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VANISHING RESULTS FOR THE AOMOTO COMPLEX OF REAL

HYPERPLANE ARRANGEMENTS VIA MINIMALITY

PAULINE BAILET AND MASAHIKO YOSHINAGA

Abstract. We prove vanishing results for the cohomology groups of the Aomoto complex over
an arbitrary coefficient ring for real hyperplane arrangements. The proof uses the minimality

of arrangements and descriptions of the Aomoto complex in terms of chambers.

Our methods are used to present a new proof for the vanishing theorem of local system
cohomology groups, a result first proved by Cohen, Dimca, and Orlik.

1. Introduction

The theory of hypergeometric integrals originated with Gauss, and has been generalized to
higher dimensions for applications in various areas of mathematics and physics ([1, 9, 17]). In this
generalization, the notion of local system cohomology groups of the complement of a hyperplane
arrangement plays a crucial role.

Let A = {H1, . . . ,Hn} be an arrangement of affine hyperplanes in C` and let

M(A) = C` r
⋃
H∈A

H

be its complement. Let us fix a defining equation αi of Hi. An arrangement A is called essential
if the normal vectors of hyperplanes generate C`. The first homology group H1(M(A),Z) is a
free abelian group generated by the meridians γ1, . . . , γn of hyperplanes. We denote their dual
basis by e1, . . . , en ∈ H1(M(A),Z). The element ei can be identified with 1

2π
√
−1d logαi via the

de Rham isomorphism.
The isomorphism class of a rank one complex local system L is determined by a homomor-

phism ρ : H1(M(A),Z) −→ C×, which is also determined by an n-tuple q = (q1, . . . , qn) ∈ (C×)n,
where qi = ρ(γi).

For a generic parameter (q1, . . . , qn), it is known that the following vanishing result holds.

(1) dimHk(M(A),L) =

 0, if k 6= `,

|χ(M(A))|, if k = `.

Several sufficient conditions for the vanishing of (1) are known ([1, 8]). Cohen, Dimca and Orlik
([4]) proved the following.

Theorem 1.1. (CDO-type vanishing theorem) Suppose that qX 6= 1 for each dense edge X
contained in the hyperplane at infinity. Then, the vanishing (1) holds. (See §2.1 for description
of the notation.)

The above result is stronger than many other vanishing results. Indeed, for the case ` = 2,
it has been proved ([19]) that the vanishing (1) with an additional property holds if and only if
the assumption of Theorem 1.1 holds.

The local system cohomology group Hk(M(A),L) is computed using the twisted de Rham
complex (Ω•M(A), d + ω∧) with ω =

∑
λid logαi, where λ is a complex number such that
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exp(−2π
√
−1λi) = qi (we denote L = exp(ω)). The algebra of rational differential forms Ω•M(A)

has a natural C-subalgebra A•C(A) generated by ei = 1
2π
√
−1d logαi. This subalgebra is known to

be isomorphic to the cohomology ring H•(M(A),C) of M(A) ([3]) and to have a combinatorial
description, the so-called Orlik-Solomon algebra [11] (see §2.1 for details). The Orlik-Solomon
algebra provides a subcomplex (A•C(A), ω∧) of the twisted de Rham complex, which is called
the Aomoto complex. There exists a natural morphism

(2) (A•C(A), ω∧) ↪→ (Ω•M(A), d+ ω∧)

of complexes. The Aomoto complex (A•C(A), ω∧) has a purely combinatorial description. Fur-
thermore, it can be considered as a linearization of the twisted de Rham complex (Ω•M(A), d+ω∧).

Indeed, there exists a Zariski open subset U ⊂ (C×)n that contains (1, 1, . . . , 1) ∈ (C×)n such
that (2) is a quasi-isomorphism for q ∈ U ([7, 16, 10]). However, this is not an isomorphism in
general.

The following vanishing result for the cohomology of the Aomoto complex has been obtained
by Yuzvinsky.

Theorem 1.2. ([21, 22]) Let ω =
∑n
i=1 2π

√
−1λiei ∈ A1

C(A). Suppose λX 6= 0 for all dense
edges X in L(A). Then, we have

(3) dimHk(A•C(A), ω∧) =

 0, if k 6= `,

|χ(M(A))|, if k = `.

Note that the assumptions in Theorem 1.1 and Theorem 1.2 are somewhat complementary:
the first one requires nonresonant conditions along the hyperplane at infinity, whereas the second
imposes nonresonant conditions on all dense edges in the affine space.

Recently, Papadima and Suciu proved that the dimension of the local system cohomology
group for a torsion local system is bounded by that of the Aomoto complex with finite field
coefficients.

Theorem 1.3. ([14]) Let p ∈ Z be a prime. Suppose ω =
∑n
i=1 λiei ∈ A1

Fp(A) and L is the local

system determined by qi = exp( 2π
√
−1
p λi). Then,

(4) dimCH
k(M(A),L) ≤ dimFp H

k(A•Fp(A), ω∧),

for all k ≥ 0.

