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FINE POLAR INVARIANTS OF MINIMAL SINGULARITIES OF

SURFACES

ROMAIN BONDIL

Abstract. We consider the polar curves PS,0 arising from generic projections of a germ (S, 0)

of complex surface singularity onto C2. Taking (S, 0) to be a minimal singularity of normal

surface (i.e., a rational singularity with reduced tangent cone), we give the δ-invariant of these

polar curves, as well as the equisingularity-type of their generic plane projections, which are
also the discriminants of generic projections of (S, 0).

These two pieces of equisingularity data for PS,0 are described on the one hand by the

geometry of the tangent cone of (S, 0), and on the other hand by the limit-trees introduced
by T. de Jong and D. van Straten for the deformation theory of these minimal singularities.

These trees give a combinatorial device for the description of the polar curve which makes it

much clearer than in our previous note on the subject. This previous work mainly relied on a
result of M. Spivakovsky. Here, we give a geometrical proof via deformations (on the tangent

cone, and what we call Scott deformations) and blow-ups, although we need Spivakovsky’s
result at some point, extracting some other consequences of it along the way.

Introduction

The local polar varieties of any germ (X, 0) of a reduced complex analytic space were intro-
duced by Lê D.T. and B. Teissier in [17]. In particular, the multiplicities of the general polar
varieties are important analytic invariants of the germ (X, 0).

However, as also emphasised by these authors (see also [23] p. 430–431 and [24]), there is more
information to be gained on the geometry of (X, 0) by considering not only the multiplicity but
the (e.g., Whitney-) equisingularity class of these general polar varieties, which can also be shown
to be an analytic invariant.

In this work, we will focus on the polar curves of a two-dimensional germ (S, 0).
Our reference on equisingularity theory for space curves will be the mémoire [8]. Of course,

as opposed to the case of plane curves, there is no complete set of invariants attached to a germ
of a space curve describing its equisingularity class. As a general rule, results on equisingularity
beyond the case of plane curves only make sense by considering the constancy of invariants
in given families. Here we look at the family of polar curves and will consider the following
invariants:

Definition 0.1. Our equisingularity data for a germ of space curve consists of both:
(i) the value of the delta invariant of the curve, and
(ii) the equisingularity class of its generic plane projection.

We recall the definitions of these notions in the text (see Def. 6.1 and Def. 1.2). The constancy
of these two invariants in a family of space curves ensures Whitney conditions and actually the
stronger equisaturation condition (cf. [8]).
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In general, this is still partial information; for example, another interesting invariant for space
curves, namely the semi-group of each branch, is completely independent of this equisaturation
condition.

The purpose of this paper is to describe the equisingularity data in 0.1 for the the general
polar curve of a class of normal surface singularities called minimal.

These minimal singularities were studied in any dimension by J. Kollár in [19]. In the case
of normal surfaces, these are also the rational singularities with reduced fundamental cycle and
were studied by M. Spivakovsky in [21] and T. de Jong and D. van Straten in [15].

For these surfaces, we prove the following:

Proposition (∗) ( cf. 5.5 for a more precise statement): the general polar curve is a union
of Ani-plane curves singularities1, where the ni’s and the contacts between these curves can be
deduced from the resolution graph of the surface.

This information gives in particular a complete description of part (ii) of the data in 0.1, i.e.,
of the general plane projection of the polar curve, which is also the discriminant of the general
projection (the coincidence of these two concepts is a theorem, cf. section 1).

The information on the discriminant was already given in the note [5] as a consequence of a
result of Spivakovsky, but the statement there was clumsy.

Here we give a much nicer device that allows us to read directly the information about of the
discriminant (or the polar curve as well) from both the information contained in the tangent
cone of these singularities and the information given by a graph deduced from the resolution
graph, which is precisely the limit tree introduced by T. de Jong and D. van Straten in their
study of the deformation theory for these minimal singularities (see [15]).

We also provide an inductive proof relying much more on the geometrical properties of these
minimal singularities. This proof makes up the core of the paper. It still uses Spivakovsky’s
theorem, however, mainly through a characterisation of generic polar curves on the resolution
which we deduce along the way.

The several plane branches of the polar curve lie in distinct planes in a bigger linear space,
and the value of the delta invariant (part (i) in 0.1) gives some (partial) information on the
configuration of these planes in the space. We explain how this delta invariant is easily computed
from what we call the Scott deformation of the surface, which turns out to give a delta-constant
deformation of the polar curve onto bunches of generic configurations of lines.

Organisation of the paper:

In Section 1, we recall the definition of the general polar curve PS,0 of a germ of surface (S, 0),
of the discriminant ∆S,0 of a generic projection of (S, 0) onto C2 and the important result that
∆S,0 is a generic projection of the curve PS,0.

Section 2 gives the definition of minimal singularities in general, the particular case of normal
surfaces, and their characterisation by their dual resolution graph. We then define, in Section 3,
a notion of height on the vertices of this resolution graph, which was used in other places such as
[21] and [15], and corresponds to the number of point blow-ups necessary to let the corresponding
exceptional component appear. We also give there our convention in representing dual graphs
with • and ∗ and define reduced dual graphs to be the ones in which the self-intersections for
components of the tangent cone have the minimum absolute value.

In Section 4, we give the description of generic polar curves on a resolution of a minimal
singularity as proved by M. Spivakovsky (Thm. 4.2). This result will play the following somehow
different roles in the sections following it:

1Hence the information about the semi-group of the branches is obvious.
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(i) Section 5 explains how, using the full strength of this result, one may derive quite quickly
a description of the generic discriminant ∆S,0 (more precisely, of Proposition 5.5 for the polar
curve). This sums-up the note [5] in an improved way, and a mistake in an example there is
corrected.
(ii) In Section 6, we mention how, using a result of J. Giraud, Theorem 4.2 also permits one,
at least theoretically, to deduce the δ-invariant for the general polar curve from the shape of its
transform on the minimal resolution. This result is however not useful for concrete computations,
for which we use another approach in Section 11.
(iii) In Section 7, we get, as a purely qualitative consequence of (i) and (ii), a characterisation
of generic polar curves on the minimal resolution of the singularity (S, 0). This will be the
application of Spivakovsky’s result we will use in the proof of our main result.

Sections 8 to 11 form the core of the text:

• in Section 8, the polar curve for the tangent cone of a minimal singularity is made geometrically
explicit and through the process of deformation onto the tangent cone is also seen as “part” of
the polar curve of the singularity.
• in Section 9, we recall what we need from the limit tree construction of de Jong and van
Straten. With this,
• in Section 10, we give, and prove, our main theorem giving more details about the information
in Proposition (∗) page 92 using the limit tree construction and the contribution of the tangent
cone.
• in Section 11, we show how a special deformation of minimal singularities has a nice interpre-
tation in our description of polar curves and also gives a nice method for computing the delta
invariant of these, completing the information in Def. 0.1 (i).

This leads us to ask: can (part of) the deformation theory of these minimal singularities of
surfaces be recovered from their discriminants?

Acknowledgement – The author thanks Lê D.T. for suggesting the question treated here,
M. Merle and M. Spivakovsky for their remarks on [5], T. de Jong for pointing out to us his
limit-tree construction, and H. Flenner and B. Teissier for helpful conversations. The support
of an EAGER Fellowship through the EAGER node of Hannover is gratefully acknowledged.

Several years have passed since I wrote the first version of this paper, and as it turned out, it
happened to be useful to other people: I am very grateful to A. Pichon for her interest in this
work, for inviting me to submit the paper to this Journal, and to the referee for his/her remarks.

