty X e.g. when #Q = 1).

Now we fix X ⊂ L(P ) such that π−11∗ (MX) 6= ∅. Then we can show that π−11∗ (MX) −→MX is
a trivial fibration. Indeed, for any f ∈MX , the condition imposed on g by

(f, g) ∈ Hom≤(P,Q× (0, 1))

is
(p1, p2) ∈ X =⇒ g(p1) ≤ g(p2).

Hence the fiber π−11∗ (f) is independent of f ∈MX and isomorphic to

(20) FX := {(tp)p∈P ∈ (0, 1)P | (p1, p2) ∈ X =⇒ tp1 ≤ tp2},
and we have

(21) π−11∗ (MX) 'MX × FX .
The fiber FX is a locally closed polytope defined by the following inequalities.

0 < tp < 1, tp1 ≤ tp2 for (p1, p2) ∈ X.

The closure FX is defined by

FX = {(tp)p∈P ∈ [0, 1]P | tp1 ≤ tp2 for (p1, p2) ∈ X}.

Then FX is equal to the locally closed polytope (FX)x0 associated to the point

x0 = (
1

2
,

1

2
, . . . ,

1

2
) ∈ ∂FX .

Since X 6= ∅, x0 is not contained in the interior of FX . By Lemma 3.5, e(FX) = 0. Together
with (21), we conclude e(π−11∗ (MX)) = 0. This completes the proof of (8) of Theorem 3.3.
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The proof of the other formula (9) is similar to and actually simpler than that of (8) since we
do not need Lemma 3.5. Again the first projection π1 : Q× (0, 1) 7−→ Q induces the map

π1∗ : Hom<(P,Q× (0, 1)) −→ Hom≤(P,Q).

We can prove that this map is surjective and each fiber of π−11∗ (MX) (now X = ∅ is allowed) is
isomorphic to

◦
FX = {(tp)p∈P ∈ (0, 1)P | tp1 < tp2 for all (p1, p2) ∈ X}.

This fiber is an open polytope of dimension #P and hence is isomorphic to (0, 1)#P whose Euler
characteristic is (−1)#P . Thus we obtain

e(Hom<(P,Q× (0, 1))) =
∑

X⊂L(P )

e(π−11∗ (MX)) =
∑

X⊂L(P )

e(MX ×
◦
FX)

=
∑

X⊂L(P )

e(MX) · (−1)#P = (−1)#P · e

 ⊔
X⊂L(P )

MX


= (−1)#P · e(Hom≤(P,Q)).

This completes the proof.

3.3. Stanley’s reciprocity for order polynomials. In this section, we deduce Stanley’s reci-
procity (2) from Theorem 3.3. The idea is to take semialgebraic totally ordered posets as the
target posets.

Example 3.6. Any semialgebraic set X ⊂ R with the induced ordering is a semialgebraic
totally ordered set. Furthermore, since Rn is totally ordered by the lexicographic ordering, any
semialgebraic set X ⊂ Rn admits the structure of a semialgebraic totally ordered set.

The Euler characteristic of Hom≤(P, T ), with T a semialgebraic totally ordered set, can be

computed by using the order polynomial O≤(<)(P, t).

Theorem 3.7 (Theorem 1.1 (iii)). Let P be a finite poset and T be a semialgebraic totally
ordered set. Then

e(Hom≤(P, T )) = O≤(P, e(T )),(22)

e(Hom<(P, T )) = O<(P, e(T )).(23)

Before proving Theorem 3.7, we need several lemmas on the Euler characteristics of configu-
ration spaces.

Definition 3.8. Let X be a semialgebraic set. The ordered configuration space of n-points on
X, denoted by Cn(X), is defined by

Cn(X) = {(x1, . . . , xn) ∈ Xn | xi 6= xj if i 6= j}.

Lemma 3.9. e(Cn(X)) = e(X) · (e(X)− 1) · · · (e(X)− n+ 1).