In view of the Papadima-Suciu inequality (4), it is natural to expect that a CDO-type van-
ishing theorem for a p-torsion local system may be deduced from that of the Aomoto complex
with finite field coefficients. Furthermore, Papadima and Suciu ([15]) clarified the relationship
between multinet structures and H1(A•Fp(A), ω∧). These results motivate the study of the Ao-

moto complex with coefficients in an arbitrary commutative ring R. The main result of this
paper is the following CDO-type vanishing theorem.

Theorem 1.4. (Theorem 3.1) Let A = {H1, . . . ,Hn} be an essential affine hyperplane arrange-
ment in R`. Let R be a commutative ring with multiplicative unit 1. Let ω =

∑n
i=1 λiei ∈ A1

R(A).
Suppose that λX ∈ R× for any dense edge X contained in the hyperplane at infinity. Then, the
following holds.

(5) Hk(A•R(A), ω∧) '


0, if k 6= `,

R|χ(M(A))|, if k = `.
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Our proof relies on several results ([18, 19, 20]) concerning the minimality of arrangements.
We also provide an alternative proof of Theorem 1.1 for real arrangements.

Remark 1.5. If R = C, one can deduce Theorem 1.4 from Theorem 1.1. We present a sketch of
the argument. If ω =

∑n
i=1 λiei ∈ A1

R(A) satisfies the assumption of Theorem 1.4, then so does
tω for t ∈ C×. Clearly, we have Hk(A•C(A), ω∧) ' Hk(A•C(A), tω∧). However, the tangent-cone
theorem ([6, 7]) gives, for 0 < |t| � 1, an isomorphism Hk(A•C(A), tω∧) ' Hk(M(A),Lt), where
Lt = exp(tω). Then, Theorem 1.1 gives Hk(M(A),Lt) = 0.

The remainder of this paper is organized as follows.
In §2, we give some basic terminology and a description of the Aomoto complex in terms

of chambers developed in [18, 19, 20]. We also recall the description of a twisted minimal
complex in terms of chambers. Two cochain complexes (R[ch•(A)],∇ωλ) and (C[ch•(A)],∇L)
are constructed using the real structures of A (adjacency relations of chambers). These cochain
complexes provide a parallel description of the cohomology of the Aomoto complex and the
local system cohomology group. Indeed, using these complexes, we can simultaneously prove
CDO-type vanishing results for both cases.

In §3, we state the main result and describe the strategy for the proof. The proof consists
of an easy part and a hard part. The easy part of the proof mainly uses elementary arguments
relating to cochain complexes, which are also stated in this section. The hard part is tackled in
§4.
§4 is devoted to an analysis of the polyhedral structures of chambers that are required for

matrix presentations of the coboundary map of (R[ch•(A)],∇ωλ).

2. Notation and Preliminaries

2.1. Orlik-Solomon algebra and Aomoto complex. Let A = {H1, . . . ,Hn} be an affine
hyperplane arrangement in V = R`. Denote the complement of the complexified hyperplanes
by M(A) = C` r ∪ni=1Hi ⊗ C. By identifying R` with P`R r H∞, define the projective closure

by A = {H1, . . . ,Hn, H∞}, where Hi ⊂ P`R is the closure of Hi in the projective space. We

denote the intersection posets of A and A as L(A) and L(A), respectively; these are the posets
of subspaces obtained as intersections of some hyperplanes with reverse inclusion order. An
element of L(A) (and L(A)) is also called an edge. We denote the set of all k-dimensional edges
by Lk(A). For example, L`(A) = {V } and L`−1(A) = A. Then, A is essential if and only if
L0(A) 6= ∅.

Let R be a commutative ring. Orlik and Solomon gave a simple combinatorial description of
the algebra H∗(M(A), R), which is the quotient of the exterior algebra on classes dual to the
meridians, modulo a certain ideal determined by L(A) (see [11]). More precisely, by associating
a generator ei ' 1

2π
√
−1d logαi to any hyperplane Hi, the Orlik-Solomon algebra A•R(A) of A is

the quotient of the exterior algebra generated by the elements ei, 1 ≤ i ≤ n, modulo the ideal
I(A) generated by:

• elements of the form {ei1 ∧ · · · ∧ eis |Hi1 ∩ · · · ∩His = ∅},
• elements of the form {∂(ei1∧· · ·∧eis) |Hi1∩· · ·∩His 6= ∅ and codim(Hi1∩· · ·∩His) < s},

where ∂(ei1 ∧ · · · ∧ eis) =
∑s
α=1(−1)α−1ei1 ∧ · · · ∧ êiα ∧ · · · ∧ eis .

Let λ = (λ1, . . . , λn) ∈ Rn and ωλ =
∑n
i=1 λiei ∈ A1

R(A). The cochain complex

(A•R(A), ωλ∧) = {A•R(A)
ωλ∧−→ A•+1

R (A)}
is called the Aomoto complex.