1. Polar invariants of a surface singularity

1.1. The general polar curve as an analytic invariant. We recall here the definition of the
local polar variety of a germ of surface following [17]:

Let (S, 0) be a complex surface singularity (S, 0), embedded in (CN , 0): for any (N − 2)-
dimensional vector subspace D of CN , we consider a linear projection CN → C2 with kernel D
and denote by pD : (S, 0)→ (C2, 0) the restriction of this projection to (S, 0).

Restricting ourselves to the D such that pD is finite, and considering a small representative
S of the germ (S, 0), we define, as in [17] (2.2.2), the polar curve C(D) of the germ (S, 0) for the
direction D, as the closure in S of the critical locus of the restriction of pD to S \ Sing(S). It is
a reduced analytic curve.

As explained in loc. cit., it makes sense to say that for an open dense subset of the Grassmann
manifold G(N − 2, N) of (N − 2)-planes in CN , the space curves C(D) are equisingular, e.g.,
in terms of Whitney-equisingularity (or strong simultaneous resolution, but this is the same for
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families of space curves, cf. [8]). We call this equisingularity class the general polar curve for
(S, 0) embedded in CN .

One may then compare the general polar curves obtained by two distinct embeddings of the
surface into a (CN , 0) and it turns out that they are still Whitney-equisingular; this is essentially
proved in [23] (see p. 430) in a much more general setting (arbitrary dimension and “relative”
polar varieties). Summing up, we have:

Theorem 1.1. The Whitney equisingularity-type of the general polar curve C(D) depends only
on the analytic type of the germ (S, 0).

In this paper, following, in a sense, the program in [24], we want to study this invariant C(D)
for a special class of surface singularities.

1.2. The generic discriminant as a derived invariant. With the same notation as before,
we define the discriminant ∆pD

as (the germ at 0 of) the reduced analytic curve of (C2, 0) which
is the image of the polar curve C(D) by the finite morphism pD.

Again, one may show that, for a generic choice of D, the discriminants obtained are equisin-
gular germs of plane curves, and that this in turn defines an analytic invariant of (S, 0).

We will denote ∆S,0 the equisingularity class of the discriminant of a generic projection of
(S, 0).

A first advantage of ∆S,0, as a germ of a plane curve, is that its equisingularity class is
well-defined in terms of classical invariants such as the Puiseux pairs of the branches and the
intersection numbers between branches (cf. e.g., the introduction of [8] for references on this
subject).

As it turns out, there is a very nice relationship between the general polar curve and ∆S,0.
For this we recall the following:

Definition 1.2. Let (X, 0) ⊂ (CN , 0) be a germ of reduced curve. Then a linear projection
p : CN → C2 is said to be generic with respect to (X, 0) if the kernel of p does not contain any
limit of bisecants to X (cf. [8] for an explicit description of the cone C5(X, 0) formed by the
limits of bisecants to (X, 0)). For future reference, we will write BS(X, 0) for this cone denoted
C5(X, 0) in [8]).

Then the equisingularity type of the germ of plane curve (p(X), 0) image of (X, 0) by such a
generic projection is uniquely defined by the saturation of the ring OX,0 (cf. [8]).

We now state the following transversality result (proved for curves on surfaces of C3 in [9]
Theorem 3.12 and in general as the “lemme-clé” in [23] V (1.2.2)) relating polar curves and
discriminants:

Theorem 1.3. Let pD : (S, 0) → (C2, 0) be as above, and C(D) ⊂ (S, 0) ⊂ (CN , 0) be the
corresponding polar curve. Then there is an open dense subset U of G(N − 2, N) such that for
D ∈ U the restriction of p to C(D) is generic in the sense of Definition 1.2.

Definition 1.4. Let us define PS,0 to be not the Whitney-equisingularity class of the general
polar curve as in Thm. 1.1, but the equisaturation class of the general polar curve (which may be
a smaller class). As we recalled after Definition 0.1, this class is precisely given by the constancy
of the invariants there. Then, the foregoing Theorem 1.3 states that ∆S,0 is the generic plane
projection of PS,0.

As stated in the introduction, the goal of this work is to determine PS,0 completely.
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2. Definition of minimal singularities

We begin with a definition valid in any dimension (following [19] § 3.4):

Definition 2.1. We call a singularity (X, 0) minimal if it is reduced, Cohen-Macaulay, and the
multiplicity and embedding dimension of (X, 0) fulfill:

i) mult0X = emdim0X − dim0X + 1, and
ii) the tangent cone CX,0 of X at 0 is reduced.

Considering normal surfaces, one has the following characterisation:

Theorem 2.2. Minimal singularities of normal surfaces are precisely the rational surface sin-
gularities with reduced fundamental cycles (with the terminology of [2]).

Condition (i) follows for any rational surface singularity from Artin’s formulas for multiplicities
and embedding dimension (cf. [2]). Condition (ii) follows from the fact that the fundamental
cycle of rational singularities is also the cycle defined by the maximal ideal. Conversely, the fact
that minimal normal singularities are rational is proved in [19] 3.4.9. The proof that “reduced
tangent cone” implies “reduced fundamental cycle” is easy (after our Thm. 3.2 or see, e.g., [26]
p. 245).

Taking (S, 0) to be a normal surface singularity and π : (X,E) → (S, 0) to be the mini-
mal resolution of the singularity, one associates as usual to the exceptional curve configuration
E = π−1(0) a dual graph Γ where each irreducible component Li in E is represented by a ver-
tex and two vertices are connected by an edge if, and only if, the corresponding components
intersect.

Each vertex x of Γ (we will frequently abuse notation and write x ∈ Γ) is given a weight
w(x) defined as:

w(x) := −L2
x,

where L2
x is the self-intersection of the corresponding component Lx on X.

For any rational surface singularity, it is well-known that all the Li are smooth rational curves
and that Γ is a tree. But in general, it takes some computation to check whether a given tree is
the dual tree of a rational singularity (cf. [2]).

On the other hand, one reads at first sight from the dual graph that a surface singularity is
minimal (cf. [21] II 2.3):

Remark 2.3. Let Γ be any weighted graph. Then, it is the dual graph of resolution of a minimal
singularity if, and only if, Γ is a tree and, for each vertex x ∈ Γ, one has the following inequality:

w(x) ≥ v(x),

where v(x) denotes the valence of x, i.e., the number of edges attached to x.

3. More about the dual graphs

In the representation of the dual graph Γ of a minimal singularities, we will distinguish between
the vertices with w(x) = v(x) and the others.

Notation 3.1. In representing the dual graphs of minimal singularities, we chose to represent
with a • the vertices with w(x) = v(x), so that there is no need to mention the weight above
them.

On the other hand, we enumerate as x1, . . . , xk the vertices with w(xi) > v(xi), and let them
be denoted by ∗ on the graph. One should then mention the weights of the (xi) to define the
graph.
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In this work, we will pay much attention to the minimal singularities with the property that,
for all vertices xi with w(xi) > v(xi), one has, in fact, the equality w(xi) = v(xi) + 1.

Let us call reduced the graphs with this property; it is then clear that in representing these
dual graphs, there is no longer any need to mention the weights.

For example, saying that the graph in Figure 1 is reduced amounts to saying that

w(x1) = w(xn) = 2 and w(xi) = 3 for 1 < i < n

(and the vertices with •’s all have weight two here).

Figure 1.

The geometrical meaning of this distinction between vertices comes from:

Theorem 3.2 (Tyurina, cf. [25]). Let (S, 0) be a rational surface singularity and let
π : (X,E)→ (S, 0) be its minimal resolution. Let b : S1 → S be the blow-up of 0 in S.

