
Journal of Singularities
Volume 13 (2015), 179-204

Proc. of Geometry and Topology
of Singular Spaces, CIRM, 2012

DOI: 10.5427/jsing.2015.13j

STRATIFIED SUBMERSIONS AND CONDITION (D)
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Abstract. In this paper we investigate Goresky’s Condition (D) for a stratified submersion
between two Whitney stratifications. After revisiting the main results on Condition (D) of

1976 and 1981 due to Goresky, we give new equivalent properties1 and two sufficient analytic

conditions and their geometric meaning.

1. Introduction.

Let f : M → M ′ be a C1 map between C1 manifolds and W ⊆ M and W ′ ⊆ M ′ Whitney
stratified sets such that the restriction fW : W → W ′ is a stratified surjective submersion.
Condition (D) for f : M → M ′ with respect to W and W ′ was originally introduced by M.
Goresky in his Ph.D. Thesis (1976) as a convenient technical condition to define the singular
substratified objects W allowed to represent the geometric chains and cochains of a Thom-
Mather abstract stratified space X ([5] 2.3 and 4.1) in the aim of introducing nice geometric
homology and cohomology theories.

Condition (D) for fW : W → W ′ at x ∈ X ⊆ Y (where X < Y are strata of W, see §2.2 for
the definition) roughly speaking means that for every stratum Y ofW, the surjective differential
map fY ∗ : TY → TY ′ extends to a surjective map (see Remark 3.7) f∗x|CxY : CxY → Cx′Y

′

between the Nash tangent cones CxY and Cx′Y
′ (where CxY = t{yi}i→x limi TyiY is analogous

in the real case to the Whitney tangent cone C4(Y, x) [21]).

1.1. Historical motivations. Using an appropriate definition of stratified cycles (Definition
2.4) Goresky proves that every abstract stratified cycle in a manifold is cobordant to one which
is radial on M and that, thanks to the condition (D), this last admits a Whitney cellularisation
([5] 3.7).

This result is the main step in proving his important theorems on the bijective representability
of the homology of a C1 manifold M by its geometric stratified cycles and of the cohomology of
an arbitrary Thom-Mather abstract stratified set ([5] 2.4 and 4.5).

For a Whitney stratification X = (A,Σ), in 1981 [6] Goresky redefines his geometric homol-
ogy and cohomology theories using only Whitney (that is (b)-regular) substratified cycles and
cocycles of X , denoting them in this case WHk(X ) and WHk(X ), without assuming this time
the condition (D) in their definition. With these new definitions and replacing the terminology
(but essentially not the meaning) “radial” by “with conical singularities” ([6], Appendices 1, 2,
3) Goresky again proves the bijectivity of his homology and cohomology representation maps:

Theorem 1.1. If X = (M, {M}) is the trivial stratification of a compact C1 manifold, the
homology representation map Rk : WHk(X )→ Hk(M) is a bijection.

Proof. [6] Theorem 3.4. �

Key words and phrases. Stratified sets and maps, Whitney Conditions, regular cellularisations.
1 Used in [16] to give a new proof of the (b)-regularity of stratified mapping cylinders needed to Goresky in 1978 to prove a
theorem of Whitney cellularisation of Whitney stratifications with conical singularities.
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Theorem 1.2. If X = (A,Σ) is a compact Whitney stratified space, the cohomology represen-
tation map Rk : WHk(X )→ Hk(A) is a bijection.

Proof. [6] Theorem 4.7. �

Later such geometric theories were improved by the author of the present paper by introducing
a sum operation in WHk(M) and WHk(X ) geometrically meaning transverse union of stratified
cycles [14, 15].

1.2. Problems related to condition (D). Although in the revised theory of 1981 [6], condi-
tion (D) was not assumed in the definitions of the Whitney cycles and cocycles, it was once again
the main tool to obtain the two important representation theorems, through a strategy of us-
ing Condition (D) in order to construct Whitney cellularisations of Whitney stratifications with
conical singularities using stratified mapping cylinders whose (b)-regularity is obtained through
the condition (D) ([6], App. 1,2,3). We give a short survey of this in §2.2.

We underline here that in the homology case the main result, that Rk : WHk(X )→ Hk(M)
is a bijection, was established only when X = (M, {M}) is a trivial stratification of a compact
manifold M and that the complete homology statement for X an arbitrary compact (b)-regular
stratification remains a famous problem of Goresky which is still unsolved ([5] p. 52, [6] p. 178):

Conjecture 1.1. If X = (A,Σ) is a compact Whitney stratified space the homology, represen-
tation map Rk : WHk(X )→ Hk(A) is a bijection.

The proof of this conjecture would follow as a corollary if one could prove the following:

Conjecture 1.2. Every compact Whitney stratified space X admits a Whitney cellularisation.

This would be also a first important step of a possible proof of the celebrated conjecture:

Conjecture 1.3. Every compact Whitney stratified space X admits a Whitney triangulation.

Let us recall that in 2005 M. Shiota proved that semi-algebraic sets admit a Whitney tri-
angulation [18] and in 2012 M. Czapla gave new proof of this result [2] as a corollary of a
more general triangulation theorem for definable sets. On the other hand, our motivation be-
ing the applications to Goresky’s geometric homology theory, we are interested in the stronger
Conjectures 1.2 and 1.3 for stratifications having C1 strata.

In 1978 Goresky also proved an important triangulation theorem for compact Thom-Mather
stratified sets [7] whose proof (based on a double inductive step) can be used to obtain a Whit-
ney cellularisation of a Whitney stratification provided that one knows how to obtain Whitney
stratified mapping cylinders. Goresky used this idea based on Condition (D) for Whitney strat-
ifications having only conical singularities (see Proposition 2.4) for which he gave a solution of
Conjecture 1.2 and deduced as applications the proof of Theorems 1.1 and 1.2.

The strategy of Goresky could be used for an approach to a more general solution of Conjecture
1.2. In this context it is clear that Goresky’s condition (D) might play an important role in
answering affirmatively Conjecture 1.4 and in solving the famous conjectures 1.1 and 1.3.

1.3. Content of the paper. In §2.1 we review quickly some basic notions about the most
important regular stratifications concerned by this paper: the Whitney (b)-regular stratifications
[21] and the abstract stratified sets of Thom-Mather [9, 10, 19]. Then in §2.2 we introduce
the definition of condition (D) for a stratified submersions fW : W → W ′ as a technical tool
to obtain (b)-regularity of stratified mapping cylinders and we recall all results of Goresky of
1976-81 [5, 7] necessary to prove that: “Every Whitney stratification with conical singularities
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and conical control data admits a Whitney cellularisation” (Proposition 2.4) which is a partial
solution of Conjecture 1.2.

In §3.1, we analyze what condition (D) means for a C1 submersion f : M →M ′ between C1

manifolds at a regular point y0 ∈ M . First we remark that submersivity can be interpreted as
the C0,1-regularity of the foliation defined by the fibres of f (from Proposition 3.5 to Corollary
3.2).

When Y ⊆ M are riemannian manifolds, we show that the submersivity at y0 ∈ Y of the
restriction fY : Y → Y ′ is equivalent to the continuity at y0 of the canonical distribution
D(y) =⊥(ker fY ∗y, TyY ) (Proposition 3.6).

Then we introduce two test functions hY and HY (Definition 3.5) given by the minimum
and the maximum norm of the isomorphism fY ∗y|D(y) : D(y) → Ty′Y

′ and its inverse isomor-

phism f−1
Y ∗y|D(y) : Ty′Y

′ → D(y), such that limy→y0 hY (y) and limy→y0 HY (y) characterize the

submersivity of fY at y0 (Proposition 3.7).
Finally in §2.2, thanks to this, we prove that submersivity at y0 is also equivalent to the

property “f∗y0(limyi→y0 D(yi)) ⊇ limi f∗yi(D(yi))” and to Condition (D) for fY at y0, interpreted
as stratified map defined on the stratification Y − {y0} t {y0} (Proposition 3.8).

This preliminary analysis of §3 is necessary in introducing the results of §4.

In §4 we give the main results of this paper.

First in §4.1 we investigate the technical, geometric and analytic content of condition (D) at
a point x ∈ X < Y (X,Y being two strata ofW) for a general stratified submersion f :W →W ′
between two Whitney stratifications.

In Theorem 4.3 we prove that, in the context of stratified spaces, condition (D) at x ∈ X < Y
is equivalent to the key property (which is the most important technical content of Condition
(D)):

“For every {yi}i ⊆ Y such that limi yi = x ∈ X, every v′ ∈ limi TyiY can be written as
a limit limi v

′
i = v′ of a sequence {v′i ∈ Tf(yi)f(Y )}i having a bounded sequence of preimages

{wi ∈ f−1
∗yi(v

′
i) ⊆ TyiY }i”

and it is again equivalent to the property of transforming “continuously” the limits of the canon-
ical distributions: f∗x(limyi→xD(yi)) ⊇ limyi→x f∗yi(D(yi).

The author of the present paper used this properties in [16], when fW = πXY |W : W → W ′
is the restriction of a projection πXY : SεXY → X, to give a different proof of the essential result
of Goresky (Proposition 2.2) that “Stratified mapping cillynders with conical singularities admit
a (b)-regular natural stratification”; the property which allow to prove the important Whitney
Cellularisation Theorem (Proposition 2.4) recalled above.

In Theorem 4.4 and Corollary 4.3 we prove that the analytic conditions lim infy→x hY (y) > 0
and lim infy→xHY (y) < +∞ are sufficient for condition (D) at x ∈ X < Y .

In §4.2 for U, V two vector subspaces of an Euclidian vector space E, we use the usual
“distance” functions δ(u, V ) and δ(U, V ) (u ∈ E) to define the essential minimal distance δ′(U, V )
between U and V , as the sinus of the minimum essential angle α(U, V ) between two essential
mutual subspaces U ′, V ′ of U and V and we prove some useful properties of δ(u, V ), δ(U, V ) and
δ′(U, V ).

In §4.3 using this new “distance” function δ′(U, V ) we introduce two new geometric test
functions δY (intrinsic by x) and δY,x (depending on x) for Condition (D) at x ∈ X < Y .

In Theorem 4.5 and Corollary 4.4 we prove, when f : M → M ′ is a submersion at x, equiv-
alence between the more geometric condition lim infy→x δY (y) > 0 and the analytic condition
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lim infy→x hY (y) > 0 (or lim supy→xHY (y) < +∞) and thanks to this that lim infy→x δY (y) > 0
becomes a sufficient condition for Condition (D) at x ∈ X < Y (Corollary 4.5).

After making precise relations between δY and δY,x (Propositions 4.9 and 4.10) we find that
the analogous results of Theorem 4.5 and Corollary 4.4 hold by considering the function δY,x
instead of δY (Theorem 4.6 and Corollary 4.6).

