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ABSTRACT. In this paper we investigate Goresky’s Condition (D) for a stratified submersion
between two Whitney stratifications. After revisiting the main results on Condition (D) of
1976 and 1981 due to Goresky, we give new equivalent properties! and two sufficient analytic
conditions and their geometric meaning.

1. INTRODUCTION.

Let f: M — M’ be a C' map between C' manifolds and YW C M and W' C M’ Whitney
stratified sets such that the restriction fyy : W — W' is a stratified surjective submersion.
Condition (D) for f : M — M’ with respect to W and W’ was originally introduced by M.
Goresky in his Ph.D. Thesis (1976) as a convenient technical condition to define the singular
substratified objects W allowed to represent the geometric chains and cochains of a Thom-
Mather abstract stratified space X ([5] 2.3 and 4.1) in the aim of introducing nice geometric
homology and cohomology theories.

Condition (D) for fyy : W — W' at z € X CY (where X <Y are strata of W, see §2.2 for
the definition) roughly speaking means that for every stratum Y of W, the surjective differential
map fy. : TY — TY' extends to a surjective map (see Remark 3.7) fizc,y : C2Y — CuY’
between the Nash tangent cones C,Y and CpY' (where C.Y = Uyy.y, 5 lim; T, Y is analogous
in the real case to the Whitney tangent cone Cy(Y, z) [21]).

1.1. Historical motivations. Using an appropriate definition of stratified cycles (Definition
2.4) Goresky proves that every abstract stratified cycle in a manifold is cobordant to one which
is radial on M and that, thanks to the condition (D), this last admits a Whitney cellularisation
([5] 3.7).

This result is the main step in proving his important theorems on the bijective representability
of the homology of a C' manifold M by its geometric stratified cycles and of the cohomology of
an arbitrary Thom-Mather abstract stratified set ([5] 2.4 and 4.5).

For a Whitney stratification X = (A,3), in 1981 [6] Goresky redefines his geometric homol-
ogy and cohomology theories using only Whitney (that is (b)-regular) substratified cycles and
cocycles of X, denoting them in this case W Hy(X) and W H*(X), without assuming this time
the condition (D) in their definition. With these new definitions and replacing the terminology
(but essentially not the meaning) “radial” by “with conical singularities” ([6], Appendices 1, 2,
3) Goresky again proves the bijectivity of his homology and cohomology representation maps:

Theorem 1.1. If X = (M,{M}) is the trivial stratification of a compact C* manifold, the
homology representation map Ry : W H(X) — Hi(M) is a bijection.

Proof. [6] Theorem 3.4. O
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1 Used in [16] to give a new proof of the (b)-regularity of stratified mapping cylinders needed to Goresky in 1978 to prove a
theorem of Whitney cellularisation of Whitney stratifications with conical singularities.
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Theorem 1.2. If X = (A,Y) is a compact Whitney stratified space, the cohomology represen-
tation map R* : WHk(X) — H*(A) is a bijection.

Proof. [6] Theorem 4.7. O

Later such geometric theories were improved by the author of the present paper by introducing
a sum operation in W Hy (M) and W H*(X) geometrically meaning transverse union of stratified
cycles [14, 15].

1.2. Problems related to condition (D). Although in the revised theory of 1981 [6], condi-
tion (D) was not assumed in the definitions of the Whitney cycles and cocycles, it was once again
the main tool to obtain the two important representation theorems, through a strategy of us-
ing Condition (D) in order to construct Whitney cellularisations of Whitney stratifications with
conical singularities using stratified mapping cylinders whose (b)-regularity is obtained through
the condition (D) ([6], App. 1,2,3). We give a short survey of this in §2.2.

We underline here that in the homology case the main result, that Ry : WH(X) — Hy(M)
is a bijection, was established only when X = (M,{M}) is a trivial stratification of a compact
manifold M and that the complete homology statement for X' an arbitrary compact (b)-regular
stratification remains a famous problem of Goresky which is still unsolved ([5] p. 52, [6] p. 178):

Conjecture 1.1. If X = (A,X) is a compact Whitney stratified space the homology, represen-
tation map Ry : WH(X) — Hy(A) is a bijection.

The proof of this conjecture would follow as a corollary if one could prove the following:
Conjecture 1.2. FEvery compact Whitney stratified space X admits a Whitney cellularisation.
This would be also a first important step of a possible proof of the celebrated conjecture:
Conjecture 1.3. Fvery compact Whitney stratified space X admits a Whitney triangulation.