We say that an edge X ∈ L(A) is dense if the localization AX = {H ∈ A |X ⊆ H} is
indecomposable (see [13] for more details). Each hyperplane H ∈ A is considered to be a dense
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edge. In this paper, the set of dense edges of A contained in H∞ plays an important role. We
denote this set by D∞(A). We will characterize X ∈ D∞(A) in terms of chambers in Proposition
2.6.

Set λ∞ := −
∑n
i=1 λi. For any X ∈ L(A), λX :=

∑
Hi⊃X λi, where the index i-runs through

the set {1, 2, . . . , n,∞}.
The isomorphism class of a rank one local system L on the complexified complement M(A)

is determined by the monodromy qi ∈ C× around each hyperplane Hi. As in the case of the
Aomoto complex, we denote q∞ = (q1q2 · · · qn)−1 and qX =

∏
Hi⊃X qi for an edge X ∈ L(A).

2.2. Chambers and minimal complexes. In this section, we recall the description of the
minimal complex in terms of real structures from [18, 19, 20]. Let A = {H1, . . . ,Hn} be an
essential hyperplane arrangement in R`. A connected component of R` r

⋃n
i=1Hi is called a

chamber. The set of all chambers of A is denoted by ch(A). A chamber C ∈ ch(A) is called a
bounded chamber if C is bounded. The set of all bounded chambers of A is denoted by bch(A).
For a chamber C ∈ ch(A), denote the closure of C in P`R by C. It is easily seen that a chamber

C is bounded if and only if C ∩H∞ = ∅.
Given two chambers C,C ′ ∈ ch(A), we denote the set of separating hyperplanes of C and C ′

by
Sep(C,C ′) := {Hi ∈ A | Hi separates C and C ′}.

To describe the minimal complex, we must fix a generic flag. Let

F : ∅ = F−1 ⊂ F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = R`

be a generic flag (i.e., F k is a generic k-dimensional affine subspace, that is,

dim(X ∩ F k) = dimX + k − `
for any X ∈ L(A)). The genericity of F is equivalent to

F k ∩ Li(A) = Lk+i−`(A ∩ F k)

for k + i ≥ `.

Definition 2.1. We say that the hyperplane F `−1 is near to H∞ when F `−1 does not separate
0-dimensional edges L0(A) ⊂ R`. Similarly, we say the flag F is near to H∞ when F k−1 does
not separate L0(A ∩ F k) for all k = 1, . . . , `.

From this point, we assume that the flag F is near to H∞. For a generic flag F near to H∞,
we define

chk(A) = {C ∈ ch(A) | C ∩ F k 6= ∅, C ∩ F k−1 = ∅}

bchk(A) = {C ∈ chk(A) | C ∩ F k is bounded}

uchk(A) = {C ∈ chk(A) | C ∩ F k is unbounded}.
It is then clear that

chk(A) = bchk(A) t uchk(A)

ch(A) =
⊔̀
k=0

chk(A).

Note that bch`(A) = bch(A). However, for k < `, C ∈ bchk(A) is an unbounded chamber.

Definition 2.2. ([19, Definition 2.1]) Let C ∈ bch(A). There exists a unique chamber, denoted
by C∨ ∈ uch(A), which is the opposite with respect to C ∩H∞, where C is the closure of C in
the projective space P`R.
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H∞

H1

H2

H3 H4 H5

C1 C2 C3 C4

C∨4 C∨2 C∨3 C∨1

C∨1 C∨3 C∨2 C∨4

C1 ∩H∞

Figure 1. Opposite chambers

Let us denote the projective subspace generated by C ∩H∞ as X(C) = 〈C ∩H∞〉.

Proposition 2.3. Let C ∈ bch(A). Then

(6) Sep(C,C∨) = {H ∈ A | H 6⊃ X(C)} = ArAX(C).

Proof. Let p ∈ C and p′ be a point in the relative interior of C ∩H∞. Take the line

L = 〈p, p′〉 ⊂ P`R,
and choose a point p′′ ∈ C∨ ∩ L. Then, consider the segment [p, p′′] ⊂ R` = P`R r H∞ (see
Figure 2). On the projective space P`R, the line L = 〈p, p′〉 must intersect every hyperplane

H ∈ A exactly once. Furthermore, L intersects H ∈ AX(C) at p′. Additionally, the segment
[p, p′′] intersects H ∈ Sep(C,C∨). Hence, we have (6). �

H∞

H1

H2

H3 H4 H5

p′′

p′′

p

p′

Figure 2. The segment [p, p′′] (thick segment).

Corollary 2.4. If dimX(C) = `− 1, then Sep(C,C∨) = A.

Proof. In this case, AX(C) = {H∞}. Proposition 2.3 implies that Sep(C,C∨) = A. �

Proposition 2.5. ([18, 19])

(i) # chk(A) = bk, where bk = bk(M(A)).
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(ii) # bchk(A) = # uchk+1(A).