We conclude the section by explaining (by two examples) the geometric meaning of the suffi-
cient conditions lim infy→x δY (y) > 0 and lim infy→x δY,x(y) > 0.

2. Stratified Spaces and Maps and Condition (D).

A stratification of a topological space A is a locally finite partition Σ of A into C1 connected
manifolds (called the strata of Σ) satisfying the frontier condition: if X and Y are disjoint strata
such that X intersects the closure of Y , then X is contained in the closure of Y . We write then
X < Y and ∂Y = tX<YX so that Y = Y t

(
tX<YX

)
= Y t∂Y and ∂Y = Y −Y (t = disjoint

union). The pair X = (A,Σ) is called a stratified space with support A and stratification Σ.

A stratified map f : X → X ′ between stratified spaces X = (A,Σ) and X ′ = (B,Σ′) is a
continuous map f : A→ B which sends each stratum X of X into a unique stratum X ′ of X ′,
such that the restriction fX : X → X ′ is C1.

A stratified submersion is a stratified map f such that each fX : X → X ′ is a C1 submersion.

2.1. Regular Stratified Spaces and Maps. Extra regularity conditions may be imposed on
the stratification Σ, such as to be an abstract stratified set in the sense of Thom-Mather [9, 10,
19] or, when A is a subset of a C1 manifold, to satisfy conditions (a) or (b) of Whitney [21],
or (c) of K. Bekka [1] or, when A is a subset of a C2 manifold, to satisfy conditions (w) of
Kuo-Verdier [22], or (L) of Mostowski [17].

In this paper we will consider essentially Whitney ((b)-regular) stratifications so called because
they satisfy Condition (b) of Whitney (1965, [21]).

Definition 2.1. Let Σ be a stratification of a subset A ⊆ RN , X < Y strata of Σ and x ∈ X.
One says that X < Y is (b)-regular (or that it satisfies Condition (b) of Whitney) at x if for

every pair of sequences {yi}i ⊆ Y and {xi}i ⊆ X such that limi yi = x ∈ X and limi xi = x and
moreover limi TyiY = τ and limi [yi−xi] = L in the appropriate Grassmann manifolds (here [v]
denotes the vector space spanned by v) then L ⊆ τ .

The pair X < Y is called (b)-regular if it is (b)-regular at every x ∈ X.
Σ is called a (b)-regular (or a Whitney) stratification if all X < Y in Σ are (b)-regular.

Most important properties of Whitney stratifications follow because they are in particular
abstract stratified sets [9, 10].

Definition 2.2. (Thom-Mather 1970) Let X = (A,Σ) be a stratified space.
A family F = {(πX , ρX) : TX → X × [0,∞[)}X∈Σ is called a system of control data of X if

for each stratum X ∈ Σ we have that:

(1) TX is a neighbourhood of X in A (called tubular neighbourhood of X);
(2) πX : TX → X is a continuous retraction of TX onto X (called projection on X);
(3) ρX : TX → [0,∞[ is a continuous function such that X = ρ−1

X (0) (called the distance
from X);

and, furthermore, for every pair of adjacent strata X < Y , by considering the restriction maps
πXY := πX|TXY and ρXY := ρX|TXY , on the subset TXY := TX ∩ Y , we have that:
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5) the map (πXY , ρXY ) : TXY → X×]0,∞[ is a C1 submersion (then dimX < dimY );
6) for every stratum Z of X such that Z > Y > X and for every z ∈ TY Z ∩ TXZ

the following control conditions are satisfied:
i) πXY πY Z(z) = πXZ(z) (called the π-control condition)
ii) ρXY πY Z(z) = ρXZ(z) (called the ρ-control condition).

In what follows for every ε > 0 we will pose T εX := TX(ε) = ρ−1
X ([0, ε[), SεX := SX(ε) = ρ−1

X (ε) ,
and T εXY := T εX ∩ Y , SεXY := SεX ∩ Y and without loss of generality will assume TX = TX(1)
[9,10].

The pair (X ,F) is called an abstract stratified set (ASS) if A is Hausdorff, locally compact
and admits a countable basis for its topology. Since one usually works with a unique system of
control data F of X , in what follows we will omit F .

If X is an abstract stratified set, then A is metrizable and the tubular neighbourhoods
{TX}X∈Σ may (and will always) be chosen such that: “TXY 6= ∅ ⇔ X ≤ Y ” and

“TX ∩ TY 6= ∅ ⇔ X ≤ Y or X ≥ Y ”

(where both implications ⇐ automatically hold for each {TX}X) as in [9, 10], pp. 41-46.

The notion of system of control data of X , introduced by Mather, is very important because
it allows one to obtain good extensions of (stratified) vector fields [9, 10] which are the funda-
mental tool in showing that a stratified (controlled) submersion f : X → M into a manifold,
satisfies Thom’s First Isotopy Theorem: the stratified version of Ehresmann’s fibration theorem
[3,9,10,19].

Moreover by applying it to the projections πX : TX → X it follows in particular that X has
a locally trivial structure and also a locally trivial topologically conical structure.

This fundamental property allows moreover to prove that ASS are triangulable spaces [7].
Since Whitney (b)-regular) stratifications are ASS, they are locally trivial and triangulable.

2.2. Condition (D) and Goresky’s results. The following definition was introduced by
Goresky first in his Ph.D. Thesis [5] (1976) and later in [6] (1981).

Definition 2.3. Let f : M → M ′ be a C1 map between C1 manifolds and W ⊆ M and
W ′ ⊆M ′ Whitney stratifications such that the restriction fW :W →W ′ is a surjective stratified
submersion (so f takes each stratum Y of W to only one stratum Y ′ = f(Y ) of W ′ = f(W)).

One says that f : M →M ′ satisfies condition (D) with respect to W and W ′ and we will say
for short that the restriction fW :W →W ′ satisfies the condition (D) if the following holds:

for every pair of adjacent strata X < Y of W and every point x ∈ X and every sequence
{yi}i ⊆ Y such that limi yi = x ∈ X, limi TyiY = τ and limi Tf(yi)Y

′ = τ ′ in the appropriate
Grassmann manifolds, then f∗x(τ) ⊇ τ ′. Starting from now we will write this for short by:

f∗x(lim
i
TyiY ) ⊇ lim

i
Tf(yi)Y

′ .

and we will extend this notation also to some other limits of subspaces of the {TyiY }i.

Later on we will also consider given, with the obvious restricted meaning of the definition
2.3, what one intends by: “f : M → M ′ satisfies condition (D) with respect to X < Y ” and
“f : M →M ′ satisfies condition (D) with respect to X < Y at x ∈ X” (“at x ∈ X < Y ”).

In the whole of the paper we will denote Y ′ = f(Y ) and y′ = f(y) , for every y ∈ Y .

Example 2.1. Let M be the horizontal plane M = {z = 1} ⊆ R3, M ′ = L(0, 1, 0) = y-axis in
R3 and f : M →M ′ the standard projection f(x, y, z) = y.
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Let W = (W,ΣW) be the stratified space with support W = {y = tan(x) : x ≥ 0} ∩M the
half graph of the tangent map in M and stratification ΣW = {R,S} where R = {(0, 0, 1)} and
S = W ∩ {x > 0}. Then R < S.

Let W ′ be the stratified space with support the half y-axis, W ′ = M ′ ∩ {y ≥ 0} in M ′ and
stratification ΣW′ = {R′, S′} where R′ = {(0, 0, 0)} and S′ = M ′ ∩ {y > 0}. Then R′ < S′.

Then fW :W →W ′ satisfies condition (D) at (0, 0, 1) ∈ R < S.

IfW = (W,ΣW) is as above but taking now for W the half parabola W = {y = x2, x ≥ 0}∩M
in M , then fW :W →W ′ does not satisfy condition (D) at (0, 0, 1) ∈ R < S. �

Figures 1 and 2 below represents both cases of Example 2.1. In figure 1, fW : W → W ′
satisfies condition (D) at (0, 0, 1) ∈ R < S while in figure 2 it does not.

Figure 1 Figure 2

An important example in which condition (D) holds is the case of cellular maps [5], [16]:

Proposition 2.1. Let f : M → M ′ be a surjective C1 submersion and h and h′ two
smooth cellularisations of two subsets K ⊆M and K′ ⊆M ′ making the following diagram

H h→ K ⊆M

g ↓ ↓ f

H ′ h′→ K′ ⊆M ′ .

commutative where g : H → H ′ is a cellular map of cellular complexes.
Then fK : K → K′ satisfies condition (D). �

In 1976 Goresky used condition (D) to define a convenient class of stratified subspacesW ⊆ X
of a Thom-Mather ASS X = (A,Σ) equipped with a system of control data

F = {(πX , ρX) : T 1
X → X × [0,∞[}X∈Σ

[9, 10] and a family of lines of X , R = {rεX : T 1
X − X → SεX}X∈Σ,ε∈]0,δ[ [7] retracting every

tubular neighbourhood T 1
X −X on its ε-sphere SεX .

Definition 2.4. ([5] 2.3.2). Let X be a Thom-Mather ASS, equipped with a fixed system of
control data F and a family of lines R and denote, for every stratum X of X , by CoX the open
cone operator associated to R, that is: CoX(Q) = rεX

−1(Q) for every Q ⊆ SεX .
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A Thom-Mather ASS W ⊆ X is called a substratified object of X and one says thatW follows
the lines of X if the following hold:

(1) Each stratum R of W is a submanifold of a stratum X of X .
(2) For each stratum X of X , W ∩X satisfies Whitney’s condition (b).
(3) For each stratum X of X , there exists ε > 0 such that W ∩ (T εX −X) = CoX(W ∩ SεX).
(4) If X is a stratum of X , there exists ε > 0 such that πW∩SεX : W ∩ SεX → W ∩ X is a

stratified submersion which satisfies condition (D).

Goresky commented on property 4) above as follows: “Condition (D) is used in section 6.4
to guarantee that certain intersections of substratified objects will be substratified objects. It
can be weakened considerably and perhaps omitted completely although this would necessitate
considerably more technical analysis when intersections of substratified objects are considered”.

Later in 1981 Goresky redefined his geometric homology WHk(X ) and cohomology WHk(X )
(this time only) for a Whitney stratification X without asking that the substratified objects
representing cycles and cocycles of X satisfy condition (D) above ([6] §3 and §4).