Proof. It is proved by induction. When n = 1, it is obvious from C1(X) = X. Suppose n > 1.
Consider the projection

π : Cn(X) −→ Cn−1(X), (x1, . . . , xn) 7−→ (x1, . . . , xn−1).

Then the fiber of π at the point (x1, . . . , xn−1) ∈ Cn−1(X) is

X r {x1, . . . , xn−1},



EULER CHARACTERISTIC RECIPROCITY FOR POLYNOMIALS 221

which has the Euler characteristic

e(X r {x1, . . . , xn−1}) = e(X)− (n− 1).

Therefore, from the inductive assumption, we have

e(Cn(X)) = e(Cn−1(X)) · (e(X)− n+ 1)

= e(X) · (e(X)− 1) · · · (e(X)− n+ 1).

�

Remark 3.10. We will give a stronger result later (Theorem 4.2 and Corollary 4.3).

Lemma 3.11. Let T be a semialgebraic totally ordered set. Then

(24) e(Hom<([n], T )) =
e(T ) · (e(T )− 1) · · · (e(T )− n+ 1)

n!
.

Proof. The set
Hom<([n], T ) = {(x1, . . . , xn) ∈ Tn | x1 < · · · < xn}

is obviously a subset of the configuration space Cn(T ). Moreover, using the natural action of
the symmetric group Sn on Cn(T ) and the fact that T is totally ordered, we have

Cn(T ) =
⊔

σ∈Sn

σ(Hom<([n], T )).

Since the group action preserves the Euler characteristic, we obtain the following.

e(Cn(T )) = n! · e(Hom<([n], T )).

�

Proof of Theorem 3.7. We fix ε ∈ {≤, <}. Let f ∈ Homε(P, T ). Since P is a finite poset,
the image f(P ) ⊂ T is a finite totally ordered set. Suppose #f(P ) = k. Then the map f is
decomposed as

f : P
α−→ [k]

β−→ T,

where α : P −→ [k] is surjective while β : [k] −→ T is injective. Hence β can be considered as an
element of Hom<([k], T ), and we have the following decomposition,

(25) Homε(P, T ) =
⊔
k≥1

Homε,surj(P, [k])×Hom<([k], T ),

where Homε,surj(P, [k]) is the set of surjective maps in Homε(P, [k]). By putting T = [n] and
then extending n to real numbers t, we obtain the expression for the (strict) order polynomial,

(26) Oε(P, t) =
∑
k≥1

# Homε,surj(P, [k]) · t(t− 1) · · · (t− k + 1)

k!
,

which was already obtained by Stanley [10, Theorem 1]. Using (25), Lemma 3.11 and (26), we
have

e(Homε(P, T )) =
∑
k≥1

e(Homε,surj(P, [k])) · e(Hom<([k], T ))

=
∑
k≥1

# Homε,surj(P, [k]) · e(T )(e(T )− 1) · · · (e(T )− k + 1)

k!

= Oε(P, e(T )).

This completes the proof of Theorem 3.7. �
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Corollary 3.12. (Stanley’s reciprocity [10]) Let P be a finite poset and n ∈ N. Then

(27) # Hom<(P, [n]) = (−1)#P · O≤(P,−n).

Proof. Since Hom<(P, [n]) is a finite poset, the cardinality is equal to the Euler characteristic:
# Hom<(P, [n]) = e(Hom<(P, [n])). We apply the Euler characteristic reciprocity (Theorem
3.3),

e(Hom<(P, [n])) = (−1)#P · e(Hom≤(P, [n]× (0, 1))).

Note that [n]×(0, 1) is a semialgebraic totally ordered set (with the lexicographic ordering) with
the Euler characteristic e([n]× (0, 1)) = −n. Applying Theorem 3.7, we have

e(Hom≤(P, [n]× (0, 1))) = O≤(P,−n),

which implies (27). �

4. Chromatic and flow polynomials for finite graphs

In this section, we formulate Euler characteristic reciprocities for chromatic polynomials of
finite simple graphs and for flow polynomials of finite oriented graphs.