Let us recall that in 2005 M. Shiota proved that semi-algebraic sets admit a Whitney tri-
angulation [18] and in 2012 M. Czapla gave new proof of this result [2] as a corollary of a
more general triangulation theorem for definable sets. On the other hand, our motivation be-
ing the applications to Goresky’s geometric homology theory, we are interested in the stronger
Conjectures 1.2 and 1.3 for stratifications having C! strata.

In 1978 Goresky also proved an important triangulation theorem for compact Thom-Mather
stratified sets [7] whose proof (based on a double inductive step) can be used to obtain a Whit-
ney cellularisation of a Whitney stratification provided that one knows how to obtain Whitney
stratified mapping cylinders. Goresky used this idea based on Condition (D) for Whitney strat-
ifications having only conical singularities (see Proposition 2.4) for which he gave a solution of
Conjecture 1.2 and deduced as applications the proof of Theorems 1.1 and 1.2.

The strategy of Goresky could be used for an approach to a more general solution of Conjecture
1.2. In this context it is clear that Goresky’s condition (D) might play an important role in
answering affirmatively Conjecture 1.4 and in solving the famous conjectures 1.1 and 1.3.

1.3. Content of the paper. In §2.1 we review quickly some basic notions about the most
important regular stratifications concerned by this paper: the Whitney (b)-regular stratifications
[21] and the abstract stratified sets of Thom-Mather [9, 10, 19]. Then in §2.2 we introduce
the definition of condition (D) for a stratified submersions fyy : W — W’ as a technical tool
to obtain (b)-regularity of stratified mapping cylinders and we recall all results of Goresky of
1976-81 [5, 7] necessary to prove that: “Every Whitney stratification with conical singularities



STRATIFIED SUBMERSIONS AND CONDITION (D) 181

and conical control data admits a Whitney cellularisation” (Proposition 2.4) which is a partial
solution of Conjecture 1.2.

In §3.1, we analyze what condition (D) means for a C* submersion f : M — M’ between C*
manifolds at a regular point yy € M. First we remark that submersivity can be interpreted as
the C%1-regularity of the foliation defined by the fibres of f (from Proposition 3.5 to Corollary
3.2).

When Y C M are riemannian manifolds, we show that the submersivity at yo € Y of the
restriction fy : Y — Y’ is equivalent to the continuity at yo of the canonical distribution
D(y) =L (ker fy.y,T,Y) (Proposition 3.6).

Then we introduce two test functions hy and Hy (Definition 3.5) given by the minimum
and the maximum norm of the isomorphism fy .y p(y) : P(y) — T,yY” and its inverse isomor-
phism fi 1 50 Ty Y — D(y), such that limy,y, hy (y) and limy,,, Hy (y) characterize the
submersivity of fy at yo (Proposition 3.7).

Finally in §2.2, thanks to this, we prove that submersivity at yo is also equivalent to the
property “fuy, (limy, 40 D(ys)) 2 lim; fiy, (P(y:))” and to Condition (D) for fy at yo, interpreted
as stratified map defined on the stratification ¥ — {yo} U {yo} (Proposition 3.8).

This preliminary analysis of §3 is necessary in introducing the results of §4.

In §4 we give the main results of this paper.

First in §4.1 we investigate the technical, geometric and analytic content of condition (D) at
apoint x € X <Y (X,Y being two strata of W) for a general stratified submersion f : W — W'
between two Whitney stratifications.

In Theorem 4.3 we prove that, in the context of stratified spaces, condition (D) atz € X <Y
is equivalent to the key property (which is the most important technical content of Condition
(D)):

“For every {y;}; C Y such that lim;y; = x € X, every v/ € lim; T),,Y can be written as
a limit lim; v; = v" of a sequence {v; € Ty, f(Y)}i having a bounded sequence of preimages
{wi € fi;(v) ST, Y}”

and it is again equivalent to the property of transforming “continuously” the limits of the canon-
ical distributions: fi,(limy,—, D(y;)) 2 limy, g fiy, (D(ys)-

The author of the present paper used this properties in [16], when fyy = 7xypy : W = W'
is the restriction of a projection mxy : Sy — X, to give a different proof of the essential result
of Goresky (Proposition 2.2) that “Stratified mapping cillynders with conical singularities admit
a (b)-regular natural stratification”; the property which allow to prove the important Whitney
Cellularisation Theorem (Proposition 2.4) recalled above.

In Theorem 4.4 and Corollary 4.3 we prove that the analytic conditions liminf, ., hy (y) > 0
and liminf, ., Hy (y) < 400 are sufficient for condition (D) at z € X < Y.