The main reason for which Goresky introduced Condition (D) in 1981 was that it allows one
to obtain Condition (b) for the natural stratifications on the mapping cylinder of the stratified
submersion:

Proposition 2.2. Let π : E → M ′ be a C1 riemannian vector bundle and M = SεM ′ the ε-
sphere bundle of E. If W ⊆ M , W ′ = π(W) ⊆ M ′ are two Whitney stratifications such that
πW :W →W ′ is a stratified submersion which satisfies condition (D), then the closed stratified
mapping cylinder

CW′(W) =
⊔
Y⊆W

[
(CπW(Y )(Y )− πW(Y )) t πW(Y ) t Y

]
is a Whitney (i.e. (b)-regular) stratified space.

Proof. [6] Appendix A.1 or [16] for a different proof. �

Then, in order to use it together with Proposition 2.3 below:

Proposition 2.3. Every Whitney stratification W in a manifold M can be deformed to a Whit-
ney stratification W ′ having conical singularities.

Proof. [6] Appendix A.3. Proposition. �

Goresky proved that:

Proposition 2.4. Every Whitney stratified space X with conical singularities and conical control
data admits a Whitney cellularisation.

Proof. [7] Appendix A.2. Proposition. �

Proposition 2.4 gives hence a partial solution of Conjecture 1.2 in the introduction and suggests
moreover new ideas for an approach to his general solution.

Proposition 2.4 was thus also the main tool which allowed Goresky to prove his two homology
representation theorems, Theorem 1.1 and Theorem 1.2, recalled in the introduction.

A detailed account of condition (D), containing a finer analysis, new proofs and equivalent
properties of Goresky’s results is given in [16].
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3. C0,1-Regular foliations and condition (D) for C1 maps.

3.1. Regular foliations from C1 maps. In this section we clarify some simple properties of
C1 maps that will be useful in §4.

Remark 3.1. Let f : M → M ′ be a C1 map between C1 manifolds, y0 ∈ M and {yi}i ⊆ M a
sequence such that limi yi = y0.

1) For every sequence of vectors {vi ∈ ker f∗yi}i such that limi vi = v0 one has v0 ∈ ker f∗y0 .

2) If, in an appropriate Grassmann manifold, there exists

lim
i

ker f∗yi = τ,

then τ ⊆ ker f∗y0 (starting from now we will write this for short by: “ limi ker f∗yi ⊆ ker f∗y0”).

Proof. Since f is C1 one obviously has: f∗y0(v0) = f∗y0(limi vi) = limi f∗yi(vi) = 0. �

The opposite inclusion limi ker f∗yi ⊇ ker f∗y0 would follow immediately when two such vector
spaces have the same dimension. This happens when f is a submersion:

Proposition 3.5. Let f : M →M ′ be a C1 submersion on M − {y0} for a point y0 ∈M .
Then the following conditions are equivalent:

1) f : M →M ′ is a submersion at y0;

2) For all {yi}i ⊆M−{y0} converging to y0 there exists limi ker f∗yi and

lim
i

ker f∗yi = ker f∗y0 .

This means that the map K : M −→ Gk(TM) , K(y) := ker f∗y is continuous.

3) For all {yi}i ⊆M−{y0} converging to y0 there exists limi ker f∗yi and

lim
i

ker f∗yi ⊇ ker f∗y0 .

Proof. Since f is a C1 submersion at M−{y0}, for every yi ∈M−{y0}, if y′i = f(yi), the fibre
f−1(y′i) is a C1 manifold of dimension k = dimM − dimM ′ such that Tyif

−1(y′i) = ker f∗yi .

In particular, for every i ∈ N, dim ker f∗yi = k.

(1⇒ 2). Let {ker f∗yih }h an arbitrary converging subsequence of the sequence {ker f∗yi}i.
If f is a submersion at y0, then f−1(y′0) is a C1 k-manifold too with tangent spaces

Ty0f
−1(y′0) = ker fy0∗

and dim ker f∗y0 = k = dim limh ker f∗yih .

Since f is a C1 map, limh ker f∗yih ⊆ ker f∗y0 (Remark 3.1) and having both the same
dimension k they coincide: limh ker f∗yih = ker f∗y0 .

All converging subsequences of the sequence {ker f∗yi}i have then the same limit ker f∗y0 in
the Grassmann compact manifold and hence there exists limi ker f∗yi and

lim
i

ker f∗yi = ker f∗y0 .

(2⇒ 3). Obvious.

(3 ⇒ 1). If limi ker f∗yi ⊇ ker f∗y0 , then, for every i, dim ker f∗y0 ≤ dim ker f∗yi and by
codimension dim Imf∗y0 ≥ dim Imf∗yi . Thus again f being a submersion at yi one has:

dim Imf∗y0 ≥ dim Imf∗yi = dim Ty′iM
′ = dim Ty′0M

′

and, since Imf∗y0 ⊆ Ty′0M
′, then necessarily Imf∗y0 = Ty′0M

′ and f is a submersion at y0.
�
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With the same hypotheses and proof of the proposition 3.5 one has:

Remark 3.2. The following conditions are equivalent:
1) f : M →M ′ is a submersion at y0;
2) For all {yi}i ⊆M−{y0} converging to y0 there exists limi ker f∗yi and

dim lim
i

ker f∗yi = dim ker f∗y0 ;

3) For all {yi}i ⊆M−{y0} converging to y0 there exists limi ker f∗yi and

dim lim
i

ker f∗yi ≥ dim ker f∗y0 . �

Corollary 3.1. If f : M → M ′ is a C1-submersion, the foliation of M defined by F =
{My = f−1(y′)}y∈M , where y′ = f(y), is C0,1-regular. I.e. for every sequence {yi}i ⊆M

lim
i
yi = y0 =⇒ lim

i
TyiMyi = Ty0My0 .

Proof. Since f is a C1 submersion on M , for every yi ∈ M , f−1(y′i) is a C1 manifold of
dimension k = dimM − dimM ′ and Tyif

−1(y′) = ker f∗yi . Then, by Proposition 3.5:

lim
i
TyiMyi = lim

i
ker f∗yi = ker fy0∗ = Ty0My0 . �

Corollary 3.2. Let f : M → M ′ be a C1 map and F ′ = {M ′i}i an C0,1-regular foliation
of M ′ whose leaves are transverse to f and such that there exists a submanifold V of M ′ of
dimension h = dimM ′ − dimF ′ transverse to each leaf of F ′ and intersecting it in a singleton
V ∩M ′i = {y′i}.

Then the foliation of M defined by F = {Mi = f−1(M ′i′)}i is C0,1-regular.

Proof. Let us consider the submersion g : M ′ → V defined for every y′ ∈M ′, by

g|M ′i = constant = y′i.

Thus g defines the foliation F ′ = {M ′y′}y′∈M ′ via preimage.

Then the foliation F = {Mi}i of M is defined by the C1 submersion g ◦ f : M → V . �

Starting from now we will suppose M = Mn to be a riemannian manifold of dimension n.

For a C1 map f : M →M ′ let us consider the distribution of vector subspaces D(y) := Df (y)
obtained by splitting every TyM as the direct orthogonal sum:

TyM = D(y) ⊕ ker f∗y where D(y) := ⊥(ker f∗y, TyM) .

We call D : M → Gn−k(TM), {D(y) =⊥ (ker f∗y, TyM)}y the canonical distributions of f .

We will see that the study of the condition (D) for a submersive restriction fY : Y → Y ′

(Y ⊆M and Y ′ ⊆M ′) at a point x in the adherence Y of Y is strongly related to good properties
of limits of the distribution

D(y) = DfY (y) := ⊥ (ker fY ∗y, TyY ).

When fY = πXY | : SεXY → X is the restriction of a projection πXY : TXY → X on a stratum
X < Y , of a system of control data {(TX , πX , ρX)}X of a regular stratification, then Df (y) is
defined in the same way as the canonical distribution DX(y) relative to the stratum X introduced
in [11, 12, 13]. In this case, if W and W ′ are Whitney refinements of SεXY and X, Condition
(D) implies the (a)-regularity (see [13]) of a “horizontal” foliation related to DX in a particular
stratified mapping cylinder CW′(W) [16] (from Lemma 3.1 to Theorem 3.4).
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Lemma 3.1. Let V ⊆ U be two vector subspaces of Rn.
If {Vi}i and {Ui}i are two sequences of vector subspaces of Rn with Vi ⊆ Ui, l = dimVi,

k = dimUi for every i and such that limi Ui = U in Gnk , then

lim
i
Vi = V in Gnl ⇐⇒ lim

i
⊥ (Vi, Ui) = ⊥ (V,U) in Gnk−l .

Proof. (⇒). Let us denote Di = ⊥ (Vi, Ui) and D = ⊥ (V,U) and show that limiDi = D.
Since dimVi = l and dimUi = k then dimDi = k − l for every i.
Since U = limi Ui ∈ Gnk and V = limi Vi, then dimU = k, dimV = l and dimD = k − l.
Let {Dih}h be an arbitrary convergent subsequence of {Di}i and D ′ = limhDih .
Every vector w ∈ D ′ = limhDih is a limit w = limh wih of a sequence of vectors {wih ∈ Dih}h

so that < wih , vih > = 0 for every vector vih ∈ Vih .

On the other hand V = limi Vi = limh Vih , so every vector v ∈ V is also a limit v = limh vih
of a sequence of vectors {vih ∈ Vih}h and we have < w, v > = limh < wih , vih > = 0 so that
w ∈⊥ (V,U) = D ′. Hence D ′ ⊆ D and, since they have the same dimension, D ′ = D.

Therefore every convergent subsequence {Dih}h of {Di}i has limit D and so limiDi = D.

The proof of (⇐) follows from (⇒) because Vi =⊥ (Di, Ui) and V =⊥ (D, U). �

Proposition 3.6 below anticipates some arguments that will appear in §4.

Proposition 3.6. Let Mn be a riemannian manifold and f : M → M ′ a C1 submersion on
M − {y0} with y0 ∈M . Then the following conditions are equivalent:

1) f : M →M ′ is a submersion at y0;

2) For all {yi}i ⊆M − {y0} converging to y0 there exists limiD(yi) and

lim
i
D(yi) = ⊥ (ker f∗y0 , Ty0M).

I. e.: the map D : M → Gn−k(TM) , D(y) :=⊥ (ker f∗y, TyM) is continuous;

3) For all {yi}i ⊆M−{y0} converging to y0 there exists limiD(yi) and

lim
i
D(yi) ⊆ ⊥ (ker f∗y0 , Ty0M).

Proof. It follows immediately from Proposition 3.5 and the previous Lemma 3.1. �

Definition 3.5. below will play an important role in the next section.

Definition 3.5. Let f : M →M ′ be a C1 map of riemannian manifolds, Y ⊆M , Y ′ ⊆M ′ two
C1-submanifolds whose restriction fY : Y → Y ′ is a C1 surjective submersion; so Y ′ = f(Y ),
Ty′Y

′ = Tf(y)f(Y ), y′ = f(y) for all y, and we will assume such notations in the whole of the
paper.

