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INTERSECTION SPACES, PERVERSE SHEAVES

AND STRING THEORY

LAURENTIU MAXIM

Abstract. We survey recent results describing a perverse sheaf realization of Banagl’s in-
tersection space homology in the context of projective hypersurfaces with only isolated sin-

gularities. Intersection space homology has been recently proved to be relevant in type IIB

string theory, as it provides the correct count of massless 3-branes arising during a Calabi-Yau
conifold transition.

1. Introduction

In addition to the four dimensions that model our space-time, string theory requires six
dimensions for a string to vibrate. By supersymmetry, these six real dimensions must be realized
by a Calabi-Yau space. However, given the multitude of known topologically distinct Calabi-Yau
3-folds, the string model remains undetermined. Therefore, it is important to have mechanisms
that allow one to move from one Calabi-Yau space to another. In Physics, a solution to this
problem was first proposed by Green-Hübsch [GH1, GH2] who, motivated by Reid’s “fantasy”
[Re87], conjectured that topologically distinct Calabi-Yau 3-folds are connected to each other by
means of conifold transitions, which induce a phase transition between the corresponding string
models.

A conifold transition starts out with a smooth Calabi-Yau 3-fold, passes through a singular
variety — the conifold — by a deformation of complex structure, and arrives at a topologically
distinct smooth Calabi-Yau 3-fold by a small resolution of singularities. The deformation col-
lapses embedded three-spheres (called vanishing cycles) to isolated ordinary double points, while
the resolution resolves the singular points by replacing each of them with a CP1. In Physics,
the topological change resulted from passing from one of the Calabi-Yau’s to the conifold was
interpreted by Strominger [Str95] by the condensation of massive black holes to massless ones.
In type IIA string theory, there are charged two-branes that wrap around the CP1 2-cycles,
and which become massless when these 2-cycles are collapsed to points by the resolution map.
Goresky-MacPherson’s intersection homology [GM80, GM83] of the conifold accounts for all
of these massless two-branes, and since it also satisfies Poincaré duality, it may be viewed as
a physically correct homology theory for type IIA string theory. Similarly, in type IIB string
theory there are charged three-branes wrapped around the vanishing cycles, and which become
massless as these vanishing cycles are collapsed by the deformation of complex structure. Neither
ordinary homology nor intersection homology of the conifold account for these massless three-
branes; see [Ba10][Section 3.7] for more details. So a natural problem is to find a physically
correct homology theory for type IIB string theory. A solution to this question was suggested
by Banagl in [Ba10] via his intersection space homology theory.
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In [Ba10], Banagl developed a homotopy-theoretic method which associates to certain types of
singular spaces X (e.g., a conifold) a CW complex IX, called the intersection space of X, whose
reduced rational homology groups satisfy Poincaré Duality. Roughly speaking, the intersection
space IX associated to a singular space X is constructed by replacing links of singularities of
X by their corresponding Moore approximations, a process called spatial homology truncation.
The intersection space homology

(1) HI∗(X;Q) := H∗(IX;Q)

is not isomorphic to the intersection homology of the space X, and in fact it can be seen that in
the middle degree and for isolated singularities, this new theory takes more cycles into account
than intersection homology. For a conifold X, Banagl showed that the dimension of HI3(X)
equals the number of physically present massless 3-branes in IIB theory, so intersection space
homology can be viewed as a physically correct homology theory for type IIB string theory.

Our approach for studying intersection space homology is motivated by mirror symmetry. In
mirror symmetry, given a Calabi-Yau 3-fold X, the mirror map associates to it another Calabi-
Yau 3-fold Y so that type IIB string theory on R4×X corresponds to type IIA string theory on
R4 × Y . If X and Y are smooth, their Betti numbers are related by precise algebraic identities
(e.g., see [CK99]), e.g.,

(2) β3(Y ) = β2(X) + β4(X) + 2,

etc. Morrison [Mor99] conjectured that the mirror of a conifold transition is again a conifold
transition, but performed in the reverse order (i.e., by exchanging resolutions and deformations).
Thus, if X and Y are mirrored conifolds (in mirrored conifold transitions), the intersection space
homology of one space and the intersection homology of the mirror space form a mirror-pair, in
the sense that

(3) β3(IY ) = Iβ2(X) + Iβ4(X) + 2,

etc., where Iβi denotes the i-th intersection homology Betti number (see [Ba10] for details). This
suggests that it should be possible to compute the intersection space homology HI∗(X;Q) of a
variety X in terms of the topology of a smoothing deformation, by “mirroring” known results
(e.g., [BBD, dCM, GM82]) relating the intersection homology groups IH∗(X;Q) of X to the
topology of a resolution of singularities.