(iii) # bchk(A) = bk − bk−1 + · · ·+ (−1)kb0.

Concerning Proposition 2.5 (ii), an explicit bijection is given by the map to the opposite
chamber,

ι : bchk(A)
'−→ uchk+1(A), C 7−→ C∨.

The next result characterizes the dense edges contained in H∞.

Proposition 2.6. ([19, Proposition 2.4]) Let A be an affine arrangement in R`. An edge
X ∈ L(A) with X ⊆ H∞ is dense if and only if X = X(C) for some chamber C ∈ uch(A). In
particular, we have

(7) D∞(A) = {X(C) | C ∈ uch(A)}.

Next, we define the degree map

deg : chk(A)× chk+1(A) −→ Z.

Let B = Bk ⊂ F k be a k-dimensional ball of sufficiently large radius so that every 0-dimensional
edge X ∈ L0(A ∩ F k) ' L`−k(A) is contained in the interior of Bk. Let C ∈ chk(A) and

C ′ ∈ chk+1(A). Then, there exists a vector field UC
′

on F k ([18]) that satisfies the following
conditions.

• UC′
(x) 6= 0 for x ∈ ∂C ∩Bk.

• Let x ∈ ∂(Bk) ∩ C. Then, Tx(∂Bk) can be considered as a hyperplane of TxF
k. We

impose the condition that UC
′
(x) ∈ TxF k is contained in the half-space corresponding

to the inside of Bk.
• If x ∈ H ∩ F k for a hyperplane H ∈ A, then UC

′
(x) 6∈ Tx(H ∩ F k) and is directed to

the side in which C ′ is lying with respect to H.

When the vector field UC
′

satisfies the above conditions, we say that the vector field UC
′

is
directed to the chamber C ′. The above conditions imply that if either x ∈ H ∩ F k or x ∈ ∂Bk,
then UC

′
(x) 6= 0. Thus, for C ∈ chk(A), U is not vanishing on ∂(C ∩ Bk). Hence, we can

consider the following Gauss map.

UC
′

|UC′ |
: ∂(C ∩Bk) −→ Sk−1.

Fixing an orientation on F k induces an orientation on ∂(C ∩Bk).

Definition 2.7. Define the degree deg(C,C ′) between C ∈ chk(A) and C ′ ∈ chk+1(A) by

deg(C,C ′) := deg

 UC
′

|UC′ |

∣∣∣∣∣
∂(C∩Bk)

: ∂(C ∩Bk) −→ Sk−1

 ∈ Z.

This is independent of the choice of UC
′

([18]).

If the vector field UC
′

does not have zeros on C ∩ Bk, then the Gauss map can be extended

to the map C ∩ Bk −→ Sk−1. Hence, UC
′

|UC′ | : ∂(C ∩ Bk) −→ Sk−1 is homotopic to a constant

map, and we have the following result.

Proposition 2.8. If the vector field UC
′

is nowhere zero on C ∩Bk, then deg(C,C ′) = 0.
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Example 2.9. Let p0 ∈ F k be such that p0 /∈
⋃
H∈AH ∪ ∂Bk. Define the pointing vector field

Up0 by

(8) Up0(x) = −−→x; p0 ∈ TxF k,

where −−→x; p0 is a tangent vector at x pointing toward p0 (see Figure 3). The vector field Up0 is
directed to the chamber containing p0. Note that Up0(x) = 0 if and only if x = p0. Hence, if

p0 /∈ C ∩Bk, the Gauss map Up0

|Up0 | : ∂(C ∩Bk) −→ Sk−1 satisfies deg
(
Up0

|Up0 |

)
= 0. Otherwise, if

p0 ∈ C ∩Bk, then deg
(
Up0

|Up0 |

)
= (−1)k.

p0

Figure 3. Pointing vector field 1
4U

p0

Consider the Orlik-Solomon algebra A•R(A) over the commutative ring R. Let

ωλ =

n∑
i=1

λiei ∈ A1
R(A) (λi ∈ R).

We will describe the Aomoto complex (A•R(A), ωλ∧) in terms of chambers. For two chambers
C,C ′ ∈ ch(A), define λSep(C,C′) by

λSep(C,C′) :=
∑

Hi∈Sep(C,C′)

λi.

Proposition 2.10. Let C be an unbounded chamber. Then,

λSep(C,C∨) = −λX(C).

Proof. By Proposition 2.3, we have A = AX(C) t Sep(C,C∨). Hence, from the definition of

λ∞ = −
∑n
i=1 λi, we obtain λSep(C,C∨) + λX(C) = 0. �

Let R[chk(A)] =
⊕

C∈chk(A)R · [C] be the free R-module generated by chk(A). Let

∇ωλ : R[chk(A)] −→ R[chk+1(A)]

be the R-homomorphism defined by

(9) ∇ωλ([C]) =
∑

C′∈chk+1

deg(C,C ′) · λSep(C,C′) · [C ′].
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Proposition 2.11. ([20]) (R[ch•(A)],∇ωλ) is a cochain complex. Furthermore, there is a nat-
ural isomorphism of cochain complexes,

(R[ch•(A)],∇ωλ) ' (A•R(A), ωλ∧).