Let x ∈ Y ⊆M (a priori x could lie or not in Y ) and x′ = f(x).

For every point y ∈ Y , let D(y) =⊥ (ker fY ∗y, TyY ) be the canonical distribution of fY .
The restricted differential map:

fY ∗y|D(y) : D(y) −→ Ty′Y
′

is then an isomorphism and for every unit vector u ∈ D(y), one has fY ∗y(u) 6= 0, so that by
compactness of each unit sphere of D(y) one can define the continuous map hY :

hY : Y − {x} → ]0,+∞[ , hY (y) = min
{
|| fY ∗y|D(y)(u) || : || u || = 1

}
.

Similarly, by considering the inverse map f−1
Y ∗y|D(y) : Ty′Y

′ → D(y), every vector v′ ∈ TyY ′

has a unique (pre)image v = f−1
Y ∗y|D(y)(v

′) such that v ∈ D(y) and fY ∗y(v) = v′.
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We call such a vector v = f−1
Y ∗y|D(y)(v

′) the canonical lifting of v′:

it is the unique vector v ∈ TyY such that fY ∗y(v) = v′ and having no component along ker fY ∗y.

Of course v′ 6= 0 if and only if its lift v 6= 0.

So, starting from now, every vector that we will lift, will always be supposed 6= 0.
We will understand this also in many statements of §4 without say it explicitely every time.

We can then define the dual continuous map HY :

HY : Y − {x} → ]0,+∞[ , HY (y) = max
{
|| f−1

Y ∗y|D(y)(v
′) || : || v′ || = 1

}
.

I.e. HY (y) is the classical norm of the linear isomorphism f−1
Y ∗y|D(y) : Ty′Y

′ → D(y).

Remark 3.3. For every y ∈ Y and every vector v′ ∈ Ty′Y ′ − {0} we have:

1) The unit vector u = v
|| v || of the canonical lifting v := f−1

Y ∗y|D(y)(v
′) ∈ D(y) of v′ ∈ Ty′Y ′

satisfies:

|| v || =
|| v′ ||

|| fY ∗y|D(y)(u)||
.

2) If || v′ || = 1 then: || v || = 1
|| fY ∗y|D(y)(u)|| .

3) HY (y) =
1

hY (y)
.

Proof. For 1) one easily finds:

|| v′ || = || fY ∗y(v) || = || fY ∗y( v
|| v || ) || · || v || = || fY ∗y|D(y)(u) || · || v ||

which also obviously implies 2), while 3) follows by 2) thanks to:

HY (y) = sup
|| v′ ||=1

{
|| v || : v′ ∈ Ty′Y ′

}
= sup
|| u ||=1

{ 1

|| fY ∗y|D(y)(u)||
: u ∈ D(y)

}
=

1

inf || u ||=1

{
|| fY ∗y|D(y)(u)|| : u ∈ D(y)

} =
1

hY (y)
. �

Being interested in the properties of the maps hY and HY at a regular point we will suppose
in Proposition 3.7 below that Y ∪ {x} = M , and we will denote y0 = x, h = hY and H = HY .

Proposition 3.7. Let f : M →M ′ be a C1 map, submersion on M − {y0} with y0 ∈M .
The following conditions are equivalent:

1) f : M →M ′ is a submersion at y0;

2) There exists limy→y0 h(y) > 0;

3) There exists limy→y0 H(y) < +∞.

Proof. 1)⇒ 2). If y0 is a regular point of M , and f is a submersion at y0 then Definition 3.5
of the continuous map h extends naturally to y0 giving limy→y0 h(y) = h(y0) ∈ ]0,+∞[.

2)⇒ 3). It follows obviously by Remark 3.3.
3)⇒ 1). Let us fix a unit vector v′ ∈ Ty′0M

′.
By hypothesis for every sequence {yi}i ⊆M such that limi yi = y0 one has limiH(yi) < +∞.
Given then a sequence of unit vectors {v′i ∈ Ty′iM

′}i such that limi v
′
i = v′, the sequence of

canonical lifts {vi := f−1
∗yi|D(yi)

(v′i) ∈ D(yi)}i, is bounded: supi ||vi|| ≤ supi H(yi) < +∞.
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There exists thus a subsequence {vih}h converging to a vector v = limh vih ∈ Ty0M and
f : M →M ′ being C1 at y0 one finds:

f∗y0(v) = f∗y0(lim
h
vih) = lim

h
f∗yih (vih) = lim

h
v′ih = v′ .

Therefore f∗y0 : Ty0M → Ty′0M
′ is surjective and f is a submersion at y0. �

3.2. Condition (D) at a regular point. Let us recall now the definition of the condition (D)
for fW :W →W ′ at x ∈ X < Y .

Let f : M → M ′ be a C1 map between C1 manifolds, W ⊆ M and W ′ ⊆ M ′ Whitney
stratifications and suppose that the restriction fW :W →W ′ is a stratified (stratum for stratum)
surjective submersion satisfying condition (D) at x ∈ X < Y .

This means that for every sequence {yi}i ⊆ Y such that limi yi = x ∈ X one has:

∃ lim
i
TyiY = τ and ∃ lim

i
Ty′iY

′ = τ ′ =⇒ f∗x(τ) ⊇ τ ′

where Y ′ = f(Y ) and y′ = f(y) for every y ∈ Y .

Remark 3.4. The C1 smoothness of f on M does not suffice to imply the inclusion f∗x(τ) ⊇ τ ′
which as one sees with easy examples is false in general (see Example 2.1). �

We will show in the next section (Theorem 4.3) that it depends on the possibility of extracting
a bounded sequence of vector preimages vi, one in each fibre f−1

∗yi(v
′
i) with limi v

′
i ∈ τ ′.

We will see moreover that the whole complexity of the condition (D) at x is contained in the
behaviour near x of the maps hY and/or HY .

Remark 3.5. Condition (D) for fW :W →W ′ at x ∈ X < Y does not depend on the stratum
X containing x: to formulate it, one must consider a map f defined on a C1 manifold M
containing Y and x ∈ Y and which is C1 on M . �

Remark 3.6. With the same hypotheses and notations as above we have:

i) Since f : M →M ′ is C1 the opposite inclusion f∗x(τ) ⊆ τ ′ is always satisfied.
ii) fW :W →W ′ being a stratified submersion, Ty′iY

′ = f∗yi(TyiY ) for every i.

Proof i). If v ∈ τ we can write v = limi vi for a sequence {vi ∈ TyiY }i, hence:

f∗x(v) = f∗x(lim
i
vi) = lim

i
f∗yi(vi) ∈ lim

i
f∗yi(TyiY ) = τ ′ and so: f∗x(τ) ⊆ τ ′ . �

Since fW :W →W ′ is the restriction of a C1 map f : M →M ′ between two manifolds, there
exists a differential map f∗x : TxM → Tx′M

′ and a unique possible way to define the restriction
f∗x|CxY to the tangent cone (the Nash fiber) CxY :=

⊔
τ = limi TyiY

τ of Y at x.

Condition (D) implies moreover that the “restriction” f∗x|CxY : CxY → Cx′Y
′ must be

surjective. This is the most natural generalisation at a singular point of the submersivity:

Remark 3.7. If fW :W →W ′ satisfies condition (D) at x ∈ X < Y , then
i) f∗x(τ) = τ ′;
ii) The surjective differential map fY ∗ : TY → TY ′ of the restriction fY : Y → Y ′ extends

surjectively to the union of linear maps:

fY ∗x|CxY =
⊔

τ = limi TyiY

f∗x|τ : CxY =
⊔

τ = limi TyiY

τ −→ Cx′Y
′ =

⊔
τ ′ = limi Ty′

i
Y ′

τ ′

between the tangent cones CxY and Cx′Y
′. �
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Condition (D) for fW also morally means that the differential maps fY ∗y : TyY → Ty′Y
′

have to be surjective including all possible limit maps limyi→x fY ∗yi : TyiY → Ty′iY
′: a kind of

“super-submersivity” defined in the same spirit as Goresky’s super-transversality [5].

Look now at what condition (D) “means” at a regular point y0 ∈ Y .

Let f : M →M ′ a C1 map on a riemannian C1 manifold M and Y ⊆M a submanifold.

If the restriction fY : Y → Y ′ is a surjective submersion out of a point y0 ∈ Y , then condition
(D) for fY at y0 can be naturally defined as condition (D) for fW :W →W ′ by considering for
W andW ′ the Whitney stratificationsW = (Y −{y0})t{y0} andW ′ = (Y ′−{y′0})t{y′0} with
y′0 = f(y0) (we also include the possibility Y = M).

With such an extended meaning we have :

Proposition 3.8. Let fY : Y → Y ′ = f(Y ) be a surjective C1 map and y0 ∈ Y such that fY is
a submersion at every point of Y − {y0}. Then the following conditions are equivalent:

1) fY : Y → Y ′ is a submersion at y0;

2) limi yi = y0 and ∃ limiD(yi) =⇒ fY ∗y0
(

limiD(yi)
)
⊇ limi fY ∗yi

(
D(yi)

)
;

3) fY satisfies the condition (D) at y0.

Proof. Since Y and Y ′ are C1 manifolds, for every sequence {yi}i ⊆ Y − {y0} such that
limi yi = y0, we automatically have that both limits exist:

τ = lim
i
TyiY0 = lim

i
TyiY = Ty0Y and τ ′ = lim

i
Ty′iY

′
0 = lim

i
Ty′iY

′ = Ty′0Y
′ .

Moreover, fY being a submersion at every yi ∈ Y − {y0}, by decomposing TyiY in the
orthogonal direct sum: TyiY = D(yi) ⊕ ker fY ∗yi , with D(yi) = ⊥ (ker fY ∗yi , TyiY ) , then
fY ∗yi|D(yi) : D(yi)→ Ty′iY

′ is an isomorphism of vector spaces, and hence τ ′ = limi fY ∗yi
(
D(yi)

)
.

(1⇒ 2). Let us suppose that fY : Y → Y ′ is a submersion at y0.
We fix a unit vector v′ ∈ limi fY ∗yi

(
D(yi)

)
and we will show that v′ ∈ fY ∗y0

(
limiD(yi)

)
.

There exists then a sequence of unit vectors {v′i ∈ f∗yi
(
D(yi)

)
}i such that v′ = limi v

′
i.

For every v′i ∈ fY ∗yi(D(yi)) the canonical lifting vi satisfies vi ∈ D(yi) and fY ∗y(vi) = v′i.
Now fY being a submersion at y0, by Proposition 3.7 (1⇒ 3), we find that lim supy→y0 HY (y)

< +∞ and that the sequence {vi = f−1
∗yi|D(yi)

(v′i)}i is bounded and admits a subsequence {vih}h
converging to a vector v = limh vih ∈ limhD(yih) = limiD(yi) for which

fY ∗y0(v) = fY ∗y0(lim
h
vih) = lim

h
fY ∗y0(vih) = lim

h
v′ih = v′ .