This point of view was successfully exploited in [BM11, BBM], where we considered the case
of a hypersurface X ⊂ CPn+1 with only isolated singularities, this being the main source of
examples for conifold transitions. In this note, we review some of the main constructions and
results from these works.

Convention: By “manifold” we mean a “complex projective manifold”, and by “singular space”
we mean a “complex projective variety of pure complex dimension n”. We are only interested in
“middle-perversity” calculations, so any mentioning of other perversity functions will be ignored.
Unless otherwise specified, all (intersection) (co)homology groups will be computed with rational
coefficients. Spaces considered in this paper will have at most isolated singularities.

Some of the properties of intersection (co)homology of a singular space X which are relevant
for the above-mentioned “mirror” approach are:

(a) Intersection homology IH∗(X) satisfies Poincaré duality.

(b) If X̃ is a resolution of singularities of X, then IH∗(X) is a sub-vector space of H∗(X̃).

Moreover, if X̃ is a small resolution, then IH∗(X) ∼= H∗(X̃).
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(c) IH∗(X) is realized by a perverse, self-dual, constructible sheaf complex ICX , i.e.

(4) IHi(X) ∼= Hi(X, ICX [−n]).

(d) IH∗(X) carries the Kähler package, including Hodge structures, as well as weak and
hard Lefschetz theorems.

Based on the above considerations, it is therefore natural to try to “mirror” such properties
in the context of intersection space (co)homology. As already mentioned, the Poincaré duality
property is satisfied by the intersection spaces. We will thus focus on the properties (b), (c) and
(d).

2. Hypersurface singularities and smoothing invariance of intersection space
homology

Let X be a complex projective hypersurface of dimension n > 2, which, for simplicity, is
assumed to have only one isolated singular point x. Let Lx, Fx and Tx : Hn(Fx) → Hn(Fx)
denote the link, Milnor fiber and local monodromy operator of the isolated hypersurface singu-
larity germ (X,x), respectively. By [Mi68], the link Lx is an (n − 2)-connected closed oriented
(2n−1)-dimensional manifold. Moreover, the Milnor fiber Fx is a parallelizable (n−1)-connected
2n-dimensional manifold, which has the homotopy type of

∨
Sn, a wedge of n-spheres. The num-

ber µx = rkHn(Fx) of these n-spheres (also called vanishing cycles) is the local Milnor number
at x. It is known that all eigenvalues of Tx are roots of unity. We say that the local monodromy
operator Tx is trivial if all eigenvalues of Tx are equal to 1.

The assumption on the dimension of X is needed to assure that the link Lx of x is simply-
connected, so the intersection space IX can be defined as in [Ba10]. The actual definition of
an intersection space is not needed here, only the calculation of Betti numbers, as described in
Theorem 2.1 below, will be used in the sequel. Nevertheless, let us indicate briefly how IX is
obtained from X. Let M be the complement of an open cone neighborhood of x so that M
is a compact manifold with boundary ∂M = Lx. The spatial homology n-truncation of Lx is
a topological space L<nx such that Hi(L

<n
x ) = 0 for i ≥ n, together with a continuous map

f : L<nx → L which induces a homology isomorphism in degrees i < n. The intersection space
IX is then defined as the homotopy cofiber of the composition

L<nx
f−→ Lx = ∂M

incl
↪→ M

(see [Ba10] for complete details, and [BM12] for a mild introduction).
The following result can be viewed as a generalization of the Betti calculation from [Ba10] in

the context of conifold transitions:

Theorem 2.1. ([BM11][Thm.4.1, Thm.5.2]) Let Xs be a nearby smoothing of X. Then, under
the above assumptions and notations, the following holds:

(5) dimHIi(X;Q) =

 dimHi(Xs;Q) if i 6= n, 2n;
dimHi(Xs;Q)− rk(Tx − 1) if i = n;
0 if i = 2n.