In §4.2 for U,V two vector subspaces of an Euclidian vector space E, we use the usual
“distance” functions §(u, V') and 6(U, V) (u € E) to define the essential minimal distance 6'(U, V)
between U and V, as the sinus of the minimum essential angle a(U, V') between two essential
mutual subspaces U', V' of U and V and we prove some useful properties of 6(u, V'), §(U,V) and
(U, V).

In §4.3 using this new “distance” function §’'(U,V) we introduce two new geometric test
functions dy (intrinsic by ) and dy, (depending on z) for Condition (D) at z € X <Y.

In Theorem 4.5 and Corollary 4.4 we prove, when f : M — M’ is a submersion at z, equiv-
alence between the more geometric condition liminf,_,, dy(y) > 0 and the analytic condition
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liminf, . hy (y) > 0 (or limsup,_,, Hy (y) < +00) and thanks to this that liminf, ,, éy(y) > 0
becomes a sufficient condition for Condition (D) at x € X <Y (Corollary 4.5).

After making precise relations between dy and dy, (Propositions 4.9 and 4.10) we find that
the analogous results of Theorem 4.5 and Corollary 4.4 hold by considering the function dy 4
instead of dy (Theorem 4.6 and Corollary 4.6).

We conclude the section by explaining (by two examples) the geometric meaning of the suffi-
cient conditions liminf,_,, dy (y) > 0 and liminf, ., dy,(y) > 0.

2. STRATIFIED SPACES AND MAPS AND CONDITION (D).

A stratification of a topological space A is a locally finite partition 3 of A into C'' connected
manifolds (called the strata of ¥) satisfying the frontier condition: if X and Y are disjoint strata
such that X intersects the closure of Y, then X is contained in the closure of Y. We write then
X <Yand9Y =Ux<yX sothat Y =Y U (Ux<yX) =YUdY and Y =Y —Y (U = disjoint
union). The pair X = (A, X) is called a stratified space with support A and stratification 3.

A stratified map f : X — X’ between stratified spaces X = (4,X) and X' = (B,Y) is a
continuous map f : A — B which sends each stratum X of X into a unique stratum X’ of X/,
such that the restriction fx : X — X’ is C.

A stratified submersion is a stratified map f such that each fx : X — X’ is a C'' submersion.

2.1. Regular Stratified Spaces and Maps. Extra regularity conditions may be imposed on
the stratification 3, such as to be an abstract stratified set in the sense of Thom-Mather [9, 10,
19] or, when A is a subset of a C! manifold, to satisfy conditions (a) or (b) of Whitney [21],
or (c) of K. Bekka [1] or, when A is a subset of a C? manifold, to satisfy conditions (w) of
Kuo-Verdier [22], or (L) of Mostowski [17].

In this paper we will consider essentially Whitney ((b)-regular) stratifications so called because
they satisfy Condition (b) of Whitney (1965, [21]).

Definition 2.1. Let ¥ be a stratification of a subset A C RN, X <Y strataof ¥ and xz € X.

One says that X <Y is (b)-regular (or that it satisfies Condition (b) of Whitney) at z if for
every pair of sequences {y;}; CY and {x;}; C X such that lim; y; = € X and lim; x; = = and
moreover lim; T,,,Y = 7 and lim; [y; — ;] = L in the appropriate Grassmann manifolds (here [v]
denotes the vector space spanned by v) then L C 7.

The pair X <Y is called (b)-regular if it is (b)-regular at every z € X.

Y is called a (b)-regular (or a Whitney) stratification if all X <Y in ¥ are (b)-regular.

Most important properties of Whitney stratifications follow because they are in particular
abstract stratified sets [9, 10].

Definition 2.2. (Thom-Mather 1970) Let X = (A, X) be a stratified space.
A family F = {(rx,px) : Tx = X x [0,00])}xex is called a system of control data of X if

for each stratum X € ¥ we have that:

(1) Tx is a neighbourhood of X in A (called tubular neighbourhood of X);

(2) mx : Tx — X is a continuous retraction of Tx onto X (called projection on X);

(3) px : Tx — [0,00[ is a continuous function such that X = p3'(0) (called the distance

from X);

and, furthermore, for every pair of adjacent strata X < Y, by considering the restriction maps
TXY = TX|Txy and pxy = PX|Txy> OLL the subset T'xy := Tx N'Y, we have that:
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5) the map (mxvy, pxy) : Txy — X x]0,00[ is a C'! submersion (then dim X < dimY);
6) for every stratum Z of X such that Z >Y > X and for every z € Ty NTx
the following control conditions are satisfied:
i) Txymyz(z) = mxz(z) (called the w-control condition)
it) pxymyz(2) = pxz(z) (called the p-control condition).
In what follows for every e > 0 we will pose T := Tx (¢) = px* ([0, €[), S = Sx(€) = px'(e),
and Ty =T NY, Sy = S NY and without loss of generality will assume Tx = T'x (1)
[9,10].