Therefore v′ ∈ fY ∗y0
(

limiD(yi)
)
.

(2⇒ 3). Chosen a subsequences such that there exists limhD(yih) we immediately have :

fY ∗y0(τ) = fY ∗y0
(

lim
h
TihY

)
⊇ fY ∗y0

(
lim
h
D(yih)

)
⊇ lim

h
fY ∗yih

(
D(yih)

)
= lim

h
Ty′ih

Y ′ = τ ′ .

Hence Condition (D) holds at y0 for fY .

(3 ⇒ 1). If fY satisfies condition (D) at y0, we have fY ∗y0(τ) ⊇ τ ′ and since y0 is a
regular point of the manifold Y , τ = limi TyiY = Ty0Y and τ ′ = limi Ty′iY

′ = Ty′0Y
′. Thus

fY ∗y0(Ty0Y ) ⊇ Ty′0Y
′.

Hence fY ∗y0 : Ty0Y → Ty′0Y
′ is surjective, and fY : Y → Y ′ is a submersion at y0. �
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4. Sufficient conditions, analytic and geometric meanings for condition (D).

In this section we prove the main results of the paper given in Theorems 4.3, 4.4, 4.5, 4.6 and
their Corollaries 4.3, 4.4, 4.5, 4.6.

Starting from the analysis of the technical content of condition (D), (Theorem 4.3) we find
various equivalent analytic and geometric properties (Theorems 4.4, 4.5, 4.6), which are all
sufficient conditions for Condition (D) (Corollaries 4.3, 4.5 and 4.6).

4.1. Technical content and sufficient analytic conditions for Condition (D). Theorem
4.3 below explains the essential technical content of the condition (D).

The equivalence (1⇔ 4) has been used by the author of the present paper in [16] (Theorem
3.3) when fW = πXY |W : W → W ′ is the restriction of a projection πXY : SεXY → X, to prove
that certain stratified mapping cones CW′(W) are (b)-regular, to obtain an equivalent version of
Goresky’s essential Proposition 2.2 and 2.4 (Theorem 3.4 and Corollary 3.2, [16]) .

Proposition 2.2 is really the key property in proving Proposition 2.4 which gives a partial
solution of Conjecture 1.2, suggests new ideas for a general approach to it and is fundamental
for the proof of Theorems 1.1 and 1.2 in the theories WH∗, WH∗ of Goresky (see §2).

Theorem 4.3. Let f : M → M ′ be a C1 map between C1 manifolds, W ⊆ M and
W ′ ⊆ M ′ Whitney stratifications such that the restriction fW : W → W ′ is a stratified sur-
jective submersion.

Let X < Y be strata of W, x ∈ X. By denoting fY : Y → Y ′ = f(Y ) the restriction of f , and
for all y ∈ Y , y′ = f(y) and D(y) =⊥ (ker fY ∗y, TyY ), the following conditions are equivalent:

(1) The map fW :W →W ′ satisfies the condition (D) at x ∈ X < Y .

(2) For all {yi}i ⊆ Y such that limi yi = x and both limits τ = limi TyiY and τ ′ = limi Ty′iY
′

exist, for every v′ ∈ τ ′ − {0} there exists a sequence {v′i ∈ Ty′iY
′ − {0}}i such that

limi v
′
i = v′ and having a bounded sequence of preimages {wi ∈ f−1

Y ∗yi(v
′
i) ∈ TyiY }i.

(3) For all {yi}i ⊆ Y such that limi yi = x and both limits τ = limi TyiY and τ ′ = limi Ty′iY
′

exist, for every v′ ∈ τ ′ − {0} there exists a sequence {v′i ∈ Ty′iY
′ − {0}}i such that

limi v
′
i = v′ and having the sequence by canonical lifting {vi ∈ f−1

Y ∗yi|D(yi)
(v′i) ∈ D(yi)}i

bounded.

(4) For all {yi}i ⊆ Y such that limi yi = x and both limits σ = limiD(yi) and τ ′ = limi Ty′iY
′

exist, one has: f∗x(limiD(yi)) ⊇ limi fY ∗yi(D(yi)).

Proof. Let us consider a sequence {yi}i ⊆ Y such that limi yi = x and both limits
τ = limi TyiY and τ ′ = limi Ty′iY

′ exist in the appropriate Grassmann manifold.

Remark also that, fY : Y → Y ′ being submersive, Ty′iY
′ = fY ∗yi(TyiY ) = f∗yi(TyiY ) for

each i.

(1 ⇒ 2). If fW : W → W ′ satisfies the condition (D) at x ∈ X < Y , f∗x(τ) ⊇ τ ′ then for
every vector v′ ∈ τ ′ there exists a vector v ∈ τ such that v′ = f∗x(v).

Since v ∈ τ = limi TyiY , there exists a sequence {wi ∈ TyiY }i such that v = limi wi and
{wi}i is in particular obviously bounded. The sequence of the images {v′i := f∗yi(wi)}i satisfies
then:

i) limi v
′
i = limi f∗yi(wi) = f∗x(limi wi) = f∗x(v) = v′ ;

ii) {v′i = f∗yi(wi)}i admits the bounded sequence of lifting {wi ∈ f−1
∗yi(v

′
i)}i.
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(2 ⇒ 3). Under the hypothesis 2), by decomposing every vector wi in the orthogonal sum
wi = vi + ui ∈ D(yi) ⊕ ker fY ∗yi one immediately has ||vi|| ≤ ||wi|| so that if {wi}i is bounded
then {vi}i is bounded too and moreover: vi ∈ D(yi) and f∗yi(vi) = v′i.

(3⇒ 4). Let v′ ∈ limi f∗yi(D(yi)) ⊆ τ ′ and let us suppose that limiD(yi) = σ exists.

By hypothesis 3) for every v′ ∈ τ ′ there exists a sequence {v′i ∈ Ty′iY
′}i such that limi v

′
i = v′

whose sequence of canonical lifting {vi ∈ f−1
Y ∗yi(v

′
i) ∩ D(yi) ⊆ TyiY }i is bounded.

Thus for a convenient subsequence of indexes {ih}h there exist v = limh vih , τ = limh TyihY

and (obviously) limhD(yih) so that

v = lim
h
vih ∈ lim

h
D(yih) = lim

i
D(yi)

and
v′ = lim

h
v′ih = lim

h
fY ∗yih (vih) = f∗x(v) ∈ f∗x(lim

i
D(yi))

and in conclusion:
f∗x(lim

i
D(yi)) ⊇ lim

i
fY ∗yi(D(yi)) .

(4 ⇒ 1). Let {yi}i ⊆ Y be a sequence such that limi yi = x and both limits τ = limi TyiY
and τ ′ = limi Ty′iY

′ exist in the appropriate Grassmann manifold.

The Grassmann manifold being compact, there exists a subsequence of indices (ih)h, such
that there exists also limhD(yih) =: σ.

Thus fY : Y → Y ′ being a submersion, Ty′ih
Y ′ = fY ∗yih (TyihY ) = f∗yih (TyihY ) and hence:

τ ′ = lim
i
Ty′iY

′ = lim
h
Ty′ih

Y ′ = lim
h
fY ∗yih (D(yih)) = lim

h
f∗yih (D(yih)) ⊆

by the hypothesis 4)

⊆ f∗x(lim
h
D(yih)) ⊆ f∗x(lim

h
TyihY ) = f∗x(lim

i
TyiY ) = f∗x(τ) .

Then in conclusion f :W →W ′ satisfies the condition (D) at x ∈ X < Y . �

Theorem below extends to the stratiffied case the previous Propostion 3.7 and allows to give
in Corollary 4.3 a sufficient analytic condition for Condition (D).

Theorem 4.4. Let f : M → M ′ be a C1 map between C1 manifolds, W ⊆ M and
W ′ ⊆ M ′ Whitney stratifications such that the restriction fW : W → W ′ is a stratified sur-
jective submersion.

Let X < Y be adjacent strata of W, x ∈ X, Y ′ = f(Y ) and y′ = f(y) for all y ∈ Y .

Let us consider for fY : Y → Y ′ the distribution D(y) =⊥ (ker fY ∗y, TyY ) and the maps

hY : Y →]0,∞[ , hY (y) = min{||fY ∗y|D(y)(u)|| : ||u|| = 1} ,

HY : Y → ]0,+∞[ , HY (y) = max{|| f−1
Y ∗y|D(y)(v

′) || : ||v′ || = 1} .
The following conditions are equivalent:

1) For all {yi}i ⊆ Y such that limi yi = x and both limits τ = limi TyiY and τ ′ = limi Ty′iY
′

exist, for every vector v′ ∈ τ ′ − {0}, every sequence of vectors {v′i ∈ Ty′iY
′ − {0} }i such that

limi v
′
i = v′ has a bounded subsequence of canonical liftings {vih = f−1

Y ∗yih |D(yih )(v
′
ih

)}h .

2) For all {yi}i ⊆ Y such that limi yi = x and both limits τ = limi TyiY and τ ′ = limi Ty′iY
′

exist, for every unit vector u′ ∈ τ ′, every sequence of unit vectors {u′i ∈ Ty′iY
′}i such that

limi u
′
i = u′ has a bounded subsequence of canonical liftings {uih = f−1

Y ∗yih |D(yih )(u
′
ih

)}h .
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3) lim infy→x hY (y) > 0 .

4) lim supy→xHY (y) < +∞.

Proof 1)⇒ 2). Obvious.

Proof 2)⇒ 1). If v′ ∈ τ ′ − {0} and {v′i ∈ Ty′iY
′ − {0}}i is a sequence such that limi v

′
i = v′,

then u′ := v′

||v′|| ∈ τ
′ and u′i :=

v′i
||v′i||

∈ Ty′iY
′ are unit vectors such that limi u

′
i = u′.

By the hypothesis 2) the sequence of canonical liftings {ui := f−1
Y ∗yi|D(yi)

(u′i)} admits a

bounded subsequence {uih}h. So there exists K > 0 such that

||f−1
Y ∗yih |D(yih )(

v′ih
||v′
ih
|| )|| ≤ K and hence: ||f−1

Y ∗yih |D(yih )(v
′
ih

)|| ≤ K · ||v′ih || .

The canonical liftings {vih := f−1
Y ∗yih |D(yih )(v

′
ih

)}h of the {v′ih}h are then bounded by:

||vih || = ||f
−1
Y ∗yih |D(yih )(v

′
ih

)|| ≤ K · ||v′ih || ≤ K · sup
h
||v′ih || = K ′ < +∞ .