Moreover, under some mild technical assumption on the homology of the link (that is, if
Hn−1(Lx;Z) is torsion-free), the above identities are derived via a continuous map IX → Xs,

and we obtain a smoothing invariance of the intersection space (co)homology H̃∗(IX) if, and only
if, the local monodromy operator Tx is trivial. So this result can be viewed as mirroring property
(b) of intersection homology, expressing the intersection cohomology of X as a sub-vector space
of the cohomology of any resolution, with an isomorphism in the case of a small resolution.
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Moreover, the local trivial monodromy condition (or the existence of “small deformations”)
should be regarded as mirroring that of the existence of small resolutions.

3. Perverse sheaf approach to intersection space homology

3.1. Summary of results. Guided by a similar philosophy derived from mirror symmetry,
in [BBM] we constructed a perverse sheaf1 ISX , the intersection-space complex, whose global
hypercohomology calculates (abstractly) the intersection space cohomology groups of a projective
hypersurface X ⊂ CPn+1 with one isolated singular point.

Theorem 3.1. ([BBM]) Let Xs be a nearby smoothing of X. Then there exists a perverse sheaf
complex ISX on X so that there are (abstract) isomorphisms

(6) Hi(X; ISX [−n]) '

{
Hi(IX) if i 6= 2n

H2n(Xs) = Q if i = 2n.

Our construction (see Section 3.2.2 for a sketch) can be viewed as mirroring the fact that the
intersection cohomology groups can be computed from a perverse sheaf, namely the intersection
cohomology complex ICX . We would like to point out that for general X there cannot exist a
perverse sheaf P on X such that HI∗(X;Q) can be computed from the hypercohomology group
H∗(X;P[−n]). Indeed, the stalk vanishing conditions that such a perverse sheaf P satisfies would
give Hi(X;P[−n]) = Hi(M), for i < n, while Hi(IX) = Hi(M,∂M) if i < n. (Here M denotes
as before the complement of an open cone neighborhood of x in X.) However, due to the high-
connectivity of the links, this goal can be achieved in the case when X is a hypersurface with
only isolated singularities, this being in fact the main source of examples for conifold transitions.
This fact motivates our study of intersection spaces associated to hypersurfaces with only isolated
singularities.

Furthermore, by construction, the intersection space complex ISX underlies a mixed Hodge
module, therefore its hypercohomology groups carry canonical mixed Hodge structures. This
result mirrors the corresponding one for the intersection cohomology complex ICX .

It follows from the above interpretation of intersection space cohomology that the groups
H∗(X; ISX) satisfy Poincaré duality globally, which raises the question whether this duality is
induced by a more powerful (Verdier-) self-duality isomorphism D(ISX) ' ISX in the derived
category of constructible bounded sheaf complexes on X. In [BBM], we showed the following:

Theorem 3.2. ([BBM]) If the local monodromy Tx at the singular point x is semi-simple in
the eigenvalue 1, then the intersection space complex ISX is Verdier self-dual. In particular, for
any integer i, there is a non-degenerate pairing

H−i(X; ISX)×Hi(X; ISX)→ Q.

The assumption on the semi-simplicity of local monodromy in the eigenvalue 1 is satisfied by
a large class of isolated singularities, e.g., the weighted homogeneous ones.

1Let us recall here the definition of a perverse sheaf on a singular space X with only one isolated singular

point x. Such a space can be given a Whitney stratification X with only two strata: {x} and X \ {x}. Denote by

i : {x} ↪→ X and j : X \ {x} ↪→ X the corresponding closed and open embeddings. Then a complex K ∈ Db
c(X),

which is constructible with respect to X , is perverse on X if j∗K[−n] is cohomologically a local system on X \{x}
and, moreover, the following two (stalk and, respectively, co-stalk vanishing) conditions hold:

Hj(i∗K) = 0, for any j > 0,

Hj(i!K) = 0, for any j < 0.
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Let us next recall that the Beilinson-Bernstein-Deligne decomposition [BBD] for the pushfor-

ward Rf∗QX̃ [n] of the constant sheaf QX̃ under an algebraic resolution map f : X̃ → X splits
off the intersection sheaf ICX of X plus contributions from the singularities of X. Suppose now

that X sits as X = π−1(0) in a family π : X̃ → S of projective hypersurfaces over a small disc

around 0 ∈ C such that X̃ is smooth, and Xs = π−1(s) is smooth over nearby s ∈ S, s 6= 0.
In this situation, the nearby cycle functor ψπ for π can be defined, and we have the following
result:

Theorem 3.3. ([BBM]) If the local monodromy Tx at the singular point x is semi-simple in the
eigenvalue 1, then the intersection space complex ISX is a direct summand of the nearby cycle
complex ψπQX̃ [n].