The pair (X, F) is called an abstract stratified set (ASS) if A is Hausdorff, locally compact
and admits a countable basis for its topology. Since one usually works with a unique system of
control data F of X, in what follows we will omit F.

If X is an abstract stratified set, then A is metrizable and the tubular neighbourhoods
{T'x} xex may (and will always) be chosen such that: “T'xy # 0 < X <Y” and

“IxNTy #0< X <Yor X >Y”
(where both implications < automatically hold for each {T'x}x) as in [9, 10], pp. 41-46.

The notion of system of control data of X', introduced by Mather, is very important because
it allows one to obtain good extensions of (stratified) vector fields [9, 10] which are the funda-
mental tool in showing that a stratified (controlled) submersion f : X — M into a manifold,
satisfies Thom’s First Isotopy Theorem: the stratified version of Ehresmann’s fibration theorem
[3,9,10,19].

Moreover by applying it to the projections wx : Tx — X it follows in particular that X has
a locally trivial structure and also a locally trivial topologically conical structure.

This fundamental property allows moreover to prove that ASS are triangulable spaces [7].
Since Whitney (b)-regular) stratifications are ASS, they are locally trivial and triangulable.

2.2. Condition (D) and Goresky’s results. The following definition was introduced by
Goresky first in his Ph.D. Thesis [5] (1976) and later in [6] (1981).

Definition 2.3. Let f : M — M’ be a C' map between C! manifolds and W C M and
W' C M’ Whitney stratifications such that the restriction fyy : W — W' is a surjective stratified
submersion (so f takes each stratum Y of W to only one stratum Y’ = f(Y) of W = f(W)).
One says that f: M — M’ satisfies condition (D) with respect to W and W’ and we will say
for short that the restriction fyy : W — W' satisfies the condition (D) if the following holds:
for every pair of adjacent strata X < Y of W and every point £ € X and every sequence
{yi}s €Y such that lim;y; = = € X, lim; T,,,Y = 7 and lim; Ty(,,)Y’ = 7’ in the appropriate
Grassmann manifolds, then f,,(7) 2 7/. Starting from now we will write this for short by:

fm.(li{n T,Y) D lign TrnY'-
and we will extend this notation also to some other limits of subspaces of the {7}, Y },.

Later on we will also consider given, with the obvious restricted meaning of the definition
2.3, what one intends by: “f : M — M’ satisfies condition (D) with respect to X < Y” and
“f: M — M’ satisfies condition (D) with respect to X <Y atx € X7 (“atz € X <Y7).

In the whole of the paper we will denote Y/ = f(Y) and y' = f(y), for every y € Y.

Example 2.1. Let M be the horizontal plane M = {z = 1} C R®*, M’ = L(0,1,0) = y-axis in
R? and f : M — M’ the standard projection f(z,y,2) = y.
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Let W = (W, X)) be the stratified space with support W = {y = tan(z) : = > 0} N M the
half graph of the tangent map in M and stratification Xy, = {R, S} where R = {(0,0,1)} and

S=Wn{z >0} Then R< S.
Let W' be the stratified space with support the half y-axis, W' = M’ N {y > 0} in M’ and

stratification Xy = {R’, S’} where R’ = {(0,0,0)} and S’ = M’ N{y > 0}. Then R’ < 5’.
Then fyy : W — W' satisfies condition (D) at (0,0,1) € R < S.
If W = (W, Xyy) is as above but taking now for W the half parabola W = {y = 22,2 > 0}N M
in M, then fyy : W — W' does not satisfy condition (D) at (0,0,1) e R< S. O

Figures 1 and 2 below represents both cases of Example 2.1. In figure 1, fyy : W — W/
satisfies condition (D) at (0,0,1) € R < S while in figure 2 it does not.