Then there is a morphism r : X → S1 such that π = b◦r and a component Li of E = π−1(0) is
contracted to a point by r if, and only if, the intersection (Li ·Z) = 0, where Z is the fundamental
cycle.

Of course, the components of E which are not contracted by r are the strict transform by r
of the components of the P(CS,0) appearing on S1.

When (S, 0) is a minimal singularity, the fundamental cycle is Z =
∑

x∈Γ Lx and hence, for a
given vertex y ∈ Γ, the intersection (Ly · Z) is just v(y)− w(y).

This should justify:

Definition 3.3. Let (S, 0) be a minimal normal surface singularity and Γ be the dual graph of
its minimal resolution.

We will say that a vertex x in Γ has height one if w(x) > v(x), which from the foregoing
remarks means that the corresponding component Lx corresponds to a component of (the proj
of) the tangent cone CS,0. Hence we will denote by ΓTC = {x1, . . . , , xn} the set of these vertices.

Then, we define the height of any vertex x in Γ as the number sx defined by:

sx := dist(x,ΓTC) + 1,

where dist is the distance on the graph (number of edges on the geodesic between two vertices).

The reader should check that this height corresponds to the number of blow-ups necessary
to make the corresponding component “appear”.2 The notation sx here comes from [21] II 5.1
and was the one used in the previous work [5].

Example 3.4. As an example, we indicate the heights on the graph in Figure 2, where the (xi)
are, as before, the vertices of height one (with ∗’s):

We will also need the following:

2This latter notion is studied more systematically for any rational singularity as “desingularisation depth” in

[18]; of course in this general case, it is not given directly from a distance!
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Figure 2. Minimal graph with the heights for the vertices.
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Definition 3.5. Let Γ be a minimal graph. The connected components Γi (for i = 1, . . . , r) of
Γ \ ΓTC are called the Tyurina components of Γ.

Hence, Theorem 3.2 states that the blow-up S1 of (S, 0) has exactly r singularities (S1, Oi)
which are minimal singularities with dual resolution graph Γi.

4. A result of Spivakovsky

To state this result, we introduce further terminology:

Let π : (X,E)→ (S, 0) be the minimal resolution of the singularity (S, 0), where E = π−1(0)
is the exceptional divisor, with components Li. A cycle will be by definition a divisor with
support on E, i.e., a linear combination

∑
aiLi with ai ∈ Z (or ai ∈ Q for a Q-cycle).

Let Γ be the dual graph of the minimal resolution π and, for each vertex x, let sx denote the
height defined in Def. 3.3.

Definition 4.1. Let then x, y be two adjacent vertices on Γ; the edge (x, y) in Γ is called a
central arc if sx = sy. A vertex x is called a central vertex if there are at least two vertices y
adjacent to x such that sy = sx − 1 (cf. [21]).

We then define a Q-cycle ZΩ on the minimal resolution X of (S, 0) by:

(1) ZΩ =
∑
x∈Γ

sxLx − ZK ,

where Γ is the dual graph, and ZK is the numerically canonical Q-cycle 3.
The theorem from [21] (Theorem 5.4) is now:

Theorem 4.2. Let (S, 0) be a minimal normal surface singularity. There is a open dense subset
U ′ of the open set U of Theorem 1.3, such that, for all D ∈ U ′, the strict transform C ′(D) of
C(D) on X:
a) is a multi-germ of smooth curves intersecting each component Lx of E transversally in exactly
−ZΩ.Lx points,

3Uniquely defined by the condition that, for all x ∈ Γ, ZK .Lx = −2−L2
x, since the intersection product on E

is negative-definite.
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b) goes through the point of intersection of Lx and Ly if and only if sx = sy (point corresponding
to a central arc of the graph). Furthermore, the curves C ′(D), with D ∈ U ′ do not share
other common points (base points) and these base points are simple, i.e., the curves C ′(D) are
separated when one blows up these points once.

Referring to loc. cit. for unexplained terminology, let us make the following observation:

Remark 4.3. Blowing-up once the base points referred to in b) above, one gets a resolution
XN of the Nash blow-up of the germ (S, 0). The map from XN to the normalized Nash blow-up
N(S) is simply the contraction of the exceptional components which are not intersected by a
branch of the generic polar curve.

5. First description of the polar curve and the discriminant

This section essentially describes the results obtained in [5] in an improved form. We refer to
this note (Section 3) for the proofs of the following lemmas:

Lemma 5.1. Let (S, 0) be a minimal normal surface singularity and π : X → (S, 0) its minimal
resolution. It is known that π is (the restriction to S of) a composition π1 ◦ · · · ◦ πr of point
blow-ups. Then, this composition of blow-ups is also the minimal resolution of the generic polar
curve C(D) for D ∈ U ′ as in Theorem 4.2.

The following is a slightly more precise version of loc. cit. Lem. 3.2:

Lemma 5.2. For D ∈ U ′ as in Theorem 4.2, the polar curve (C(D), 0) on (S, 0) is a union
of germs of curves of multiplicity two. In particular, it has only smooth branches and branches
of multiplicity two, the latter being exactly those for which the strict transform goes through a
central arc as in b) of Theorem 4.2.

Let us now make a perhaps not so standard definition:

Definition 5.3. Let (C1, 0) and (C2, 0) be two analytically irreducible curve germs in (CN , 0).
We will hereafter call contact between the Ci simply the number of point blow-ups necessary to
separate these two branches.

For the description of the polar curve, just recall that an An-curve is a curve analytically
isomorphic to the plane curve defined by x2 + yn+1 = 0:

Proposition 5.4. Let (S, 0) be a minimal surface singularity and C = C(D) be a generic polar
curve corresponding to D in the open set U ′ of thm. 4.2.

Then, if C = ∪iCi is the decomposition of C into analytic branches, denote by LCi
the

irreducible exceptional component on the minimal resolution of S which intersects the strict
transform of Ci. It is unique except in the case of central arcs. In this case, just choose one
between the two intersecting components. Then:
(i) The contact between Ci and Cj in the sense of Def. 5.3 above is the minimum height in the
chain between LCi

and LCj
(cf. Def. 3.3).

(ii) We may write rather C as a union of C =
⋃
Ci of curves of multiplicity two by taking by

pairs branches intersecting the same exceptional component on X that we will now denote LCi
.

Then, each Ci is a Ani
-curve, where the number ni equals 2.s(LCi

) if Ci goes through a central
arc, and 2.s(LCi)− 1 otherwise (which comprises the case of central vertices and components of
height s equal to one).

We may obviously define the contact between these Ani
-curves just by taking one branch in

each, so that it is still given by (i).
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Proof. The statement about the contact in (i) follows from Lemma 5.1. The first statement in
(ii) is Lemma 5.2.

Any curve of multiplicity two is a An-curve, see, e.g., [4] p. 62. The statement about the ni
follows from (i) just like the statement about the contacts. �

The result in Prop. 5.4 gives a complete description of the equisingularity class of the dis-
criminant plane curve in (C2, 0) using Theorem 1.3 4:

Proposition 5.5. The discriminant ∆pD
= pD(C(D)) has exactly the same properties as the

polar curve C(D) in Prop. 5.4. This describes the generic discriminant ∆S,0 as a union of
Ani

-curves with the ni and the contacts described in 5.4.