Proof 2)⇒ 3). Let l = lim infy→x hY (y) the minimum value of adherence of hY .

There exists then a sequence {yi}i ⊆ Y such that limi yi = x ∈ X and limi hY (yi) = l ∈ R.

By definition of each hY (yi), there exists a sequence of unit vectors {ui ∈ D(yi) ⊆ TyiY }i
such that each hY (yi) = ||fY ∗y|D(yi)(ui)|| realizes the minimum norm defining hY (yi) (Definition
3.5).

There exists a subsequence {yih}h, such that both limits exist:

lim
i
TyihY =: τ and lim

i
Ty′ih

Y ′ =: τ ′.

Every uih being a unit vector ∈ D(yih)−{0}, its image u′ih := fY ∗yih |D(yih )(uih) ∈ Ty′ihY
′−{0}

is not zero (as well as for all images of vectors in D(yih)− {0}) and we can write:

uih = f−1
Y ∗yih |D(yih )(u

′
ih) ∈ D(yih) and

uih
||u′ih ||

= f−1
Y ∗yih |D(yih )(

u′ih
||u′ih ||

) ∈ D(yih).

For a suitable further subsequence (note it again {ih}h), there exists then the limit :

u′ := lim
h

u′ih
||u′ih ||

∈ lim
h
Ty′ih

Y ′ − {0} .

It follows that:

i) The unit vector u′ = limh
u′ih
||u′ih ||

∈ τ ′ − {0}.

ii) Every vector
uih
||u′ih ||

= f−1
Y ∗yih |D(yih )(

u′ih
||u′ih ||

) is the canonical lifting of the unit vectors
u′ih
||u′ih ||

.

Hence, by the hypothesis 2), there exists a bounded subsequence (let us denote it again){ uih
||u′ih ||

}
h
. That is there exists K > 0 such that ||f−1

Y ∗yih |D(yih )(
u′ih
||u′ih ||

)|| ≤ K.

Therefore,

1 = ||uih || = ||f
−1
Y ∗yih |D(yih )(u

′
ih

)|| ≤ K · ||u′ih || = K · hY (yih)

and in conclusion:

l = lim inf
y→x

hY (y) = lim
i
hY (yi) = lim

h
hY (yih) ≥ 1

K
> 0 .

Proof 3)⇒ 4). It follows immediately because by Remark 3.3.3 one has: HY (y) = 1
hY (y) .
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Proof 4) ⇒ 2). Let {yi}i ⊆ Y be a sequence of points such that limi yi = x, limi TyiY = τ ,
limi Ty′iY

′ = τ ′ and let us fix u′ ∈ τ ′ a unit vector and a sequence of unit vectors {u′i ∈ Ty′iY
′}i

such that limi u
′
i = u′.

Since L := lim supy→xHY (y) < +∞, then lim supiHY (yi) ≤ L is finite and so, by Definition
3.5 of each HY (yi), the sequence

||f−1
Y ∗yi|D(yi)

(u′i)|| ≤ HY (yi) ≤ L is bounded. �

We deduce then, as corollary, a sufficient condition for Goresky’s Condition (D):

Corollary 4.3. Let f : M → M ′ be a C1 map between C1 manifolds, W ⊆ M and
W ′ ⊆ M ′ Whitney stratifications such that the restriction fW : W → W ′ is a stratified sur-
jective submersion.

Let X < Y be adjacent strata of W and x a point of X.
If lim infy→x hY (y) > 0 or equivalently lim supy→xHY (y) < +∞ then:

fW :W →W ′ satisfies the condition (D) at x ∈ X < Y .

Proof. It follows immediately by 3)⇒ 1) of Theorem 4.4 and 3)⇒ 1) of Theorem 4.3. �

4.2. Distance functions between vector subspaces of an Euclidian space. We will give
a sufficient condition for Condition (D) in terms of all possible limits of the sequences of essen-
tial angles {α′(TyiY, ker f∗yi)}i between the vector subspaces TyiY and ker f∗yi of TyiM . We
introduce then the essential minimal distance between two vector subspaces.

Definition 4.6. Let V be a vector subspace of a Euclidian space E.
For every vector u ∈ E let us define the distance of u from V as usual [22] by:

δ(u, V ) = inf
v∈V

||u− v || .

Such a minimum value infv∈V ||u−v || is realized when u−v is orthogonal to V , so precisely
when v = pV (u) is the orthogonal projection of u on V . In particular:

δ(u, V ) = inf
v∈V

||u− v || = || u− pV (u)||

and if u 6= 0 we let α(u, V ) := α(u, pV (u)) denote the unoriented angle ∈ [0, π2 ] between u and
pV (u).

Let us recall now some simple properties of the fonction δ:

Remark 4.8. Under the above hypotheses we have:

1) || u− pV (u) || = || u || sinα(u, V ) and || u || = 1 ⇒ || u− pV (u) || = sinα(u, V );

2) || pV (u) || = || u || cos α(u, V ) and || u || = 1 ⇒ || pV (u) || = cos α(u, V ) ;

3) u ∈ V ⇐⇒ δ(u, V ) = 0 ;

4) δ(a, V ) = ||a || · δ( a
||a || , V ) , for all a ∈ E − {0};

5) limi ui = u =⇒ limi δ(ui, V ) = δ(u, V ) ;

6) limi Vi = V =⇒ limi δ(u, Vi) = δ(u, V ) ;

7) limi ui = u and limi Vi = V =⇒ limi δ(ui, Vi) = δ(u, V ) .

Proof. 1), . . . , 4) are immediate, while 5) follows thanks to: limi pV (ui) = pV (u) and 6) by:
limi pVi(u) = pV (u). The proof of 7) holds since the inequalities:

δ(u, V ) = ||u− pV (u)|| ≤ ||u− ui||+ δ(ui, Vi) + ||pVi(ui)− pV (u)||
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δ(ui, Vi) = ||ui − pVi(ui)|| ≤ ||u− ui|| + δ(u, V ) + ||pV (u)− pVi(ui)||
imply

|δ(u, V )− δ(ui, Vi)| ≤ ||u− ui|| + ||pVi(ui)− pV (u)||
and since the hypotheses limi ui = u and limi Vi = V imply limi pVi(ui) = pV (u) . �

One usually considers as “distance” function between two vector subspaces U, V ⊆ E, not
necessarily of the same dimension, the following :

δ(U, V ) ; = sup
u∈U , ||u||=1

δ(u, V ) = sup
u∈U , ||u||=1

inf
v∈V

||u− v || .

Thanks to the equality (true since every || u || = 1):

δ(U, V ) = sup
u∈U , ||u||=1

||u− pV (u) || = sup
u∈U , ||u||=1

sinα(u, V ) ∈ [0, 1],

by denoting α(U, V ) the maximum angle ∈ [0, π2 ] between a vector of U and its projection on V ,
one can write:

δ(U, V ) = sup
u∈U

sinα(u, V ) = sin α(U, V ) .

One finds then:

Remark 4.9. The function δ(U, V ) satisfies the following properties:

1) δ(U, V ) = 0 ⇐⇒ U ⊆ V ;

2) δ(V,U) = 1 ⇐⇒ ∃ v ∈ V − U : v ⊥ U (this holds if U ⊂ V is strictly contained);

3) δ(U, V ) 6= δ(V,U) is not symmetric in general;

4) ||u|| = 1 =⇒ δ(L(u), V ) = δ(u, V ) where L(u) is the vector subspace spanned by u;

5) δ(a, V ) ≤ 2||a− b||+ δ(b, V ) for every unit vectors a, b ∈ E;

6) δ(a, U) ≤ 2δ(a, V ) + δ(V,U) for every unit vector a ∈ E ;

7) limi Ui = U, and limi Vi = V =⇒ limi δ(Ui, Vi) = δ(U, V ) .

Proof. 1), . . . , 4) are immediate.

The proof of 5) follows easily by δ(a, V ) = ||a− pV (a)|| and

||a− pV (a)|| ≤ ||a− b||+ ||b− pV (b)||+ ||pV (b)− pV (a)|| ≤ ||a− b||+ δ(b, V ) + ||b− a|| .
The proof of 6) follows similarly, since:

δ(a, U) = ||a− pU (a)|| ≤ ||a− pV (a)||+ ||pV (a)− pU (pV (a))||+ ||pU (pV (a))− pU (a)|| =

δ(a, V ) + δ(pV (a), U) + ||pU (a− pV (a))|| ≤ δ(a, V ) + δ(V,U) + ||a− pV (a)|| =
2δ(a, V ) + δ(V,U) .

To prove 7), let u be the unit vectors ∈ U such that δ(U, V ) = ||u− pV (u)|| = δ(u, V )
Since limi Ui = U then limi pUi(u) = u, so by Remark 4.8.7 and since every pUi(u) ∈ Ui one

has:
δ(U, V ) = δ(u, V ) = lim

i
δ(pUi(u), Vi) ≤ lim

i
δ(Ui, Vi) .

Simalrly if ui is the unit vector ∈ Ui such that δ(Ui, Vi) = ||ui − pVi(ui)|| = δ(ui, Vi) (taking
a subsequence if necessary), there exists limi ui = a ∈ U and by 5) one finds:

δ(Ui, Vi) = δ(ui, Vi) ≤ 2||ui − a|| + δ(a, Vi) ≤ 2||ui − a|| + δ(U, Vi)

hence also that :

lim
i
δ(Ui, Vi) ≤ 2 lim

i
||ui − a|| + lim

i
δ(U, Vi) = δ(U, V ) . �
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In order to define a finer “distance” δ′(U, V ) between U and V , we will be interested in the
“minimum essential angle”, α′(U, V ), between U and V , a notions which needs the following
more detailed definition.

Definition 4.7. Let U, V ⊆ E two vector subspaces not necessarily of the same dimension.

If U = {0} or V = {0} let us define δ′(U, V ) = 0. Suppose then U 6= {0} and V 6= {0}.
If U ∩ V = {0}, every unit vector u ∈ U does not lie in V so ||u− pV (u) || > 0 and using the

previous Remark 4.8.1) one can simply define:

δ′(U, V ) = min
u∈U , ||u||=1

||u− pV (u) || = min
u∈U , ||u||=1

sinα(u, pV (u)) ∈ ]0, 1],

and denoting α′(U, V ) the minimum positive angle between a vector of U and its projection on
V , one can write

δ′(U, V ) = sin α′(U, V ) .

Thus using that α′(U, V ) = α′(V,U), one has:

Remark 4.10. If U, V 6= {0}, then:

U ∩ V = {0} =⇒ U 6⊆ V and V 6⊆ U =⇒ δ′(U, V ) = δ′(V,U) > 0. �

Our definition 4.7 of δ′(U, V ), in the case U 6= {0} and V 6= {0} and U ∩ V = {0}, coincides
with the definition given in [8] (p. 534, where it is denoted by δ(U, V )).