= =1 plane / = =1 plane ,
// //

R s W'=R'US' y-axis /R s W'=R'US" y-axis

X-axis

Figure 1 Figure 2

An important example in which condition (D) holds is the case of cellular maps [5], [16]:

Proposition 2.1. Let f : M — M’ be a surjective C* submersion and h and h' two
smooth cellularisations of two subsets K C M and K' C M’ making the following diagram
H L kcwm

gl Lf

noM oxcwm.

commutative where g : H — H' is a cellular map of cellular complezes.
Then fx : K — K' satisfies condition (D). O
In 1976 Goresky used condition (D) to define a convenient class of stratified subspaces W C X
of a Thom-Mather ASS X = (A, X)) equipped with a system of control data
F = {(WX,px) : T)lf — X x [O,OO[}XGZ
[9, 10] and a family of lines of X, R = {r§ : Tx — X — S} xes.eclo,s0 [7] retracting every
tubular neighbourhood T% — X on its e-sphere S%-.

Definition 2.4. ([5] 2.3.2). Let X be a Thom-Mather ASS, equipped with a fixed system of
control data F and a family of lines R and denote, for every stratum X of X, by C'; the open

cone operator associated to R, that is: C%(Q) = 75 ~1(Q) for every Q C S%.
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A Thom-Mather ASS W C X is called a substratified object of X and one says that W follows
the lines of X if the following hold:

(1) Each stratum R of W is a submanifold of a stratum X of X.

(2) For each stratum X of X', WN X satisfies Whitney’s condition (b).

(3) For each stratum X of X, there exists € > 0 such that WN (T — X) = C¢(WNS%).

(4) If X is a stratum of X, there exists € > 0 such that mynge : WN Sy = WN X is a
stratified submersion which satisfies condition (D).

Goresky commented on property 4) above as follows: “Condition (D) is used in section 6.4
to guarantee that certain intersections of substratified objects will be substratified objects. It
can be weakened considerably and perhaps omitted completely although this would necessitate
considerably more technical analysis when intersections of substratified objects are considered”.

Later in 1981 Goresky redefined his geometric homology W Hj,(X) and cohomology W H* (X
(this time only) for a Whitney stratification X without asking that the substratified objects
representing cycles and cocycles of X’ satisfy condition (D) above ([6] §3 and §4).

The main reason for which Goresky introduced Condition (D) in 1981 was that it allows one
to obtain Condition (b) for the natural stratifications on the mapping cylinder of the stratified
submersion:

Proposition 2.2. Let 7 : E — M’ be a C' riemannian vector bundle and M = S5, the e-
sphere bundle of E. If W C M, W = (W) C M’ are two Whitney stratifications such that
mw : W = W s a stratified submersion which satisfies condition (D), then the closed stratified
mapping cylinder

Cw W) = | | [(Crpor (V) = mw(Y)) U (Y)UY]
ycow

is a Whitney (i.e. (b)-regular) stratified space.
Proof. [6] Appendix A.1 or [16] for a different proof. O
Then, in order to use it together with Proposition 2.3 below:

Proposition 2.3. FEvery Whitney stratification W in a manifold M can be deformed to a Whit-
ney stratification W' having conical singularities.

Proof. [6] Appendix A.3. Proposition. O
Goresky proved that:

Proposition 2.4. Fvery Whitney stratified space X with conical singularities and conical control
data admits a Whitney cellularisation.

Proof. [7] Appendix A.2. Proposition. O

Proposition 2.4 gives hence a partial solution of Conjecture 1.2 in the introduction and suggests
moreover new ideas for an approach to his general solution.

Proposition 2.4 was thus also the main tool which allowed Goresky to prove his two homology
representation theorems, Theorem 1.1 and Theorem 1.2, recalled in the introduction.

A detailed account of condition (D), containing a finer analysis, new proofs and equivalent
properties of Goresky’s results is given in [16].
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3. CY1_REGULAR FOLIATIONS AND CONDITION (D) FOR C! MAPS.

3.1. Regular foliations from C' maps. In this section we clarify some simple properties of
C' maps that will be useful in §4.

Remark 3.1. Let f : M — M’ be a C' map between C' manifolds, yo € M and {y;}; C M a
sequence such that lim; y; = yo.
1) For every sequence of vectors {v; € ker f*y}z such that lim; v; = v one has vy € ker fiy,.

2) If, in an appropriate Grassmann manifold, there exists
lilm ker fiy, =T,
then T C ker f.y, (starting from now we will write this for short by: “lim; ker f.,, C ker f.y,”).
Proof. Since f is C* one obviously has: fiy,(vo) = fuyo (lim; v;) = lim; fuy, (v;) =0. O
The opposite inclusion lim; ker f,, 2 ker f.,, would follow immediately when two such vector
spaces have the same dimension. This happens when f is a submersion:
Proposition 3.5. Let f: M — M’ be a C' submersion on M — {yo} for a point yo € M.
Then the following conditions are equivalent:
1) f: M — M’ is a submersion at yo;
2) For all {y;}; € M —{yo} converging to yo there exists lim; ker f,,, and

limker fiy, = ker fiy,.