Proof. The curves Ci in Prop. 5.4, being plane curves, are their own generic plane projections.
Hence by Thm. 1.3, the image ∆pD

of C(D) by the generic projection pD decomposes as the
same union of Ani

-curves.
We give here a direct argument to prove that the contact (in sense of Def. 5.3) between the

branches in ∆pD
is the same as the one in C(D) (in [5], we invoked a bilipschitz invariance which

is perhaps not obvious with our definition of contact).
Let us write down equations for a special case: considering a pair C1, C2 of branches in C(D),

we embed C1 ∪ C2 into a (C3, 0) and suppose there are coordinates so that C1 is parameterised
by (x = tε1 , y = tn, z = 0) and C2 is parameterised by (x = tε2 , y = 0, z = tm), with εi = 1 or 2.

We then leave it to the reader to verify that the projection defined by (x, y+ z) is transverse
to the cone of bisecants BS(C, 0) of Def. 1.2 and that the contact in our sense is preserved.

In the general case, the contact between C1 and C2 may be smaller, but the results remain
valid with another parameterisation of C2.

�

The foregoing description of the discriminant still involves the computation of the number of
branches on each central vertex by Spivakovsky’s formula. We will describe a much better and
condensed one in Section 10, which does not involve any computation and is geometrically more
significant. Before, the author would like to make amends to the readers of [5] for a mistake in
the following:

Example 5.6 (Correct version of Example 1 in [5]). Consider (S, 0) with dual graph Γ as in
Figure 3, where, following the convention of Section 3, the • denote vertices with w(x) = v(x),
and the others form ΓTC = {x1, . . . , x4} with the weights indicated on the graph.

Figure 3.

4This is an equivalent, but more simply expressed, version of the statement in [5], Cor. 4.3.
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The branches of the polar curve going through the components of ΓTC are just four branches
going through Lx1

, which gives in the equisingularity class ∆S,0 four distinct lines through the
origin with contact one with any other branch of ∆S,0.

Then, we have two central vertices (of heights 3 and 2) and a central arc (with boundaries of
height 2), which give, respectively, an A5, an A3, and an A4-curve from Prop. 5.4 and 5.5 above.

The contact between the A5 and the A4 is two (and not 3 as claimed in loc. cit.) and their
contact with the other A3 is one.

Hence, using coordinates, a representative of the equisingularity class of ∆S,0 can be chosen
to be:

(x4 + y4)︸ ︷︷ ︸
The two A1’s

(x2 + y5) (x+ y2 + iy3)(x+ y2 − iy3)︸ ︷︷ ︸
The A5

(y2 + x4) = 0.

6. The delta invariant of the polar curve

Definition 6.1. Let (C, 0) be a germ of a reduced complex curve. Let n : C → (C, 0) be its
normalisation map, which provides a finite inclusion of the local ring OC,0 into the semi-local
ring OC .

The δ-invariant of (C, 0) is by definition δ(C, 0) := dimCOC/OC,0.

In the paper [14], J. Giraud gives a way to compute δ(C, 0) for any curve on a rational surface
singularity (S, 0) if one knows a resolution of the surface singularity where the strict transform
C ′ of C is a multi-germ of smooth curves.

To quote this result, we need the following lemma, proved in loc. cit. 3.6.2:

Lemma 6.2. Let p : (X,E)→ (S, 0) be a resolution of a normal surface singularity (S, 0), with
E = π−1(0) = ∪iEi. Let D =

∑
i aiEi be a Q-cycle on X.

There exists a unique Z-cycle V =
∑

i αiEi with the property that the intersection (V ·Ei) is
less than or equal to (D · Ei) for all i, and is a minimum among cycles with this property.

This Z-cycle will be denoted as bDc.

(In the previous lemma, “minimum” means that any other Z-cycle with this property has the
form bDc+W with W a cycle with non-negative coefficients.)

In the situation of Lemma 6.2, let us associate to any curve (C, 0) ⊂ (S, 0) a Q-cycle ZC

uniquely defined by the condition that, for all irreducible component Ei of E, the intersection
number (Ei · ZC) equals (Ei · C ′), where C ′ denotes the strict transform of C on X. We may
then quote loc. cit. Cor. (3.7.2):

Theorem 6.3. Let p : (X,E) → (S, 0) be a resolution of a rational surface singularity. Let
(C, 0) be a germ of a reduced curve on (S, 0), such that, denoting by C ′ the strict transform of
C on X, C ′ is a multi-germ of smooth curves on X.

Then, using the Q-cycle ZC associated C in the way defined above, and letting

DC := ZC + b−ZCc,

one has the following formula5:

δ(C, 0) = −1

2
(ZC · (ZC + ZK)) +

1

2
(DC · (DC + ZK)).

5Beware that, in loc. cit., the + before the second term in the right hand-side of the corresponding

formula (5) is not properly printed, yet it is a plus. One should also read formula (3) there as

D := e(Ds)− de(Ds)e = e(Ds) + b−e(Ds)c, which agrees with my definition for DC .
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Thanks to Spivakovsky’s theorem 4.2, we may apply the foregoing to a general polar curve of
a minimal singularity (C, 0) ⊂ (S, 0), X the minimal resolution of (S, 0), and ZC = −ZΩ. As a
corollary to these two theorems, we have:

Corollary 6.4. Let (S, 0) be a minimal singularity of a normal surface (hence, rational by
Thm. 2.2). The δ-invariant of the generic polar curve is a topological invariant of (S, 0), i.e.,
depends only on the data of the weighted resolution graph.

Applying the formula in 6.3 to get δ for the polar curve in concrete cases leads to huge
computations, except in some simple examples:

Example 6.5. Let (S, 0) be the singularity at the vertex of the cone over a rational normal curve
of degree n. It is the minimal singularity whose (dual) resolution graph has only one vertex of
weight n. Assume that n ≥ 3. Check that, using E to denote the irreducible exceptional divisor,
one has ZΩ = (2n− 2)/nE, ZK = −(n− 2)/nE, bZΩc = 2E and hence δ(C, 0) = 3n− 6.

In Section 8, we will obtain the result of the foregoing example (and more) from a geometric
argument, with no use of the theorems above. The problem of computing δ for the general polar
curve of any minimal singularity is solved in 11.4.

7. A characterisation of the generic polar curve in a resolution

As a consequence of the results of Sections 5 and 6, we get the following characterisation for
generic polar curves on the minimal resolution of the surface:

Theorem 7.1. Let (S, 0) be a minimal normal surface singularity, and X the minimal resolution
of (S, 0). Let C(D) be any polar curve of (S, 0) with the property that its strict transform C ′(D)
on X is exactly as depicted in Thm. 4.2.

Then C(D) is a generic polar curve PS,0 as defined in Def. 1.4, i.e., has the generic invariants
defined in 0.1 of the introduction.

Proof. The description of Prop. 5.4 rests only on the the shape of the polar curve in the resolution
X, and gives in particular the datum (ii) in 0.1 (cf. Def 1.4 and Prop. 5.5). Giraud’s theorem 6.3
gives the value of the delta invariant also from the data of the resolution. Considering the linear
system of polar curves, our special polar curve is now equisingular in the sense of Def. 0.1 to the
generic polar curve. �

Remark 7.2. We explained in [6] how such characterisations of “general” curves on a resolution
may be useful; here, it will be used in Rem. 10.6.

We also need the following inductive property for which we will use6 the explicit form of the
cycle ZΩ in (1) before Spivakovsky’s Thm. 4.2:

Proposition 7.3. Let (S, 0) be a minimal singularity of a normal surface, with dual resolution
graph Γ. Let S1 be the blow-up of (S, 0) at 0 and Oi a singular point of S1. Let Γi ⊂ Γ be the
Tyurina component corresponding to Oi as in Def. 3.5. Let ZΩi

be the cycle associated to Γi as
ZΩ is associated to Γ in Thm. 4.2.