On the other hand the definition in [8] in the case U ∩ V 6= {0} satisfies δ(U, V ) = 0.
This is not convenient enough for our aims, so we have to extend it in a finer way:

Definition 4.8. If U ∩ V 6= {0}, we consider their essential mutual subspaces:

U ′ := ⊥ (U ∩ V ;U) and V ′ := ⊥ (U ∩ V ;V ) ,

that easily satisfy U ′ ∩ V ′ = {0} and define

δ′(U, V ) := δ′(U ′, V ′) = min
u′∈U ′ , ||u′||=1

||u′ − pV ′(u′) || = sin α′(U ′, V ′)

and call α′(U, V ) := α′(U ′, V ′) the minimum essential angle between U and V and similarly we
call δ′(U, V ) := δ′(U ′, V ′) the minimum essential distance between U and V .

Definition 4.8 and Remark 4.9, obviously imply:

Remark 4.11. For every two arbitrary vector subspaces U, V of E :
1) U ∩ V = {0} ⇐⇒ U ′ = U and V ′ = V ⇐⇒ U ′ = U or V ′ = V .
2) δ′(U, V ) := δ′(U ′, V ′) = δ′(V ′, U ′) = δ′(V,U) . �

Thus Definition 4.8 extends Definition 4.7 and allows us to obtain that the fonction:

δ′ : G(E) × G(E) −→ [0, 1] , δ′(U, V ) := δ′(U ′, V ′)

is a symmetric function, where G(E) denotes the Grassmann manifold of all vector subspaces of
E. Moreover we have:

Remark 4.12. For every pair of vector subspaces U, V of E:

1) δ′(U, V ) = 0 ⇐⇒ U ⊆ V or U ⊇ V .
2) If dimU = dimV ; δ′(U, V ) = 0 ⇐⇒ U = V .

3) δ′(U, V ) := δ′(U ′, V ′) = δ′(U ′, V ) = δ′(U, V ′).
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Proof 1), 2). It follows easily since: U ⊆ V if and only if U ′ = {0} and then δ′(U, V ) = 0.
Proof 3). Since V = (U ∩V )⊕V ′ is an orthogonal sum, for every u′ ∈ U ′ its projection pV (u′)

on V decomposes into the orthogonal sum pV (u′) = pU∩V (u′) + pV ′(u
′).

Moreover, since u′, lying in U ′, is orthogonal to U ∩ V , one has pU∩V (u′) = 0 and
pV (u) = pV ′(u

′).
By definition 4.8,

δ′(U, V ) = δ′(U ′, V ′) = min
u′∈U ′ , ||u′ ||=1

||u′ − pV ′(u′) || .

Since U ′ ∩ V ⊆ U ∩ U ′ ∩ V = U ′ ∩ (U ∩ V ) = {0} , then U ′ ∩ V = {0} and

δ′(U ′, V ) = min
u′∈U ′ , ||u′||=1

||u′ − pV (u′) || .

Since pV (u′) = pV ′(u
′) for every u′ ∈ U ′ one finds: δ′(U, V ) := δ′(U ′, V ′) = δ′(U ′, V ) .

Finally, δ′ being a symmetric function (Remark 4.11.2), this last equality also implies:

δ′(U, V ) := δ′(U ′, V ′) = δ′(V ′, U ′) = δ′(V ′, U) = δ′(U, V ′) . �

One sees moreover easily that δ′ is a decreasing function with respect to both variables U, V .
As one can see with simple examples, δ′ is not a metric also when restricted to a family of

subspaces of the same dimension, except for the 1-dimensional case.

4.3. Sufficient conditions and geometric meaning. With the same hypotheses and nota-
tions as in §4.1 and §4.2, if U, V are the two vector subspaces U := TyY and V := ker f∗y of
E := TyM , the essential mutual subspace U ′ is:

U ′ := [TyY ]′ = ⊥ (TyY ∩ ker f∗y;TyY ) = ⊥ (ker fY ∗y;TyY ) = D(y) .

We can then define (using also Remark 4.12.3) the function

δY : Y → [0,∞[ , δY (y) := δ′(TyY, ker f∗y) = δ′(D(y), ker f∗y)

and we have:

Theorem 4.5. Let f : M → M ′ be a C1 map between C1 manifolds, W ⊆ M and
W ′ ⊆ M ′ Whitney stratifications such that the restriction fW : W → W ′ is a stratified sur-
jective submersion.

Let X < Y be strata of W and x ∈ X and consider the function δY defined by

δY : Y → [0,∞[ , δY (y) := δ′(TyY, ker f∗y) = δ′(D(y), ker f∗y) .

If f : M →M ′ is a submersion at x, the following conditions are equivalent:

1) lim infy→x δY (y) > 0 .

2) For every sequence {yi}i ⊆ Y such that limi yi = x ∈ X and limiD(yi) = σ exists, for
every unit vector u ∈ limiD(yi) and every sequence {ui ∈ D(yi)}i, of unit vectors converging to
u = limi ui, there exists a subsequence of images {u′ih = fY ∗yih (uih)}h such that infh ||u′ih || > 0 .

3) For every sequence {yi}i ⊆ Y such that limi yi = x ∈ X and limi fY ∗yi(TyiY ) = τ ′ exists,
for every v′ ∈ limi fY ∗yi(TyiY ) − {0}, every sequence {v′i ∈ fY ∗yi(TyiY ) − {0}}i converging to

v′ = limi v
′
i, has an upper bounded subsequence of canonical liftings {vih = f−1

Y ∗yih |D(yih )(v
′
ih

)}h.

Proof (1⇒ 2). Let suppose that 2) does not hold.

Then, for a sequence {yi}i ⊆ Y , limi yi = x ∈ X, limiD(yi) = σ and there exists a unit
vector u ∈ limiD(yi) which is a limit of a sequence of unit vectors {ui ∈ D(yi)}i such that
limi ||fY ∗yi(ui)|| = 0 and hence necessarily limi fY ∗yi(ui) = 0.
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As f is C1 at x, one has:

f∗x(u) = f∗x(lim
i
ui) = lim

i
f∗yi(ui) = 0 that is: u ∈ ker f∗x .

Since, for every i, D(yi) ∩ ker f∗yi = {0} and δY (yi) is the essential minimal distance

δY (yi) = δ′(D(yi), ker f∗yi) = min
u′i∈D(yi) , ||u′i ||=1

δ(u′i, ker f∗yi) ,

and as ui ∈ D(yi) by Remark 4.9.6, we can write:

0 ≤ δY (yi) = δ′(D(yi), ker f∗yi) ≤ δ(ui, ker f∗yi) ≤ 2δ(ui, ker f∗x) + δ(ker f∗x, ker f∗yi) .

Since limi ui = u, and u ∈ ker f∗x (by Remark 4.8.5) we have: limi δ(ui, ker f∗x) = 0.

By hypothesis f : M →M ′ is a submersion at x1 so by Proposition 3.5 and Remark 4.9.7:

lim
i

ker f∗yi = ker f∗x and lim
i
δ(ker f∗x, ker f∗yi) = 0 .

These two limits being 0, one concludes that limi δY (yi) = 0 which implies

lim inf
y→x

δY (y) = 0

in opposition to the hypothesis 1).

Proof (2⇒ 1). Let us suppose in opposite that lim infy→x δY (y) = 0.
There exists then a sequence {yi} ⊆ Y such that

lim
i
yi = x and lim

i
δ′(D(yi), ker f∗yi) = lim

i
δY (yi) = 0 .

Being δ′ the essential minimal distance and D(yi)∩ker f∗yi = {0} for everi i, there exists then
a sequence of unit vectors {ui ∈ D(yi)}i realizing such a minimal essential distances, i.e. such
that:

lim
i
δ(ui, ker f∗yi) = 0 .

By Remark 4.9.6) one has:

(∗) : δ(ui, ker f∗x) ≤ 2δ(ui, ker f∗yi) + δ(ker f∗yi , ker f∗x) .

Now since f is C1 at x, limi ker f∗yi ⊆ ker f∗x (Remark 3.1) so by Remarks 4.9.7 and 4.9.1
one has2:

lim
i
δ(ker f∗yi , ker f∗x) = δ(lim

i
ker f∗yi , ker f∗x) = 0 .

Then since one also has limi δ(ui, ker f∗yi) = 0 by the (∗) above using Remark 4.8.5.(⇐) one
finds:

lim
i
δ(ui, ker f∗x) = 0 .

Every ui ∈ D(yi) being a unit vector, there exists a subsequence of indexes {ik}k such that
both limits limk D(yik) = σ and u = limk uik ∈ limk D(yik) exist.

Then by Remark 4.8.3 one has:

δ(u, ker f∗x) = lim
k
δ(uik , ker f∗x) = 0 and hence u ∈ ker f∗x .

In conclusion, the sequence of images u′ik := f∗yik (uik) of the unit vectors {uik ∈ D(yik)}k
satisfies:

lim
k
f∗yik (uik) = f∗x(lim

k
uik) = f∗x(u) = 0

1If f is not a submersion at x, ker f∗x ⊃ limi ker f∗yi strictly and by Remark 4.9.2:
δ(ker f∗x, limi ker f∗yi ) = 1.

2Here we did not need the hypothesis: f : M →M ′ is a submersion at x.
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and cannot have a subsequence such that infh ||u′ikh || > 0 .

Proof. (3 ⇔ 2). If v′ ∈ limi fY ∗yi(TyiY ) − {0} and {v′i ∈ fY ∗yi(TyiY ) − {0}}i is a sequence
such that limi v

′
i = v′, by Remark 3.3.1) the unit vectors ui := vi

|| vi ||
of the canonical liftings

vi := f−1
Y ∗y|D(yi)

(v′i) ∈ D(yi)− {0} of the v′i satisfy:

|| vi || =
|| v′i ||

|| fY ∗yi|D(yi)(ui)||
=

|| v′i ||
|| fY ∗yi(ui)||

.

Hence, being {v′i}i converging to v′, the sequence of canonical liftings {vi}i has an upper
bounded subsequence {vih}h if and only if the sequence of images {u′i := fY ∗yi(ui)}i admits a
subsequence {u′ih := fY ∗yih (uih)}h such that infh ||u′ih || > 0. �

By recalling the definition 3.5 of the fonctions hY and HY with the same proof as above,
Theorem 4.5 can be simply and analytically stated as follows:

Corollary 4.4. Let f : M → M ′ be a C1 map between C1 manifolds, W ⊆ M and
W ′ ⊆ M ′ Whitney stratifications such that the restriction fW : W → W ′ is a stratified sur-
jective submersion.