This means that the map K : M — Gi(TM), K(y) := ker f., is continuous.
3) For all {y;}; € M —{yo} converging to yo there exists lim; ker f,, and
limker fiy, 2 ker fiy,.

Proof. Since f is a C* submersion at M —{yo}, for every y; € M —{yo}, if y: = f(v;), the fibre
f~Y(y}) is a C! manifold of dimension k = dim M — dim M’ such that T, f~1(y}) = ker fuy,.

In particular, for every ¢ € N, dim ker f,,, = k.
(1= 2). Let {ker f.y, }n an arbitrary converging subsequence of the sequence {ker f.y, }i.
If f is a submersion at yg, then f~!(y) is a C! k-manifold too with tangent spaces
Tyofil(yé)) = ker fy .
and dim ker f.,, = k = dim limj, ker f*yi,;
Since f is a C! map, limy, ker f*yih C ker fiy, (Remark 3.1) and having both the same
dimension k they coincide: limy, ker f*yih =ker fiy,-

All converging subsequences of the sequence {ker f,,,}; have then the same limit ker f.,, in
the Grassmann compact manifold and hence there exists lim; ker f.,, and

limker f.,, =ker fiy,.

(2 = 3). Obvious.
(3 = 1). If lim; ker fay, 2 ker f.y,, then, for every i, dim ker f,,, < dim ker f.,, and by
codimension dim Im f.,, > dim Im f.,,. Thus again f being a submersion at y; one has:
dim Im f.y, > dim Im f,, = dim Ty;M' = dim T%M’

and, since Im f.,, C T, M’, then necessarily Im f.,, = T,, M' and f is a submersion at yo.
O
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With the same hypotheses and proof of the proposition 3.5 one has:

Remark 3.2. The following conditions are equivalent:
1) f: M — M’ is a submersion at yo;
2) For all {y;}; € M —{yo} converging to yo there exists lim; ker f,, and

dimlimker f.,, = dimker f.y,;

3) For all {y;}; € M —{yo} converging to yo there exists lim; ker f.,, and
dimlimker f,,, > dimker f.,,. O

Corollary 3.1. If f : M — M’ is a C'-submersion, the foliation of M defined by F =
{My, = =y }yem, where y' = f(y), is C% -regular. Le. for every sequence {y;}; C M

limy; = yo = UmTy, My, = Ty, M,y,.
K] K]

Proof. Since f is a C! submersion on M, for every y; € M, f~1(y!) is a C! manifold of
dimension k = dim M — dim M’ and Ty, f~'(y') = ker f.,,. Then, by Proposition 3.5:

limT,, M,, = limker f.,, = ker fy,« = Ty, My,. O

Corollary 3.2. Let f : M — M’ be a C* map and F' = {M!}; an C%'-regular foliation
of M’ whose leaves are transverse to f and such that there exists a submanifold V. of M' of
dimension h = dim M’ — dim F' transverse to each leaf of F' and intersecting it in a singleton
VN M = {y;}.

Then the foliation of M defined by F = {M; = f~Y(M},)}; is C%'-reqular.

Proof. Let us consider the submersion g : M’ — V defined for every y' € M’ by
gmy = constant = y;.

Thus g defines the foliation 7' = {M,, }, en via preimage.
Then the foliation F = {M;}; of M is defined by the C* submersion go f: M — V. 0O

Starting from now we will suppose M = M™ to be a riemannian manifold of dimension n.

For a C' map f: M — M’ let us consider the distribution of vector subspaces D(y) := Dy (y)
obtained by splitting every T, M as the direct orthogonal sum:

T,M = D(y) & ker fu, where D(y) := L(ker f.,,T,M).
Wecall D: M — G,,—x(TM), {D(y) =L (ker fiy, T, M)}, the canonical distributions of f.

We will see that the study of the condition (D) _for a submersive restriction fy : Y — Y’
(Y C M and Y’ C M’) at a point z in the adherence Y of Y is strongly related to good properties
of limits of the distribution

D(y) = Dy, (y) = L (ker fy.y, T,Y).