Then, for every vertex x ∈ Γi, the corresponding component Lx on X satisfies the following
intersection property:

(2) (ZΩ · Lx) = (ZΩi
· Lx).

This means that the corresponding component Lx is intersected by exactly the same number of
branches of the generic polar curve for (S, 0) or for (S1, Oi), and the central arcs in Γi are
obviously also central arcs in Γ.

6Ideally, we would have liked not to do so; see precisely (a) of the proof of this proposition.



102 ROMAIN BONDIL

Proof. Although the assertion in (2) follows easily from the explicit form of the cycles ZΩ and
ZΩi

(cf. (1) p. 97), we distinguish between:

(a) the components Lx with w(x) − vΓi(x) ≥ 2. Since x ∈ Γi, w(x) = vΓ(x); hence the
property in Γi implies that x is a central vertex in Γ. Hence Lx bears components of the
strict transform of the general polar curve of (S, 0), and here we know no method other
than computing to prove (2).

(b) the central components Lx in Γi (central vertex or boundary of a central arc). Then,
it is also central in Γ, and we believe (2) should be understood without any reference
to the cited formula, using the following remark in [21], p. 459 (first lines): “in the

neighbourhood of Lx, Ω̃ is generated by sections whose zero set is contained in the
exceptional divisor near Lx”. �

8. The contribution of the tangent cone in the polar curve

In Section 5, we said that PS,0 was formed by An-curves. Here we explain how the bunches
of A1-curves arise, and will be more precise about their geometry.

8.1. Discriminant and polar curve for cones over Veronese curves.

Remark 8.1. Let (S, 0) be the singularity of the cone over the rational normal curve of degree
m in Pm

C , whose dual graph has just one vertex, with weight m.
Denoting by Pm the polar curve for a generic projection of (S, 0) onto (C2, 0), it is just the

cone over the critical set of the projection of the rational normal curve onto P1
C, which is a set

of 2m− 2 distinct points by the Hurwitz formula.
Hence we know that here Pm is given by (2m− 2) lines in (Cm+1, 0) with:

i) δ-invariant 3m− 6 as computed in Example 6.5, from Giraud’s formula.
ii) obviously a set of 2m− 2 distinct lines in (C2, 0) as generic plane projection, denoted δm.

We can say more on the geometry of Pm in this case, and re-find the value of δ:

Lemma 8.2. The general polar curve Pm of the singularity of a cone over a Veronese curve of
degree m ≥ 3 is a set of (2m−2) lines in (Cm+1, 0), which has the generic (i.e, minimum) value
of the δ-invariant for any set of 2m− 2 lines in (Cm+1, 0), and this value is 3m− 6.

Proof. (a) We will denote by V = vm(P1) the rational normal curve of degree m in Pm
C and by

Gp(m−2,m) the Grassmann manifold of subspaces of codimension two in this Pm
C , and consider

the map

Gp(m− 2,m)→ Hilb2m−2
V

onto the Hilbert scheme parameterising the set of 2m − 2-points in V , which assign to each Λ
the critical subscheme of the projection along Λ.

Using a result of H. Flenner and M. Manaresi (in [11] 3.3-3.5), this map is generically finite,
and since both spaces have dimension 2m − 2 and the target space is irreducible, the image of
this map is dense.

(b) Now, from a result of G.M. Greuel in [13] (3.3), a set of r-lines through the origin in
Cm+1, corresponding to a set p1, . . . , pr of points in Pm

C , has the generic δ invariant, if for all d
in some bounded set of integers, their images vd(p1), . . . , vd(pr) by the corresponding Veronese

embedding vd : Pm
C → PNd

C span a projective space of maximal dimension.
If we take V ⊂ Pm

C to be a Veronese curve, one may always find such generic sets of points
on V since by composing the Veronese embeddings in Greuel’s condition with the Veronese
embedding defining V , this amounts to a genericity condition for points in P1

C.
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Hence, there is a non-trivial open subset U ⊂ Hilb2m−2
V with the property that the cone over

this set of points has the minimum delta invariant. Applying (a) gives that these points actually
occur as critical locus.

(c) A formula for the delta invariant for such a generic configuration of r lines in Cn is given
by Greuel in loc. cit. We leave it to the reader to check that it gives 3m−6 in our situation. �

8.2. Geometry of the tangent cone of a minimal singularity.

Remark 8.3. Let (S, 0) be a minimal normal surface singularity with embedding dimension N ,
and CS,0 be its tangent cone in (CN , 0).

Then, if P : CN \{0} → PN−1
C denotes the standard projection, the projective curve P(CS,0) is

a connected, non-degenerate7 curve of minimal degree in PN−1
C . Indeed, condition (i) in Def. 2.1

immediately passes to P(CS,0).
It then follows by a standard argument (cf., e.g., [3], p. 67–68) that each of its irreducible

components is a rational normal curve of a linear subspace of PN−1
C .

Let Γ be the dual graph of the minimal resolution of (S, 0). From Tyurina’s Thm. 3.2 and the
remarks following it, an irreducible component Lxi

of P(CS,0) corresponds to a vertex xi with
w(xi) > v(xi) in Γ and it is easy to compute that the degree m(xi) of the rational normal curve
Lxi

is precisely w(xi)− v(xi).

Conclusion 8.4. Hence the tangent cone CS,0 is embedded in (CN , 0) as a union of cones over
rational normal curves of degree mi intersecting along singular lines.

8.3. Scheme-theoretic critical spaces and discriminants. To study deformations of polar
curves and discriminants, we need a scheme-theoretic definition for these objects, introduced by
B. Teissier in [22] through the use of Fitting ideals.

Further, when non-isolated singularities occur, the right objects for deformations are not polar
curves but critical spaces, which also contain the singular locus of the surface.

Definition 8.5. We call CF (S, 0) the critical space of a generic projection p of a surface (S, 0)
onto (C2, 0) as defined by the Fitting ideal F0(Ωp) in OS,O and ∆F

S,0 its image as defined by

F0(p∗(OCF (S,0))) in OC2,0.

Beware, CF (S, 0) always contains Sing(S), which, if Sing(S) is not reduced to {0}, makes
CF (S, 0) even set-theoretically bigger than the polar curve PS,0 defined in Section 1. But by a
Bertini type theorem, one gets that:

Remark 8.6. (i) For a generic projection p of any reduced surface (S, 0), the intersection of the
CF (S, 0) with S \Sing(S) is reduced, and hence the divisorial part divCF (S, 0) is formed of the
generic polar curve PS,0 and of (possibly non reduced) components of Sing(S). The same is true
for div ∆F

S,0.

(ii) In particular, if (S, 0) is an isolated singularity divCF (S, 0) and div ∆F
S,0 coincide with

the PS,0 and ∆S,0 defined in Section 1.8

Lemma 8.7. Let (S, 0) be a minimal normal surface singularity, with tangent cone CS,0, and Γ
the dual graph of the minimal resolution of S. Recall that we then denote ΓTC the set of vertices
xi in Γ with w(xi) > v(xi).

7This means not contained in a hyperplane of PN−1
C .