4.1. Chromatic polynomials. Let G = (V,E) be a finite simple graph with vertex set V and
(un-oriented) edge set E. The chromatic polynomial is a polynomial χ(G, t) ∈ Z[t] which satisfies

χ(G,n) = #{c : V −→ [n] | v1v2 ∈ E =⇒ c(v1) 6= c(v2)},
for all n > 0. The chromatic polynomial is also characterized by the following properties:

• if E = ∅ then χ(G, t) = t#V ;
• if e ∈ E, then χ(G, t) = χ(G − e, t) − χ(G/e, t), where G − e and G/e are the deletion

and the contraction with respect to the edge e, respectively.

(See [15] for these terminologies and basic properties of chromatic polynomials.)

Definition 4.1. Given a set X, define the set of vertex coloring with X (or the graph configu-
ration space) by

(28) χ(G,X) = {c : V −→ X | v1v2 ∈ E =⇒ c(v1) 6= c(v2)}.

The assignment X 7−→ χ(G,X) can be considered as a functor [14]. The space χ(G,X) is
also called the graph (generalized) configuration space [8].

The chromatic polynomial χ(G, t) ∈ Z[t] satisfies χ(G,n) = #χ(G, [n]) for all n ∈ N.
In this section, we investigate the Euler characteristic aspects of the chromatic polynomial

for a finite simple graph.
When X is a semialgebraic set, χ(G,X) is also a semialgebraic set. The following result

generalizes [8, Theorem 2], where the result is proved when X is a complex projective space.

Theorem 4.2. Let G = (V,E) be a finite simple graph and X be a semialgebraic set. Then

(29) e(χ(G,X)) = χ(G, e(X)).

Proof. This result is proved by induction on #E. When E = ∅,
e(χ(G,X)) = e(X#V ) = e(X)#V = χ(G, e(X)).

Suppose e ∈ E. Then we can prove

(30) χ(G− e,X) ' χ(G,X) t χ(G/e,X).

Using the additivity of the Euler characteristic and the recursive relation for the chromatic
polynomial, we obtain (29). �
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Note that for the complete graph G = Kn, χ(Kn, X) is identical to the configuration space
Cn(X) of n-points. Applying Theorem 4.2 to the complete graph Kn (which has the chromatic
polynomial χ(Kn, t) = t(t− 1) · · · (t− n+ 1)), we have the following.

Corollary 4.3. e(Cn(X)) = e(X)(e(X)− 1) · · · (e(X)− n+ 1).

To formulate the reciprocity for chromatic polynomials, we recall the notion of acyclic orien-
tations on a graph G. (See [3, 12] for details.)

Let G = (V,E) be a finite simple graph. The set of edges E can be considered as a subset of

(V × V r ∆)/S2,

where ∆ = {(v, v) | v ∈ V } is the diagonal subset and S2 acts on V ×V by transposition. There
is a natural projection

π : V × V r ∆ −→ (V × V r ∆)/S2.

An edge orientation on G is a subset Ẽ ⊂ V × V r ∆ such that π|Ẽ : Ẽ
'−→ E is a bijec-

tion. An orientation Ẽ is said to contain an oriented cycle, if there exists a cyclic sequence

(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1) ∈ Ẽ for some n > 2. The orientation Ẽ is called acyclic
if it does not contain oriented cycles.

Definition 4.4. Let G = (V,E) be a finite simple graph. Fix an acyclic orientation

Ẽ ⊂ V × V r ∆. Let T be a totally ordered set.

(a) A map c : V −→ T is said to be compatible with Ẽ if

(v, v′) ∈ Ẽ =⇒ c(v) ≤ c(v′).

(b) A map c : V −→ T is said to be strictly compatible with Ẽ if

(v, v′) ∈ Ẽ =⇒ c(v) < c(v′).