In particular,

Hk(R[ch•(A)],∇ωλ) ' Hk(A•R(A), ωλ∧).

Let L be a rank one local system on M(A) with monodromy qi ∈ C× around Hi (i = 1, . . . , n).

Fix q
1/2
i =

√
qi and define q

1/2
∞ and ∆(C,C ′) by q

1/2
∞ :=

(
q
1/2
1 · · · q1/2n

)−1
and

∆(C,C ′) :=
∏

Hi∈Sep(C,C′)

q
1/2
i −

∏
Hi∈Sep(C,C′)

q
−1/2
i .

The local system cohomology groups can then be computed in a similar way to the cohomology
groups of the Aomoto complex. Indeed, let us define the linear map

∇L : C[chk(A)] −→ C[chk+1(A)]

by

∇L([C]) =
∑

C′∈chk+1

deg(C,C ′) ·∆(C,C ′) · [C ′].

Then, we have the following.

Proposition 2.12. ([18]) (C[ch•(A)],∇L) is a cochain complex. Furthermore, there is a natural
isomorphism of cohomology groups:

Hk(C[ch•(A)],∇L) ' Hk(M(A),L).

3. Main results and strategy

3.1. Main theorems. In this section, let A = {H1, . . . ,Hn} be a hyperplane arrangement in
R` and R be a commutative ring with 1.

Theorem 3.1. If λX ∈ R× for all X ∈ D∞(A), then

Hk(C[ch•(A)],∇ωλ) '

 0, if k < `,

R[bch(A)], if k = `.

More generally, we can prove the following.

Corollary 3.2. Let 0 ≤ p < `. If λX ∈ R× for all X ∈ D∞(A) with dim(X) ≥ p, then

Hk(C[ch•(A)],∇ωλ) = 0, for all 0 ≤ k < `− p.

Proof. We prove Corollary 3.2 based on Theorem 3.1 with A∩F `−p. The Orlik-Solomon algebra

A•R(A ∩ F `−p) is isomorphic to A≤`−pR (A). Hence, we have an isomorphism

(10) Hk(A•R(A ∩ F `−p), ωλ∧) ' Hk(A•R(A), ωλ∧),

for k < ` − p. Note that L(A ∩ F `−p) ' L≥p(A). By assumption, we have that λX ∈ R× for
any X ∈ D∞(A ∩ F `−q). Hence, by Theorem 3.1, the left-hand side of (10) vanishes. �

The following vanishing result for the Aomoto complex follows from Proposition 2.11.

Corollary 3.3. Let 0 ≤ p < `. If λX ∈ R× for all X ∈ D∞(A) with dim(X) ≥ p, then

Hk(A•R(A), ωλ∧) = 0, for all 0 ≤ k < `− p.
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Remark 3.4. A very similar proof can be used for the case of local systems. Namely, if the
local system L satisfies qX 6= 1 for all X ∈ D∞(A) with dim(X) ≥ p, then

Hk(C[ch•(A)],∇L) = 0, for all k < `− p.

Using Proposition 2.12, this implies

Hk(M(A),L) = 0, for all k < `− p,

which gives an alternative proof of Theorem 1.1 given by Cohen, Dimca, and Orlik.

3.2. Strategy for the proof of Theorem 3.1. To analyze the cohomology group

Hk(R[ch•(A)],∇ω) =
ker
(
∇ω : R[chk(A)] −→ R[chk+1(A)]

)
im
(
∇ω : R[chk−1(A)] −→ R[chk(A)]

) ,
we will use the direct decomposition R[chk(A)] = R[bchk(A)] ⊕ R[uchk(A)], and then consider
the map

(11) ∇ωλ : R[bchk(A)] ↪→ R[chk(A)]
∇ω−→ R[chk+1(A)] � R[uchk+1(A)].

We will study the map ∇ωλ : R[bchk(A)] −→ R[uchk+1(A)] in detail below. Recall that there

is a natural bijection ι : bchk(A)
'−→ uchk+1(A) (see Proposition 2.5 and subsequent remarks).

Once we fix an ordering C1, . . . , Cb of bchk(A), we obtain a matrix expression of the map ∇ωλ .
We will prove the following.

(i) Let C ∈ bchk(A). Then, deg(C,C∨) = (−1)`−1−dimX(C).

(ii) For an appropriate ordering of bchk(A) = {C1, . . . , Cb}, the matrix expression of

∇ωλ : R[bchk(A)] −→ R[uchk+1(A)]

is upper-triangular.
(iii) det∇ω ∈ R×
(iv) These imply Theorem 3.1.