8But as explicitly proved in [7] 3.5.2, the Fitting critical curves and discriminants for minimal singularities do

have embedded components as soon as the multiplicity is bigger than 3.
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Here, we denote by m(xi) the difference w(xi)−v(xi), and we have just seen that CS,0 is made
of cones over rational normal curves of degree m(xi) intersecting along singular lines. Hence,
considering a projection of CN onto C2 restricted to CS,0 we get that:

divCF
CS,0

=
⋃

xi∈ΓTC

Pm(xi) ∪ the singular lines in CS,0 with some multiplicity,

and

div ∆F
CS,0

=
⋃

xi∈ΓTC

δm(xi) ∪ non reduced lines,

where the Pm and δm were defined in Rem. 8.1 and Lem. 8.2.

8.4. Deformations of polar curves and discriminants. We first recall what we need from
the construction of the deformation of (S, 0) onto its tangent cone CS,0, as described in [12],
Chap. 5: let M be the blow-up of (0, 0) in S × C, and ρ : M → C the flat map induced by
composing the blow-up map with the second projection. One then shows that: for all t 6= 0,
the fiber Mt := ρ−1(t) is isomorphic to S and M0 is the sum of the two divisors on M , namely
P(CS,0 ⊕ 1) + S1, where S1 stands for the blow-up of S in 0. To this deformation, we will apply
the following:

Proposition 8.8. Let ρ : X → D be a flat map, with a section σ so that the germs (Xt, σ(t))
are isolated singularities for t 6= 0, X0 is a reduced possibly non-isolated singularity, and dim Xt

is two for all t.
Then, reducing the disk D, one may find a projection p : X → C2 × D compatible with ρ so

that, for all t ∈ D, the polar curve of pt : Xt → C2 × {t} is generic, and its image is also the
generic discriminant ∆Xt,0 as defined in Section 1.

The proposition above is well-known to specialists and may be deduced from more general
results (see also [1], Th. 3.1 ).

Applying the proposition to the foregoing deformation ρ : M → D gives that PF
S,0 deforms onto

PF
CS,0

and the same statement for the Fitting discriminants. The description of the generically

reduced branches of PF
CS,0

in Lem. 8.7 now implies:

Corollary 8.9. Let (S, 0) be a minimal singularity, with notation as in Lem. 8.7, and let us
denote by Lxi

the component of P(CS,O) corresponding to xi ∈ ΓTC . Then:
(i) The generic polar curve PS,0 of (S, 0) contains a union:

PTC =
⋃

xi∈ΓTC

Pm(xi)

of generic configuration of lines Pm(i) as described in Lem. 8.2. The bunch Pm(xi) in PTC ⊂ PS,0

is by definition the set of branches of PS,0 which are deformed onto the (scheme-theoretically)
smooth branches Pm(xi) ⊂ PF

CS,O
of Lem. 8.7.

(ii) The same statement is true for the generic discriminant ∆S,0 of (S, 0):

writing ∆TC = ∪xi∈ΓTC
δm(xi), with δm(xi) standing for 2m(xi) − 2 lines in (C2, 0), we may

just as well say that these smooth branches with pairwise distinct tangents just form a ∆TC part
in ∆S,0.
(iii) Denote by S1 the blow-up of (S, 0). The strict transforms on S1 of the smooth curves in
Pm(xi) ⊂ PS,0 intersect the exceptional divisor only in Lxi

and this intersection is transverse.

Proof. (i) A curve deforming onto a smooth curve is certainly smooth, hence locally a line. In
Lem. 8.2, we said the Pm-curves are characterised by the minimality of δ. By semi-continuity
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of this δ applied to the family deforming onto Pm(xi) ⊂ PCS,O
, we get the full conclusion for the

curves in PS,0. (ii) is follows directly from (i).
(iii) Let us denote by ρ the deformation onto the tangent cone as recalled at the beginning

of Section 8.4. The fiber ρ−1(0) contains the blow-up S1 of (S, 0) intersecting P(CS,O ⊕ 1) in
P(CS,O). Since the lines Pm(xi) in CS,O are transverse to the Veronese curve Lxi

in the P(CS,O)
at infinity, it also follows that the strict transforms of the curves in Pm(xi) ⊂ PS,0 are transverse
to the corresponding exceptional component Lxi ⊂ P(CS,O) on the blow-up S1. �

9. Limit trees

We proceed to identify the remaining part in PS,0 besides the PTC-part just exhibited. The
following limit tree construction introduced by T. de Jong and D. van Straten in [15] will turn
out to be very relevant to this description. Precisely, using the height function we defined in 3.3,
one finds in loc. cit. (1.13):

Definition 9.1. Let Γ be the dual graph of a minimal resolution of a minimal singularity of
a normal surface. A limit equivalence relation ∼ is an equivalence relation on the vertices of Γ
satisfying the following two conditions:

(a) Vertices x with height sx = 1, i.e., with w(x) > v(x), belong to different equivalence
classes,

(b) for every vertex x in Γ with height sx = k + 1, k ≥ 1, there is exactly one vertex y
connected to x with height sy = k and y ∼ x.

Then, the tree T = Γ/ ∼ is a called a limit tree associated to Γ.
It is clear that any equivalence class contains exactly one vertex xi of height one, so that we

denote these equivalences classes as vertices x̃i in T .

In fact, we only make this construction in the particular case of minimal singularities with
reduced graphs in the sense of notation 3.1, so that the definition above really correspond to the
definition in loc. cit.9

Starting with Γ as in Example 3.4 , one may associate non-isomorphic limit trees to the same
reduced graph Γ, depending on the equivalence classes chosen, namely:

Figure 4. Two distinct limit trees for the dual graph in Figure 2.

T1 : ∗
x̃1

∗
x̃4

∗
x̃2

∗
x̃3

T2 : ∗
x̃1

∗
x̃2

∗
x̃4

∗ x̃3

Notation 9.2. For any pair x, y of vertices on the dual graph Γ, we denote by C(x, y) the
(minimal) chain on Γ joigning them (including the end points). This is unique since Γ is a tree.

9For the non-reduced case, one has to use the extended resolution graph of loc. cit. to build the limit tree, to

really get a bijection between vertices of T and element of the set H considered in loc. cit. But, again, we will

not use this.
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We define the length l(x, y) to be the number of vertices on C(x, y) and the overlap ρ(x, y; z)
as the number of vertices on C(x, z) ∩ C(y, z).

As in [15], we attach to a limit tree T the following data:

• for any edge (x̃, ỹ) of T , the length l(x, y), where x, y are the corresponding vertices of
height one in the resolution graph Γ,

• for any pair of adjacent edges (x̃, z̃) and (z̃, ỹ) in T , the overlap ρ(x, y; z).

We use the notation (T, l, ρ) for the data above. In loc. cit. Lemma (1.16), it is shown that
these data determine uniquely the resolution graph Γ.

10. Description of the polar curve using the limit tree

The following is our main result; we formulate it for the polar curve PS,0, reminding the
reader that this implies the analogous statements for the discriminant ∆S,0:

Theorem 10.1. Let (S, 0) be a minimal singularity of a normal surface. Let Γ be the dual graph
of the minimal resolution of S.

Let Γr be the reduced graph associated to Γ in the sense of notation 3.1, i.e., the same graph
with the weights of the xi of height one reduced to v(xi) + 1, and let (Sr, 0) be a minimal
singularity with dual resolution graph Γr.

Then the generic polar curve PS,0 decomposes into:

PS,0 = PTC ∪ PSr

where the contact between any line in PTC and any branch in PSr,0 is one and PTC was described
in Cor. 8.9 as the “contribution of the tangent cone”.

Let T be the limit tree for Γr, as defined in Section 9 and (T, l, ρ) the set of data (length and
overlap) associated to it at the end of that section.