We denote the sets of all pairs of an acyclic orientation with a compatible map, and with a
strictly compatible map, by

AOC≤(G,T ) :=

{
(Ẽ, c)

∣∣∣∣∣ Ẽ is an acyclic orientation, and c : V → T

is a map compatible with Ẽ

}
,

and

AOC<(G,T ) :=

{
(Ẽ, c)

∣∣∣∣∣ Ẽ is an acyclic orientation, and c : V → T

is a map strictly compatible with Ẽ

}
,

respectively.
If T is a semialgebraic totally ordered set, then these spaces possess the structure of semial-

gebraic sets. We will see a reciprocity between these two spaces from which Stanley’s reciprocity
for chromatic polynomials is deduced.

It is straightforward that AOC<(G,T ) can be identified with χ(G,T ). In particular, we have

(31) e(AOC<(G,T )) = χ(G, e(T )).

We formulate a reciprocity for chromatic polynomials in terms of Euler characteristics.

Theorem 4.5. Let G = (V,E) be a finite simple graph and T be a semialgebraic totally ordered
set. Then

e(AOC≤(G,T )) = (−1)#V · e(AOC<(G,T × (0, 1))),(32)

e(AOC<(G,T )) = (−1)#V · e(AOC≤(G,T × (0, 1))).(33)
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To prove Theorem 4.5, we give alternative descriptions of AOC≤(<)(G,T ) in terms of poset

homomorphisms and graph configuration spaces. Let Ẽ be an acyclic orientation of G = (V,E).

Then Ẽ determines an ordering on V , called the transitive closure of Ẽ, defined by

v < v′ ⇐⇒ ∃v0, . . . , vn ∈ V s.t.

{
v = v0, v

′ = vn, and

(vi−1, vi) ∈ Ẽ for 1 ≤ i ≤ n.

This ordering defines a poset which we denote by P (V, Ẽ).

A map c : V −→ T is compatible with Ẽ if and only if c is an increasing map from P (V, Ẽ)

to T . Hence the set of maps compatible with Ẽ is identified with Hom≤(P (V, Ẽ), T ). We have
the following decomposition.

(34) AOC≤(G,T ) '
⊔

Ẽ: acyclic ori.

Hom≤(P (V, Ẽ), T ).

Similarly, AOC<(G,T ) is decomposed as follows.

(35) AOC<(G,T ) '
⊔

Ẽ: acyclic ori.

Hom<(P (V, Ẽ), T ).

Proof of Theorem 4.5. We prove (32). Using the above decompositions (34) and (35) together
with Theorem 3.3, we obtain

e(AOC≤(G,T )) = e

 ⊔
Ẽ: acyclic ori.

Hom≤(P (V, Ẽ), T )


=

∑
Ẽ: acyclic ori.

e
(

Hom≤(P (V, Ẽ), T )
)

= (−1)#V ·
∑

Ẽ: acyclic ori.

e
(

Hom<(P (V, Ẽ), T × (0, 1))
)

= (−1)#V · e

 ⊔
Ẽ: acyclic ori.

Hom<(P (V, Ẽ), T × (0, 1))


= (−1)#V · e(AOC<(G,T × (0, 1))).

This completes the proof. The second formula (33) is proved similarly. �

We deduce Stanley’s reciprocity on chromatic polynomials ([12]). Applying Theorem 4.5 and
(31) shows that (note that T × (0, 1) is also a semialgebraic totally ordered set)

e(AOC≤(G,T )) = (−1)#V · e(AOC<(G,T × (0, 1)))

= (−1)#V · χ(G, e(T × (0, 1)

= (−1)#V · χ(G,−e(T )).

Putting T = [n], we have the following Stanley’s reciprocity.

Corollary 4.6. Let G = (V,E) be a finite simple graph and n ∈ N. Then

#AOC≤(G, [n]) = (−1)#V · χ(G,−n).
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4.2. Flow polynomials. This section treats finite oriented graphs that are allowed to have
distinguished multiple edges and loops. Our object is a tuple G = (V,E, h, t) where V and E
are finite sets and h : E −→ V and t : E −→ V are maps. An element of V is called a vertex
and an element of E is called an edge. For an edge e ∈ E, h(e) ∈ V is called the head and
t(e) ∈ V is called the tail. An edge e ∈ E is a loop if h(e) = t(e). In Figure 3, the oriented graph
G has five edges e1, . . . , e5 and their orientations are described by h(e1) = h(e2) = t(e3) = x,
t(e1) = t(e2) = h(e3) = h(e4) = y and t(e4) = h(e5) = t(e5) = z.