(i) and (ii) will be proved in §4.
Here, we prove (iii) and (iv) based on (i) and (ii). First, note that Proposition 2.10, along

with the definition (9) of the coboundary map of the complex (R[ch•(A)],∇ω) and the upper-
triangularity in (ii) above implies that

det∇ω = ±
∏

C∈bchk(A)

deg(C,C∨)λX(C).

Then, from the assumption that λX ∈ R× for X ∈ D∞(A) (see also Proposition 2.6), we have

(iii) directly. Because ∇ω : R[bchk(A)]
'−→ R[uchk+1(A)], which are diagonals of the following

diagram, are isomorphisms of free R-modules, we have Hk(R[ch•(A)],∇ω) = 0 for k < ` and

H`(R[ch•(A)],∇ω) ' R[bch`(A)].

R[ch0]
∇ω−→ R[ch1]

∇ω−→ · · · ∇ω−→ R[chk]
∇ω−→ R[chk+1]

∇ω−→ · · ·
|| || || ||

R[bch0] R[bch1] · · · R[bchk] R[bchk+1]
↘ ⊕ ↘ ↘ ⊕ ↘ ⊕

R[uch1] · · · R[uchk] R[uchk+1]
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4. Proofs

In this section, we prove (i) and (ii) stated in §3.2 for k = `− 1. Namely:

(i’) For a chamber C ∈ bch`−1(A), deg(C,C∨) = (−1)`−1−dimX(C).

(ii’) For an appropriate ordering of {C1, . . . , Cb} = bch`−1(A), the matrix expression of

∇ωλ : R[bch`−1(A)] −→ R[uch`(A)] is upper-triangular.

For other k < `, note that the assertions can be proved in a similar way to that for k = l− 1 by
using the generic section F k+1 (see the arguments in the proof of Corollary 3.2).

4.1. Structure of Walls. For simplicity, we will set F = F `−1. Recall that

bch`−1(A) = {C ∈ ch(A) | C ∩ F is a bounded chamber of F ∩ A}.

Let C ∈ bch`−1(A). A hyperplane H ∈ A is said to be a wall of C if H ∩ F is a supporting

hyperplane of a facet of C ∩ F . For any C ∈ bch`−1(A), we denote the set of all walls of C by
Wall(C).

F 1

H1 H2

H3

C ∩ F 1

C

F 1

H ′1 H ′2
H ′3

C ′ ∩ F 1

C ′

Figure 4. Wall(C) = Wall2(C) = {H1, H2}, Wall(C′) = Wall1(C
′) = {H ′

1, H
′
2}

We divide the set of walls into two types.

Definition 4.1. A wall H ∈ Wall(C) is said to be of the first kind if H ⊃ X(C). Otherwise,
we say that H is a wall of the second kind. The sets of the first and the second kind of walls are
denoted by Wall1(C) and Wall2(C), respectively. We have Wall(C) = Wall1(C)tWall2(C) (see
Figure 4 and 5).

Let C ∈ bch`−1(A) and Wall1(C) = {Hi1 , . . . ,Hik} be walls of the first kind. We choose
defining equations αi1 , . . . , αik for the walls in Wall1(C) so that

C ⊂ {αi1 > 0} ∩ · · · ∩ {αik > 0}.

Note that C̃ := {αi1 > 0} ∩ · · · ∩ {αik > 0} is a chamber of Wall1(A). Let D ∈ uch(A) be
another unbounded chamber of A. Then, D is said to be inside Wall1(C) if

D ⊂ C̃ = {αi1 > 0} ∩ · · · ∩ {αik > 0}.
This condition is equivalent to Sep(C,D) ∩Wall1(C) = ∅.

Recall that the opposite chamber of C ∈ bch`−1(A) is defined as the opposite chamber with
respect to X(C) ⊂ H∞. Using (6), we have the following.
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H∞

X(C)

F 2 H3
H4

H1

H2

C

Figure 5. Wall1(C) = {H1, H2},Wall2(C) = {H3, H4}.

Proposition 4.2. Let C ∈ bch`−1(A). Then, Sep(C,C∨) ∩Wall(C) = Wall2(C).

Remark 4.3. Let C ∈ bch`−1(A). If D is inside Wall1(C), then

X(D) ⊂ X(C) and dimX(D) ≤ dimX(C).

4.2. Fibered structure of chambers. Let C ∈ bch`−1(A) and d = dimX(C). As above, we

let C̃ ∈ ch(Wall1(C)) be the unique chamber such that C ⊂ C̃.

For each point p ∈ C̃, denote G1(p) := 〈X(C), p〉 ∩ F (see Figure 6). Then, G1(p) is a d-

dimensional affine subspace that is parallel to each H ∈Wall1(C). Fix a base point p0 ∈ C̃. We
also fix an (`−1−d)-dimensional subspace G2(p0) ⊂ F that passes through p0 and is transversal

to G1(p0) (see Figure 6). Let us call Q0 := G2(p0) ∩ C̃ the base polytope.
Consider the map πC : C ∩ F −→ Q0, p 7−→ G1(p) ∩ Q0. For each q ∈ Q0, the fiber

π−1C (q) = G1(q) ∩C is a d-dimensional polytope. This is a conclusion of the assumption that F

is generic and near to H∞ and the following elementary proposition.