These data give the following easy description of PSr (as a union of An-curves):

• each edge (x̃i, x̃j) in the limit tree T defines exactly one Ali,j -curve in PSr , where li,j stands
for l(x̃i, x̃j).
• For each pair of adjacent edges (x̃i, x̃j) and (x̃j , x̃k), the contact (Def. 5.3) between the corre-
sponding Ali,j and Alj,k -curves in PSr is exactly the overlap ρ(i, k; j).
• For non adjacent edges (x̃i, x̃j) and (x̃k, x̃l), the contact between the corresponding Ali,j and
Alk,l

-curves in PSr is the minimum of the contacts between adjacent edges on the chain joining
them.

Let us first illustrate this on the following:

Example 10.2. (i) For a minimal singularity (S, 0) with dual graph as in Figure 2, p. 97, using
any of the limit trees in Figure 4, we get: PS,0 = A5 ∪A′5 ∪A3, with contact three between the
two A5 and contact one between the A5’s and the A3.
(ii) For Example 5.6, the description of the discriminant was already given there. It is now more
directly seen from the limit tree in Figure 5 given below together with the data (l, ρ), where
the lengths l are put above the edges and the ρ as smaller numbers in-between a pair of edges
(following the same convention as in [15] (1.19)).

The rest of this section is devoted to the proof of Thm. 10.1 above.

First we recall the following well-known:

Lemma 10.3. Let (S, 0) be a minimal singularity of a normal surface and m be the multiplicity
of (S, 0). Then the multiplicity of the generic polar curve (resp. discriminant) is 2m− 2.
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Figure 5. Limit tree for the reduced graph associated to the graph in Exam-
ple 5.6

∗
4x̃1
∗

2

x̃2

1

3
∗
x̃3

5
∗ x̃4

Proof. This is easily deduced from the following two facts (we refer, e.g., to [7] (3.9) and § 5):
(a) for any normal surface (S, 0) and any projection p : S → C2 whose degree equals the
multiplicity m of the surface, the multiplicity of the discriminant ∆p is m + µ − 1, where µ is
the Milnor number of a generic hyperplane section of (S, 0).
(b) When (S, 0) is minimal, µ = m− 1. �

The proof of Thm. 10.1 is by induction on the maximal height of the vertices in Γ:

A) Initial step – The maximal height in Γ is one. We prove the result by a direct argument
(independent from Spivakovsky’s theorem). Now, all the vertices xi in Γ are in ΓTC , and the
minimal resolution X of (S, 0) is the first blow-up.
(a )We know from the deformation onto the tangent cone that each exceptional component
Exi

bears the strict transform of (2ni − 2) smooth branches of the polar curve, cutting Exi

transversely at general points, with ni = wi − vi (cf. 8.9 (iii)).
(b) A general theorem of J. Snoussi ([20], Thm. 6.6), valid for any normal surface singularity,
describes the base points of the linear system of polar curves on the first normalized blow-up of
(S, 0). In our situation, the blow-up is already normal and even smooth, and hence Snoussi’s
theorem implies that here the bases points are exactly the singular points of the exceptional
divisor, i.e., the intersection points of two components Exi

and Exj
.

Let N be the number of vertices in Γ; then Γ has N − 1 edges (it is a tree), which represent
the intersections points of exceptional components.

By Bertini’s Theorem, the part of the generic polar curve PS,0 whose strict transform goes
through a base point is singular, i.e., has multiplicity at least two.

Hence, adding the contributions of the smooth branches in (a) and the singular curves in (b),
the multiplicity m(PS,0, 0) of the polar curve satisfies the inequality:

(3) m(PS,0, 0) ≥
N∑
i=1

(2ni − 2) + 2(N − 1).

Comparing this to the equality m(PS,0, 0) = 2m−2 of Lemma 10.3 above, where the multiplicity

m of (S, 0) equals the
∑N

i=1 ni, proves that (3) is in fact an equality.
Hence, each point of intersection of two exceptional components bears the strict transform

of a curve of multiplicity exactly two on (S, 0). We now claim that the curve in question is a
A2-curve singularity on (S, 0). Let C be such a curve.

Then, the multiplicity m(C, 0) = 2 is the intersection number of C with a generic hyperplane
section of (S, 0). This intersection number may be computed on X as the intersection number
of the strict transform C ′ with the reduced exceptional divisor (which is the cycle defined by
the maximal ideal of (S, 0)). Since we know C ′ intersects two exceptional components, the
intersection of C ′ with each one should be transverse.

Hence C is a branch of multiplicity two resolved in one blow-up, i.e., an A2-curve. This
completes the proof of the initial step A.
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B) The induction step – We use first the following general lemma in [7], 6.1:

Lemma 10.4. Let (S, 0) be any normal surface singularity and p : (S, 0)→ (C2, 0) any projection
with degree equal to the multiplicity ν = m(S, 0).

Then, denoting by b0 : C̃2 → (C2, 0) the blow-up of the origin, and by Σ1 the analytic fiber
product of b0 and p above (C2, 0), one proves that the normalisation of Σ1 coincides with the
normalised blow-up S1 of (S, 0), which yields the following commutative diagram:

S1

ϕ1

��

n

��@
@@

@@
@@

@
b1

$$
Σ1

p1

��

// (S, 0)

p

��
C̃2

b0 // (C2, 0)

where ϕ1 : S1 → C̃2 is the composition of the pulled-back projection p1 with the normalisation n.
The following formula can then be obtained for the discriminant ∆ϕ1 :

(4) ∆ϕ1
= (∆p)′ + (ν − r)E,

where (∆p)′ is the strict transform of the discriminant of p, E denotes the reduced exceptional
divisor, ν is the multiplicity of the germ (S, 0) and r the number of branches of a general hyper-
plane section of (S, 0).

We refer to loc. cit. for the proof, we just make precise that the discriminants in the equality
of the lemma are the divisorial parts of Fitting discriminants as defined in Section 8.3, which
are hence allowed to have non-reduced components.

Here, (S, 0) being a minimal singularity, the blow-up S1 is already normal (cf. e.g., [7], Thm.
5.9), so that S1 is just S1. The generic projection that we consider certainly fulfills the property
deg p = m(S, 0) as a necessary condition. Since the general hyperplane section of a minimal
singularity of multiplicity ν is just ν lines (cf., e.g., loc. cit., lem. 5.4), formula (4) in the above
lemma simply reads:

∆ϕ1
= (∆p)′,

and similarly, denoting by C(D) the polar curve of the projection p, C ′(D) its strict transform
on S1 and Cϕ1

the polar curve for the projection ϕ1, we get:

(5) C ′(D) = Cϕ1
.

From Thm. 3.2 (see also Def. 3.5), we know that the singularities Oi of S1 are minimal
singularities whose resolution graphs are the Tyurina components Γi.

Localising the result of (5) in Oi yields the following:

Conclusion 10.5. Let C(D) be a generic polar curve for (S, 0) and C ′(D) its strict transform
on the blow-up S1 of S at 0. Let Oi be a singular point of S1. We proved that the part of C(D)′

going through Oi is the polar curve for the projection ϕ1 obtained of the germ (S1, Oi) onto a
plane, as in the lemma above.

Remark 10.6. To apply induction, we need to know that the projection

ϕ1 : (S1, Oi)→ (C2, 0),

in question is generic, i.e., has the generic polar curve.
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Counting multiplicity as in A) gives that this projection has degree equal to the multiplicity
of (S1, Oi), but this is not enough to prove that the polar curve is generic. This will be proved
thanks to the results of Section 7.