The summand complementary to ISX has the interpretation as being contributed by the
singularity x, since it is supported only over {x}. We regard this splitting of nearby cycles as
mirroring the above Beilinson-Bernstein-Deligne decomposition theorem in the following sense.
For s sufficiently close to 0, there is a map sp : Xs → X, the specialization map, which should
be viewed as mirroring a resolution map. Moreover, the nearby cycle complex ψπQX̃ [n] can
be computed by the (derived) pushforward R(sp)∗QXs

[n] of the constant sheaf on a nearby
smoothing of X. Altogether, we have a decomposition

(7) R(sp)∗QXs
[n] ' ISX ⊕ C,

with C a perverse sheaf supported on the singular set {x}.
Finally, in [BBM] we prove the following result which mirrors the existence of the Kähler

package on intersection cohomology groups:

Theorem 3.4. ([BBM]) If the local monodromy Tx at x is semi-simple in the eigenvalue 1,
and the global monodromy T acting on H∗(Xs) is semi-simple in the eigenvalue 1, then the
hypercohomology groups H∗(X; ISX) carry pure Hodge structures satisfying the Hard Lefschetz
theorem.

3.2. Intersection space complex. Let us now sketch the construction of the perverse sheaf
ISX , see [BBM] and references therein for complete details. We will try to keep the technical
details at a minimum, in order not to obscure the presentation.

3.2.1. Nearby and vanishing cycles. Let us consider, as before, a hypersurface X ⊂ CPn+1 with

Sing(X) = {x}. Let π : X̃ → S ⊂ C be a family of hypersurfaces over a small disc S centered at

the origin, with X = π−1(0), and so that X̃ is smooth and Xs := π−1(s) for s 6= 0 is a smooth
hypersurface in CPn+1. Let

ψπ, ϕπ : Db
c(X̃)→ Db

c(X)

be the nearby and vanishing cycle functors for π, with monodromy T and resp. T̃ . Then

(8) Hi(Xs;Q) ∼= Hi(X;ψπQX̃),

and, for the point inclusion ix : {x} ↪→ X, with Fx denoting as before the Milnor fiber of the
hypersurface singularity germ (X,x), we have

(9) Hi(Fx;Q) ∼= Hi(i∗xψπQX̃) and H̃i(Fx;Q) ∼= Hi(i∗xϕπQX̃),

with compatible monodromy actions. Note that Supp(ϕπQX̃) = Sing(X) = {x}.
There are canonical morphisms:

can : ψπ → ϕπ and var : ϕπ → ψπ

so that can ◦ var = T̃ − 1, var ◦ can = T − 1.
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The monodromy automorphisms T and T̃ have Jordan decompositions

T = Tu ◦ Ts = Ts ◦ Tu,

where Ts is semisimple (and locally of finite order) and Tu is unipotent, and similarly for T̃ . For

any λ ∈ Q and K ∈ Db
c(X̃), denote by ψπ,λK the generalized λ-eigenspace for T , and similarly

for φπ,λK. There are decompositions

ψπ = ψπ,1 ⊕ ψπ,6=1 and ϕπ = ϕπ,1 ⊕ ϕπ,6=1

so that Ts = 1 on ψπ,1, T̃s = 1 on ϕπ,1, and Ts and T̃s have no 1-eigenspace on ψπ,6=1 and ϕπ,6=1,
respectively. Moreover, can : ψπ,6=1 → ϕπ,6=1 and var : ϕπ,6=1 → ψπ,6=1 are isomorphisms.

Let N := log(Tu), and similarly for Ñ . The morphism ϕπK
Var−→ ψπK is defined by the cone

of the pair (0, N). Then can ◦Var = Ñ and Var ◦ can = N .

The functors pψπ := ψπ[−1] and pϕπ := ϕπ[−1] from Db
c(X̃) to Db

c(X) commute with the
Verdier duality functor D (up to natural isomorphisms), and send perverse sheaves to perverse
sheaves. These functors and their decompositions into unipotent and non-unipotent parts lift to

the category of mixed Hodge modules, as do the functors can, N , Ñ and Var . For an introduction
to Saito’s theory of mixed Hodge modules, the interested reader is advised to consult [Sa89].