F

H1

H2

C ∩ F
G1(p0)

G2(p0)

Q0

p0

G1(p)
p πC(p)

Figure 6. Base polytope Q0 (Wall1(C) = {H1, H2})

Proposition 4.4. Let P ⊂ R` be an `-dimensional polytope. Let X ⊂ P be a d-dimensional
face (0 ≤ d ≤ `). We denote by 〈X〉 the d-dimensional affine subspace spanned by X. Then, for
ε ∈ R` with sufficiently small 0 ≤ |ε| � 1, (〈X〉+ε)∩P is either an empty set or a d-dimensional
polytope.
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Remark 4.5. As πC : C ∩ F −→ Q0 is a fibration with contractible fibers, there exists a
continuous section σC : Q0 −→ C ∩ F such that πC ◦ σC = idQ0

.

4.3. Upper-triangularity. Let us fix an ordering of the chambers of bch`−1(A) = {C1, . . . , Cb}
in such a way that

dimX(C1) ≥ dimX(C2) ≥ · · · ≥ dimX(Cb).

The main result of this section is the following.

Theorem 4.6. The matrix (deg(Ci, C
∨
j ))i,j=1,...,b is upper-triangular. In other words, if i > j,

deg(Ci, C
∨
j ) = 0.

Proof. Let C,D ∈ bch`−1(A). Suppose dimX(D) ≥ dimX(C) and C 6= D. Then, we will show

that deg(C,D∨) = 0. The idea of the proof is to construct a vector field UD
∨

directed to D∨ on
F that is nowhere vanishing on a neighbourhood of C ∩ F ⊂ F . Then, by Proposition 2.8, we
have deg(C,D∨) = 0.

Let us study the following three cases separately.

(a) dimX(C) = `− 1.
(b) dimX(C) < `− 1 and D is not inside Wall1(C).
(c) dimX(C) < `− 1 and D is inside Wall1(C).

First, we consider case (a). In this situation, because dimX(D) ≥ dimX(C), we have
dimX(D) = `− 1. Choose a point p ∈ D ∩ F , and define the vector field U on F by

U(x) = −→x; p ∈ TxF.
Then, the vector field is directed to p and nowhere vanishing on C ∩ F (because p /∈ C). By
Corollary 2.4, −U is a vector field directed to D∨ that is also nowhere vanishing on C ∩ F .
Hence, deg(C,D∨) = 0.

From this point, we assume dimX(C) < `−1. If D is inside Wall1(C), then X(D) ⊂ X(C) by
Remark 4.3, and we have AX(D) ⊃ AX(C). Proposition 4.2 indicates Sep(D,D∨) ∩ AX(C) = ∅.
We can conclude that D∨ is also inside Wall1(C). Conversely, if D is not inside Wall1(C), then
D∨ is also not inside Wall1(C).

Second, we consider case (b). In this situation, Sep(C,D∨) ∩ Wall1(C) 6= ∅. Choose a
hyperplane Hi0 ∈ Sep(C,D∨) ∩Wall1(C) and let αi0 be the defining equation of Hi0 . Without
loss of generality, we may assume that

H+
i0

= {αi0 > 0} ⊃ D∨

H−i0 = {αi0 < 0} ⊃ C.

We will construct a vector field UD
∨

on F that is directed to D∨ and satisfies

(12) UD
∨

(x)αi0 > 0

for x ∈ C ∩F , where the left hand side of (12) is the derivative of αi0 with respect to the vector
field. In particular, we obtain a vector field directed to D∨ that is nowhere vanishing on C ∩F .
It is sufficient to show that, at any point x0 ∈ C, there exists a local vector field around x0 that
satisfies (12). Then, we will obtain a global vector field that satisfies (12) using a partition of
unity.

It is sufficient to show the existence of such a vector field around each vertex x0 of C ∩F . By
the genericity of F , Z :=

⋂
Ax0 =

⋂
x0∈H∈AH is a 1-dimensional flat of A, which is transversal

to F . By the assumption that F does not separate 0-dimensional flats of A, we have

(13) Z ∩H∞ ⊂ C ∩H∞.
(See Figure 7.)
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H∞

Hs0
i0

F

X(C)

Hi0

C ∩ F
x0

Z

Figure 7. Z and Hs0
i0

.

Set s0 := αi0(x0) and let Hs0
i0

= {αi0 = s0} be the hyperplane passing through x0 that is
parallel to Hi0 . Then, we have Z ⊂ Hs0

i0
, as otherwise we have a contradiction with (13). The

hyperplanes Ax0
= AZ determine chambers (cones), one of which (denoted by Γ) contains D∨

(see Figure 8). Hence, the tangent vector UD
∨

(x0) must be contained in Γ. Furthermore,

(14) D ⊂ Γ ∩H+
i0
⊂ Γ ∩H>s0

i0
.