An oriented graph G can also be seen as a 1-dimensional CW-complex. The number of
connected components and the 1-st Betti numbers are denoted by b0(G) and b1(G), respectively.
Note that b0(G)− b1(G) = #V −#E. An edge e ∈ E is called a coloop if b0(Gr e) = b0(G) + 1.
The graph in Figure 3 has the unique coloop e4.

Let A be an abelian group. The map f : E −→ A is called an A-flow if f satisfies

(36)
∑

e:h(e)=v

f(e) =
∑

e:t(e)=v

f(e)

for all v ∈ V (see [6, 15] more on the notion of flow and flow polynomials). Let f be an A-flow.
Denote Supp(f) = {e ∈ E | f(e) 6= 0}. An A-flow is called nowhere zero if Supp(f) = E. The
set of all A-flows and nowhere zero A-flows are denoted by F(G,A) and F0(G,A), respectively.

Let A be a semialgebraic abelian group. Then clearly F0(G,A) possesses a structure of a
semialgebraic set.

The flow polynomial is a polynomial φG(t) ∈ Z[t] which satisfies

φG(k) = #F0(G,Z/kZ),

for all k > 0. The flow polynomial is also characterized by the following properties:

• if E = ∅, then φG(t) = 1;
• if e ∈ E is a loop, then φG(t) = (t− 1)φGre(t);
• if e ∈ E is a coloop, then φG(t) = 0;
• if e ∈ E is neither a loop nor a coloop, then φG(t) = φG/e(t)− φGre(t).

Proposition 4.7. Let G be a finite oriented graph, and A be a semialgebraic abelian group.

(a) If e ∈ E is a loop, then F0(G,A) ' (Ar {0})×F0(Gr e,A).
(b) If e ∈ E is a coloop, then F0(G,A) = ∅.
(c) If e ∈ E is neither a loop nor a coloop, then F0(G/e,A) ' F0(G,A) t F0(Gr e,A).

Proof. Straightforward. �

Theorem 4.8. Let G be a finite oriented graph and A be a semialgebraic abelian group. Then
e(F0(G,A)) = φG(e(A)).

Proof. Using Proposition 4.7, it is proved by induction on the number of edges. (See Theorem
4.2.) �

x y z
e2

e1

e3

e4 e5

Figure 3. An oriented graph.
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An oriented graph G is called totally cyclic if every edge is contained in an oriented cycle. Let
σ ⊂ E be a subset of edges and denote by σG the reorientation of G along σ. A subset σ ⊂ E
is a totally cyclic reorientation if σG is totally cyclic.

Let us denote by FT C(G,A) the set of all pairs (f, σ) of the flow f and totally cyclic reori-
entation σ ⊂ E r Supp(f). Namely,

FT C(G,A) =

{
(f, σ)

∣∣∣∣ f ∈ F(G,A), and σ ⊂ E r Supp(f) is a
totally cyclic reorientation for G/ Supp(f)

}
.

For each subset σ ⊂ E, the set of all f with (f, σ) ∈ FT C(G,A) forms a semialgebraic subset of
F(G,A). Therefore FT C(G,A) possesses a structure of semialgebraic set. Let us define −A by

−A := A× R.

The following is proved along the same lines of the proof presented in [6, Appendix A], which
can be considered as a Breuer-Sanyal’s reciprocity at the level of Euler characteristic.

Theorem 4.9. Let G be a finite oriented graph and A be a semialgebraic abelian group. Then

e(FT C(G,±A)) = (−1)b1(G)e(F0(G,∓A)).
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