When fy = mxy|: S%y — X is the restriction of a projection mxy : T'xy — X on a stratum
X <Y, of a system of control data {(Tx,7x,px)}x of a regular stratification, then D;(y) is
defined in the same way as the canonical distribution Dx (y) relative to the stratum X introduced
in [11, 12, 13]. In this case, if W and W’ are Whitney refinements of S5, and X, Condition
(D) implies the (a)-regularity (see [13]) of a “horizontal” foliation related to Dx in a particular
stratified mapping cylinder Cyy (W) [16] (from Lemma 3.1 to Theorem 3.4).
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Lemma 3.1. Let V C U be two vector subspaces of R™.
If {Vi}; and {U;}; are two sequences of vector subspaces of R" with V; C U;, | = dim 'V},
k =dimU; for every i and such that lim; U; = U in G}, then

imV, = Vin G} < liml (V,U;) =LV, U) in Gj_,.
Proof. (=). Let us denote D; = L (V;,U;) and D = L (V,U) and show that lim; D; = D.

Since dim V; = [ and dim U; = k then dimD; = k — [ for every 1.
Since U = lim; U; € G and V' = lim; V;, then dimU =k, dimV =1 and dimD = k — .

Let {D;, }1, be an arbitrary convergent subsequence of {D;}; and D’ = lim, D;,,.
Every vector w € D’ = limy, D;, is a limit w = limj w;, of a sequence of vectors {w;, € D;, }n
so that < wj, ,v;, > = 0 for every vector v;, € V;,.

On the other hand V' = lim; V; = lim;, V;,,, so every vector v € V' is also a limit v = limy, v;,,
of a sequence of vectors {v;, € V;, }, and we have < w,v > = lim;, < w;,,v;, > = 0 so that
w €Ll (V,U)="D’. Hence D' C D and, since they have the same dimension, D’ = D.

Therefore every convergent subsequence {D;, }1, of {D;}; has limit D and so lim; D; = D.
The proof of (<) follows from (=) because V; =L (D;,U;) and V =L (D,U). O
Proposition 3.6 below anticipates some arguments that will appear in §4.
Proposition 3.6. Let M™ be a riemannian manifold and f : M — M’ a C' submersion on
M — {yo} with yo € M. Then the following conditions are equivalent:
1) f: M — M’ is a submersion at yo;
2) For all {y;}; € M — {yo} converging to yo there exists lim; D(y;) and
UmD(y;) = L (ker fiy,, Tyo M).

I e.: the map D: M — G,,_(TM), D(y) =L (ker f.y,TyM) is continuous;
3) For all {y;}; € M —{yo} converging to yo there exists lim; D(y;) and
ImD(y;) C L (ker fuy,, TyoM).

Proof. Tt follows immediately from Proposition 3.5 and the previous Lemma 3.1. [

Definition 3.5. below will play an important role in the next section.

Definition 3.5. Let f : M — M’ be a C! map of riemannian manifolds, Y C M, Y’ C M’ two
Cl-submanifolds whose restriction fy : Y — Y’ is a C! surjective submersion; so Y’ = f(Y),
TyY' =Ty f(Y), v = f(y) for all y, and we will assume such notations in the whole of the

paper.
Let # € Y C M (a priori x could lie or not in Y) and 2’ = f(x).
For every point y € Y, let D(y) =L (ker fy.y,T,Y") be the canonical distribution of fy.
The restricted differential map:
frapw @ D) — TyY’

is then an isomorphism and for every unit vector u € D(y), one has fy.,(u) # 0, so that by
compactness of each unit sphere of D(y) one can define the continuous map hy:

hy 1Y —{z} = ]0, 400 , hy(y) =min{|| fraype@) || = [[ul]l =1}
Similarly, by considering the inverse map f;iy\D(y) : Ty Y' — D(y), every vector v’ € T,)Y’

has a unique (pre)image v = f;iy|D(y) (v") such that v € D(y) and fy.,(v) =2’
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We call such a vector v = f;iylp(y)(v’) the canonical lifting of v':
it is the unique vector v € T,)Y such that fy.,(v) = v’ and having no component along ker fy ..

Of course v’ # 0 if and only if its lift v # 0.

So, starting from now, every vector that we will lift, will always be supposed # 0.
We will understand this also in many statements of §4 without say it explicitely every time.

We can then define the dual continuous map Hy:
Hy Y —{a} = 0,400 . Hy(y)=max{|| £y’ p,@) || : [ v/]] =1}.

Le. Hy(y) is the classical norm of the linear isomorphism f;iym(y) : Ty Y — D(y).