3.2.2. Intersection space complex: construction. First note that ψπQX̃ [n], ϕπQX̃ [n] are perverse
sheaves on X. Consider the perverse sheaf

(10) C := Image(T̃ − 1) ⊆ ϕπQX̃ [n],

and denote by

ιϕ : C ↪→ ϕπQX̃ [n]

the corresponding inclusion in the abelian category Perv(X). Then Supp(C) = {x}, and we
have

(11) Hi(X; C) =

{
0 , if i 6= 0,

Image(Tx − 1) , if i = 0.

Let

ι := var ◦ ιϕ : C −→ ψπQX̃ [n].

In view of (8), (11) and the Betti calculation of Theorem 2.1, it is natural to define the intersection
space complex by:

(12) ISX := Coker
(
ι : C −→ ψπQX̃ [n]

)
∈ Perv(X).

Remark 3.5. If π is a small deformation of X, i.e., if the local monodromy operator Tx is
trivial, then C ' 0, so we get an isomorphism of perverse sheaves ISX ' ψπQX̃ [n]. In view
of the Betti identity of Theorem 2.1, this isomorphism can be interpreted as a sheaf-theoretical
enhancement of the stability result from [BM11] mentioned in the Section 2.

Remark 3.6. The above construction can be easily adapted to the situation of hypersurfaces
with multiple isolated singular points. It then follows from Theorem 3.1 and [Ba11a][Prop.3.6]
that the hypercohomology of ISX for conifolds X provides the correct count of massless 3-branes
in type IIB string theory.

Some of the results described in Section 3.1 can be obtained as direct consequences of the
definition of the intersection complex ISX . We describe some of these instances below. Others
require more intricate proofs based on Saito’s theory of (mixed) Hodge modules, or, alternatively,
on the theory of zig-zags; see [BBM] for complete details on these proofs.
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By using the facts stated in Section 3.2.1, it is not hard to see that the intersection space
complex ISX underlies a mixed Hodge module. More precisely, we have that:

(13) ISX = coker
(

Image(Ñ)
Var−→ pψπ,1QX̃ [n+ 1]

)
and, as already mentioned, the functors Ñ , Var and pψπ,1 admit lifts to the category of mixed
Hodge modules.

It can also be seen that if Tx is semi-simple in the eigenvalue 1, then:

ISX ∼= ψπ,1QX̃ [n].

So in this case ISX is self-dual, since ψπQX̃ [n] is self-dual and D respects the decomposition

ψπ = ψπ,1 ⊕ ψπ,6=1. Moreover, in this case, the weight filtration on Hi(X, ISX) coincides (up
to a shift) with the monodromy filtration defined by the nilpotent endomorphism N acting on
Hi(pψπ,1) := Hi(X; pψπ,1QX̃ [n+ 1]). So the mixed Hodge structure on Hi(X, ISX) ∼= Hi(pψπ,1)

is pure if and only if N = 0, or equivalently if T = Ts on Hi(pψπ,1). In other words, one has
purity if the action of T on H∗(Xs) is semi-simple in the eigenvalue 1. Moreover, if this is the
case, one can show as in [DMSS][Section 3] that the Hard Lefschetz theorem also holds for the
hypercohomology groups Hi(X; ISX).

4. Concluding remarks

A natural problem is to extend the construction and study of intersection spaces of complex
hypersurfaces beyond the case of isolated singularities. This problem is motivated by string
theoretic considerations since, given the success of the use of intersection homology on the one
hand and homology of the intersection space on the other hand in the context of the conifold
transition, it is natural to investigate the use of such Poincaré duality homology theories in more
singular situations encountered in string theory, e.g., for the fibre singularities in F-theory. This
is particularly important as the non-uniqueness of the (small) resolutions of singular elliptic
fibrations calls for a more model-independent procedure to determine the homology relevant for
the physical theory. Recent progress in this direction has been recently made by Banagl and his
students, e.g, see [Ba11b]. On the other hand, the sheaf-theoretic approach presented in this note
is valid in more general settings, so it can be used to define an intersection space (co)homology
theory directly, without having to construct an intersection space at all.
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