Indeed, once we know from Conclusion 10.5 that C ′(D) is a polar curve for (S1, Oi), we may
use Prop. 7.3 to see that the strict transform of C ′(D) on X, which is also part of the strict
transform of C(D), actually fulfills the conditions of the characterisation in Thm. 7.1. Then:

Conclusion 10.7. With the same notation as in Conclusion 10.5, the part of C ′(D) going
through Oi is the generic polar curve PS1,Oi

for the germ (S1, Oi).

Now, the induction hypothesis applied to each (S1, Oi) yields that PS1,Oi is a union of An-
curves described by a limit tree Ti for Γi as stated in Theorem 10.1.

C) Reconstructing PS,0 from its strict transform

Let (S, 0) be a minimal surface singularity and let S1 be its blow-up, and E the exceptional
divisor with components E1, . . . , Er. We will denote by O1, . . . , Os the singular points of S1 and
by Q1, . . . , Qt the points of intersection of components of E which are not singular points of S1.

We already know that the generic polar curve PS,0 of (S, 0) is precisely made of:

(1) A1-curves in number
∑r

i=1(mi−1), whose strict transforms intersect each Ei as (2mi−2)
lines going through generic points of Ei, for i = 1, . . . , r,

(2) A2-curves singularities in number t, each one having its strict transform on S1 intersect-
ing a different point Qi defined above,

(3) curves whose strict transforms go through the singular points Oi of S1.

The first two points are proved by the same reasoning as in step A). Step B) applied to curves
in (3) for each Oi gives the description of the strict transforms of these curves as An-curves
described by the limit tree Ti associated to (S1, Oi).

The corresponding description, for all the curves in (3) whose strict transforms go through
the same Oi, on (S, 0) itself, is then obtained by adding 2 to all the n’s and one to the ρ by
elementary properties of these An-curves and our Def. 5.3 of the contact.

But now from [15] (1.18), we know that the data associated to limit trees Ti of Γi are related
to T exactly the same way (length:= length−2, overlap := overlap −1).

This completes the proof by induction for the first two points of Theorem 10.1, the last point
follows by definition of the contact.

11. Scott deformations and polar invariants

The following was first proved by de Jong and van Straten in [15] Thm. 2.13:

Theorem 11.1. Let (S, 0) be a minimal singularity of a normal surface with multiplicity m. Let
S1 be the blow-up of 0 in S, with singular points O1, . . . , Or. Then there exists a one-parameter
deformation ρ : X → D of (S, 0) on the Artin component such that Xs for s 6= 0 has r + 1
singular points isomorphic respectively to the (S1, Oi) for i = 1, . . . , r and to the cone over the
rational normal curve of degree m.

This has to be compared to a standard result for plane curves, attributed to C. A. Scott
in [16], where a proof is also given (see p. 460):

Lemma 11.2. Let (C, 0) ∈ (C2, 0) be a plane curve singularity of multiplicity m. Let Oi for
i = 1, . . . , r be the singularities of the first blow-up C1 of (C, 0). Then there exists a one-
parameter δ-constant deformation Γ of (C, 0) such that Γs for s 6= 0 is a plane curve which has
r + 1 singular points isomorphic respectively to the (C1, Oi) for i = 1, . . . , r and to an ordinary
m-tuple point.
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Beyond the formal analogy between Thm. 11.1 and Lem. 11.2, de Jong and van Straten prove
the result in Thm. 11.1 for the more general class of sandwiched singularities as a consequence
of their theory of decorated curves: all the deformations of these surface singularities can be
obtained from deformations of decorated curves associated to the singularity. In particular, the
Scott deformation of a decorated curve (conveniently adjusted) gives rise to the deformation in
Thm. 11.1.

As an application of our description for generic discriminants in Thm. 10.1, however, we get
first a new relation between these two deformations:

Corollary 11.3. Let the notation be the same as in Thm. 11.1. We will also call the deformation
X the Scott deformation of the surface (S, 0).

Considering a projection p of X in D× C2 as in Prop. 8.8, i.e., compatible with ρ and such
that the discriminant ∆(pt : Xt → C2) is the generic discriminant ∆t for all the singularities
in Xt, for all t, one gets a deformation ρ′ : ∆ → D of the generic discriminant ∆S,0 of (S, 0),
which is exactly the Scott deformation of this curve as defined in Lem. 11.2.

Proof. In our proof in Section 10, it is proved that the discriminant of (S1, Oi) is the part of the
strict transform of the discriminant of (S, 0) going through the image of Oi in the plane (it is of
course also obvious from the result there).

The discriminant of the cone over the m-th Veronese curve is a 2m−2-tuple ordinary point in
the plane (cf. Rem. 8.1). This is indeed the last singularity occurring in the Scott deformation
of ∆S,0, since, by Lem. 10.3, the multiplicity of the ∆S,0 is 2m− 2. �

Considering polar curves in this Scott deformation, we get the more interesting:

Theorem 11.4. Let the notation be as in Cor. 11.3. Then, the polar curve for pt : Xt → (C2, 0)
is also the generic polar curve PXt (which is a multi-germ of space curves for t 6= 0). Further, PXt

is a δ-constant deformation of the generic polar curve PS,0. Hence iterating Scott deformations,
one may compute the δ-invariant of PS,0 as sum of δ-invariants for sets of generic lines Pm as
in Lem. 8.2.

Proof. In Theorem 11.1, the deformation Xt is said to belong to the Artin-component of (S, 0).
This means that it has a simultaneous resolution, in which (cf. Lem 5.1) the PXt

are also
resolved. One then has a normalisation in family for the family PXt , which is equivalent to
“δ-constant” (cf. [22], p. 609). �

We illustrate the second statement in Thm 11.4 by giving:

Example 11.5. Taking a singularity with graph as in Figure 6, and applying twice the Scott
deformation of the surface, one gets two cones over a cubic and two cones over a conic. Hence
the polar curve deforms onto two P3’s and two P2’s (in the notation of Lem. 8.2), which gives 8
for the δ-invariant.10

Let us end this with the following:

Remark 11.6. The information on (the resolution graph of) (S, 0) given by the generic discrim-
inant ∆S,0 is of course partial: e.g., one may permute the Tyurina components in the resolution
graph of (S, 0) or the weights on the tangent cone without changing ∆S,0. However, when one
looks at deformations on (S, 0), we believe the information on the discriminant is most valuable:

(a) As a very basic occurence of this: a family of normal surfaces St with constant generic dis-
criminant ∆St,0 is Whitney-equisingular and in particular has constant topological type (encoded
by the minimal resolution graph). As a consequence of our result, these three equisingularity

10Beware that δ(P2) = 1 is not given by the formula δ(Pn) = 3n− 6, valid for n ≥ 3.



FINE POLAR INVARIANTS OF MINIMAL SINGULARITIES OF SURFACES 111

Figure 6. Graph with weights on the vertices for example 11.5
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conditions are in fact equivalent for minimal singularities of surfaces (see also [1], Th. 3.6. and
Cor. 4.3 ).

(b) Much more generally, one can deform the discriminant ∆S,0 and ask which deformation
of (S, 0) “lies above” the curve-deformation: for example, can one deduce the existence of the
Scott deformation of the surface (S, 0) in the sense of Thm. 11.1 as deformation “lying above”
the Scott deformation of ∆S,0?

This would give a description of some deformation theory of the surface through an invari-
ant which, as opposed to the birational join construction of Spivakovsky or the decorated tree
construction of De Jong and Van Straten, is uniquely defined from (S, 0).
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math. France 108, 259–281, (1980).
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