In particular, we have Γ ∩H>s0
i0
6= ∅. Thus, we can construct a vector field UD

∨
around x0 so

that UD
∨

(x0) ∈ Γ ∩ H>s0
i0

and (12) is satisfied around x0. Hence, we have deg(C,D∨) = 0 in
case (b).

Γ

F

Hi0

C ∩ F

Hs0
i0

H≥s0i0 UD
∨

(x0)

x0

Figure 8. Construction of the vector field UD
∨

Third, suppose D is inside Wall1(C) (equivalently, D ⊂ C̃), and let us handle case (c). As
X(D) ⊂ X(C) and dimX(D) ≥ dimX(C), we have X(D) = X(C). In this case,

Wall1(C) = Wall1(D) and C̃ = D̃.

We consider the fibration πD : D ∩ F 7−→ Q0 that also has d-dimensional polytopes as fibers.
Because the fibers are contractible, there exists a continuous section σD : Q0 7−→ D ∩ F such
that πD ◦ σD = idQ0 .

We now move to the construction of a vector field. For each p ∈ C ∩ F , we denote the
(`− 1− d)-dimensional subspace that passes through p and is parallel to G2(p0) (see Figure 9).
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Let {p′} = G2(p) ∩G1(p0). The tangent space decomposes into the direct sum

TpF = TpG1(p)⊕ TpG2(p).

Let us first construct a vector field on the second component. For this, define the tangent vector
V2(p) ∈ TpG2(p) ⊂ TpF by

(15) V2(p) =
−−→
p; p′.

The vector field V2 is obviously inward with respect to Wall1(C), and vanishes on the reference
fiber G1(p0) ∩ C.

F

C
Q0

p0
G1(p0)

G2(p)

p

p′

Figure 9. V2.

Let us now construct a vector field V1 along the fibers G1(p). Using the section

σD : Q0 −→ C ∩ F (Remark 4.5),

define V1 by

(16) V1(p) =
−−−−−−−−−→
p;σD(πC(p)).

(See Figure 10.)

F

C D

σD(Q0)

Q0

p p′′

Figure 10. V1, p
′′ = σD(πC(p)).
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Proposition 4.7. For sufficiently large t� 0, the vector field tV1+V2 is directed to D. Similarly,
−tV1 + V2 is a vector field directed to D∨.

Proof. Let p ∈ H ∈ Wall1(C). Recall that D is inside Wall1(C). As V2 is inward and V1 is
tangent to H, the vector field ±tV1 +V2 is also inward. Let H ∈Wall2(C) and p ∈ H ∩F . Then,
V1 (resp. −V1) is directed to D (resp. D∨) with respect to H. Hence, for sufficiently large t,
tV1 + V2 (resp. −tV1 + V2) is directed to D (resp. D∨). �

Because V1 is a nowhere vanishing vector field on C ∩ F , −tV1 + V2 is a nowhere vanishing
vector field around C ∩ F that is directed to D∨. Hence, deg(C,D∨) = 0. This completes the
proof of Theorem 4.6. �

4.4. The degree formula. This section is devoted to a prove the following theorem.

Theorem 4.8. Let C ∈ bch`−1(A) and d = dimX(C). Then,

(17) deg(C,C∨) = (−1)`−1−d.

We will construct a vector field around C ∩ F that is directed to C∨. The vector field V2 is
the same as in the previous section (§4.3). Define the vector field V1 along the fibers of πC by

(18) V1(p) =
−−−−−−−−−→
p;σC(πC(p)).

(See Figure 11.)

F

C

σC(Q0) Q0

p p′′

Figure 11. V1, p
′′ = σC(πC(p)).

Then, tV1 + V2 is a vector field directed to C (for t � 0). Since C and C∨ are separated by
H ∈ A r Wall1(C), the vector field −tV1 + V2 is directed to C∨. We can compute the degree
deg(C,C∨) using the vector field −tV1 + V2. Note that −tV1(p) is an outward vector field along
a d-dimensional space G1(p), and V2(p) is an inward vector field that is tangent to an (`−1−d)-
dimensional space G2(p). Hence, deg(C,C∨) is equal to the index of the following vector field
in R`−1 at the origin:

(19) V =

d∑
i=1

xi
∂

∂xi
−

`−1∑
i=d+1

xi
∂

∂xi
.
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Finally, recall that the de Rham cohomology group H`−1(S`−2) is generated by the differential
form ([2])

`−1∑
i=1

(−1)i−1xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx`−1.

It is easily seen that the self-map of H`−1(S`−2) induced by the Gauss map of the vector field
(19) is equal to multiplication by (−1)`−1−d. This completes the proof of Theorem 4.8.
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