Let X < Y be strata of W, x ∈ X and δY the function:

δY : Y → [0,∞[ , δY (y) = δ′(TyY, ker f∗y) = δ′(D(y), ker f∗y) .

If f : M →M ′ is a submersion at x, the following conditions are equivalent:

1) lim infy→x δY (y) > 0 ;

2) lim infy→x hY (y) > 0 ;

3) lim supy→xHY (y) < +∞ . �

We deduce then the following analytic sufficient condition for fW : W → W ′ to satisfy
condition (D) at x ∈ X < Y :

Corollary 4.5. Let f : M → M ′ be a C1 map between C1 manifolds, W ⊆ M and
W ′ ⊆ M ′ Whitney stratifications such that the restriction fW : W → W ′ is a stratified sur-
jective submersion.

Let X < Y be strata of W and x ∈ X. If f : M →M ′ is a submersion at x, we have:

lim inf
y→x

δY (y) > 0 =⇒ fW :W →W ′ satisfies condition (D) at x ∈ X < Y.

Proof. The proof follows easily by Theorem 4.5 (or Corollary 4.4) and Corollary 4.3. �

In Theorem 4.5 and its Corollaries 4.4 and 4.5, we gave sufficient conditions to obtain condition
(D) at a point x ∈ X < Y using a function δY (y) = δ′(TyY, ker f∗y) = δ′(D(y), ker f∗y) depending

on the stratum Y and intrinsically defined with respect to the point x ∈ X ⊆ Y .

We can also obtain a similar result using a function depending on Y and x, by setting this
time U := TyY and V := ker f∗x. In this case the essential mutual subspace U ′ is:

U ′ := [TyY ]′ = ⊥ (TyY ∩ ker f∗x ; TyY )

and we can define the function:

δY,x : Y → [0,∞[ , δY,x(y) := δ′(TyY, ker f∗x) .

A priori, [TyY ]′ is not equal to D(y) and δY,x(y) is not equal to δ′(D(y), ker f∗x).

Later on we will denote D ′(y) for [TyY ]′.
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Proposition 4.9. Let f : M →M ′ be a C1 map, W ⊆M and W ′ ⊆M ′ Whitney stratifications
such that the restriction fW :W →W ′ is a stratified surjective submersion.

Let X < Y be strata of W, x ∈ X and {yi}i ⊆ Y a sequence such that limi yi = x and both
limit below exist. If f : M →M ′ is a submersion at x, then:

lim inf
i
δY,x(yi) = 0 ⇐⇒ lim inf

i
δY (yi) = 0 .

Proof. For every i ∈ N, let D ′(yi) := [TyiY ]′ and D(yi) be the vectors subspaces of TyiY :

D ′(yi) := ⊥ (TyiY ∩ ker f∗x ; TyiY ) then D ′(yi) ∩ ker f∗x = {0}

D (yi) := ⊥ (TyiY ∩ ker f∗yi ; TyiY ) then D (yi) ∩ ker f∗yi = {0} .
By considering possibly subsequences we can suppose that both the limits exist:

σ′ := lim
i
D ′(yi) and σ := lim

i
D(yi) .

and since f : M →M ′ is a submersion at x, limi ker f∗yi = ker f∗x (Proposition 3.5) and σ′ = σ.

By Remark 4.12.3 and being every δY,x(yi) = δ′(D ′(yi), ker f∗x) a minimal essential distance,
there exists, for every i, a unit vector vi ∈ D ′(yi) ⊆ TyiY such that:

δY,x(yi) = δ′(D ′(yi), ker f∗x) = min
u′i∈D ′(yi) , ||u′i ||=1

δ(u′i, ker f∗x) = δ(vi, ker f∗x)

and (by taking possibly a subsequence) we can also suppose that there exists limi vi = v ∈ σ′.
Similarly there exists a unit vector wi ∈ D (yi) ⊆ TyiY such that:

δY (yi) = δ′(D (yi), ker f∗yi) = min
ui∈D (yi) , ||ui ||=1

δ(ui, ker f∗yi) = δ(wi, ker f∗yi)

and such that there exists limi wi = w ∈ σ.

Proof (⇒). If lim infi δY,x(yi) = 0, by extracting possibly a subsequence, one can write:

0 = lim
i
δY,x(yi) = lim

i
δ(vi, ker f∗x) = δ(v, ker f∗x) and so: v ∈ ker f∗x.

Let pi : TyiY → D(yi) be the orthogonal projection on D(yi) and ωi := pi(vi) ∈ D(yi). Then:

lim
i
ωi = lim

i
pi(vi) = pσ(v) = v as v ∈ σ′ = σ.

Since ωi ∈ D (yi) and by Remark 4.9.6) we find:

δY (yi) = δ(wi, ker f∗yi) ≤ δ(ωi, ker f∗yi) ≤ 2δ(ωi, ker f∗x) + δ(ker f∗x, ker f∗yi)

and being limi ωi = v ∈ ker f∗x and limi ker f∗yi = ker f∗x we conclude:

0 ≤ lim
i
δY (yi) ≤ 2δ(v, ker f∗x) + δ(ker f∗x, lim

i
ker f∗yi) = 0 + 0 = 0.

Proof (⇐). It is completely dual to the proof (⇒) and it could be omitted.

If lim infi δY (yi) = 0, by extracting possibly a subsequence, one can write:

0 = lim
i
δY (yi) = lim

i
δ(wi, ker f∗yi) = δ(w, lim

i
ker f∗yi) and so: w ∈ lim

i
ker f∗yi ⊆ ker f∗x.

Let p′i :TyiY →D ′(yi) be the orthogonal projection on D′(yi) and θi := p′i(wi)∈D′(yi). Then:

lim
i
θi = lim

i
p′i(wi) = pσ′(w) = w as w ∈ σ = σ′.

Since θi ∈ D ′(yi) and by Remark 4.9.6) we find:

δY,x(yi) = δ(wi, ker f∗yi) ≤ δ(θi, ker f∗yi) ≤ 2δ(θi, ker f∗yi) + δ(ker f∗yi , ker f∗x)
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and being limi θi = w ∈ limi ker f∗yi = ker f∗x we conclude:

0 ≤ lim
i
δY,x(yi) ≤ 2δ(w, lim

i
ker f∗yi) + δ(lim

i
ker f∗yi , ker f∗x) = 0 + 0 = 0. �

Proposition 4.10. With the same notations as in Theorem 4.5 and Proposition 4.9:

lim inf
y→x

δY,x(y) > 0 ⇐⇒ lim inf
y→x

δY (y) > 0 .

Proof. Both implications follow by Proposition 4.9 using that lim infy→x δ(y) is the minimum
value of adherence of any function δ. �

Using the specific (to x) function δY,x, instead of the intrinsic (by x) δY , Corollary 4.4 gives:

Theorem 4.6. Let f : M → M ′ be a C1 map between C1 manifolds, W ⊆ M and
W ′ ⊆ M ′ Whitney stratifications such that the restriction fW : W → W ′ is a stratified sur-
jective submersion.

Let X < Y be strata of W, x ∈ X and δY,x the function defined by

δY,x : Y → [0,∞[ , δY,x(y) = δ′(TyY, ker f∗x) = δ′(D ′(yi), ker f∗x) .

If f : M →M ′ is a submersion at x, the following conditions are equivalent:

1) lim infy→x δY,x(y) > 0 ;

2) lim infy→x hY (y) > 0 ;

3) lim supy→xHY (y) < +∞ .

Proof. (1⇔ 2). It follow by Proposition 4.10 and Corollary 4.4.

Proof. (2⇔ 3). It is formally the same of the proof of Theorem, 4.5. �

By Theorem 4.6 and Theorem 4.4 (or Corollary 4.3) one has:

Corollary 4.6. Let f : M → M ′ be a C1 map between C1 manifolds, W ⊆ M and
W ′ ⊆ M ′ Whitney stratifications such that the restriction fW : W → W ′ is a stratified sur-
jective submersion.

For every strata X < Y of W and x ∈ X we have:

lim inf
y→x

δY,x(y) > 0 =⇒ fW :W →W ′ satisfies condition (D) at x ∈ X < Y . �

Geometric meanings. The analytic conditions lim infy→x δY (y) > 0 (in Theorem 4.5 and
Corollary 4.4), and lim infy→x δY,x(y) > 0 (in Theorem 4.6 and Corollary 4.6) for fW :W →W ′
at x ∈ X < Y , have respectively the following geometric meanings:

“No limit of essential subspaces limyi→xD (yi) has a common direction with limi ker f∗yi”.

“No limit of essential subspaces limyi→xD ′(yi) has a common direction with ker f∗x”.

So, in Exemple 2.1 for f : R2×{1} → {0}×R×{0}, f(a, b, 1) = (0, b, 0) and x = (0, 0, 1) one
has:

lim
y→x

ker f∗y = ker f∗x = L(1, 0, 0) and for both choices of Y D(y) = D ′(y) = TyY.

Hence the limits of the essential subspaces D(y) and the limits of the test function δY (y) are:
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1) For W = Y ∪ {x} = {y = (a, tan(a), 1) : a > 0} ∪ {x}, when Condition (D) holds (Fig. 1):

lim
y→x
D(y) = lim

a→0
L
(

1,
1

cos2(a)
, 0
)

= L(1, 1, 0) 6⊆ L(1, 0, 0)

and

lim
y→x

δY (y) = lim
a→0

sin arctan
1

cos2(a)
=

√
2

2
> 0 .

2) For W =Y ∪ {x}={y = (a, a2, 1) : a > 0}∪{x} when Condition (D) does not hold (Fig. 2):



lim
y→x
D(y) = lim

a→0
L(1, 2a, 0) = L(1, 0, 0) ⊆ L(1, 0, 0)

and

lim
y→x

δY (y) = lim
a→0

sin arctan (2a) = 0 . �
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[15] C. Murolo and D. Trotman, Relèvements continus de champs de vecteurs, Bull. Sci. Math., 125, 4 (2001),

253-278. DOI: 10.1016/S0007-4497(00)01072-1

[16] C. Murolo and D. Trotman, Semidiffrentiabilit de Morphismes Stratifis et Version Lisse de la conjecture
de fibration de Whitney, Proceedings of 12th MSJ-IRI symposium, Singularity Theory and Its Applications,

Advanced Studies in Pure Mathematics 43, 2006, pp. 271-309.

http://dx.doi.org/10.1090/S0002-9947-1981-0621981-X
http://dx.doi.org/10.1090/S0002-9939-1978-0500991-2
http://dx.doi.org/10.1016/0166-8641(95)00043-7
http://dx.doi.org/10.5427/jsing.2010.2i
http://dx.doi.org/10.1016/S0007-4497(00)01072-1


204 CLAUDIO MUROLO
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