Remark 3.3. For everyy € Y and every vector v' € Ty Y’ — {0} we have:
1) The unit vector u = 2 of the canonical lifting v := f;:le(y) (v') € D(y) of v' € T,)Y’

satisfies:
Il

H fY*y|D(y) (U)H .

2)If ||v||=1 then: || v]| m

1
8) H = .
) Y(y) hy(y)
Proof. For 1) one easily finds:
1] =1 fray@) | =1 fysy ) 1L - ITv Il =11 fysypw @) 1 -1 v ]l

which also obviously implies 2), while 3) follows by 2) thanks to:

1
Hy(y)= sup {||v]| : v €T,Y' } = sup cu€eD(y)} =

Il v ||=1 Null=1 | fyaype) W]

1 1
= .0

inf|| yj=1 {I| frayip) (@I : w€ DY)} hy(y)

Being interested in the properties of the maps hy and Hy at a regular point we will suppose
in Proposition 3.7 below that Y U {z} = M, and we will denote yg = x, h = hy and H = Hy.

Proposition 3.7. Let f: M — M’ be a C* map, submersion on M — {yo} with yo € M.
The following conditions are equivalent:

1) f: M — M s a submersion at yo;
2) There exists limy_,,, h(y) > 0;
3) There exists limy_,,, H(y) < +o0.

Proof. 1) = 2). If y is a regular point of M, and f is a submersion at yo then Definition 3.5
of the continuous map h extends naturally to yo giving lim,_,,, h(y) = h(yo) € ]0,+o0|.

2) = 3). It follows obviously by Remark 3.3.

3) = 1). Let us fix a unit vector v’ € Ty, M.

By hypothesis for every sequence {y;}; € M such that lim; y; = yo one has lim; H(y;) < +oo.

Given then a sequence of unit vectors {v; € T, M'}; such that lim; v; = v', the sequence of

canonical lifts {v; := f*_yilp(yi)(vl’-) € D(y:) }4, is bounded: sup; ||v;|| < sup; H(y;) < +oo.
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There exists thus a subsequence {v;,}, converging to a vector v = limyv;, € Ty, M and
f: M — M’ being C! at yq one finds:

Fryo (V) = fiyo (h]?wih) = h}Iln f*yf,h (vin) = h}}“’ih =v.
Therefore fiy, : Ty, M — T,y M " is surjective and f is a submersion at yy. O

3.2. Condition (D) at a regular point. Let us recall now the definition of the condition (D)
for fy W W atze X <Y.

Let f : M — M’ be a C!' map between C' manifolds, W C M and W' C M’ Whitney
stratifications and suppose that the restriction fyy : W — W' is a stratified (stratum for stratum)
surjective submersion satisfying condition (D) at x € X < Y.

This means that for every sequence {y;}; C Y such that lim; y; = € X one has:

31m7,Y =7 and I1lmT,Y' =7 = fo(r)27
where Y/ = f(YV) and ¢y = f(y) for every y € Y.

Remark 3.4. The C* smoothness of f on M does not suffice to imply the inclusion f..(7) D 7’
which as one sees with easy examples is false in general (see Example 2.1). O

We will show in the next section (Theorem 4.3) that it depends on the possibility of extracting
a bounded sequence of vector preimages v;, one in each fibre f!(v]) with lim; vj € 7.

We will see moreover that the whole complexity of the condition (D) at x is contained in the
behaviour near z of the maps hy and/or Hy.

Remark 3.5. Condition (D) for fiy : W — W' at x € X <Y does not depend on the stratum
X containing x: to formulate it, one must consider a map f defined on a C' manifold M
containing Y and x € Y and which is C*' on M. O

Remark 3.6. With the same hypotheses and notations as above we have:
i) Since f: M — M’ is C the opposite inclusion f..(7) C 7' is always satisfied.
i) fw : W — W' being a stratified submersion, T,)Y" = f.,. (T,,)Y) for every i.

Proof i). If v € T we can write v = lim; v; for a sequence {v; € T,,Y };, hence:

fra(v) = faz(limv;) = Um fop, (v;) € lim fop, (T, Y) =7 andso:  f(r)C7. O

Since fyy : W — W is the restriction of a C* map f : M — M’ between two manifolds, there
exists a differential map f., : To M — T,y M’ and a unique possible way to define the restriction
fiz|c,y to the tangent cone (the Nash fiber) C,Y :=[ | v 7 of Y at x.

7 =1lim; Ty
Condition (D) implies moreover that the “restriction” f.zc,y @ C2Y — CuY' must be

surjective. This is the most natural generalisation at a singular point of the submersivity:

Remark 3.7. If fyy : W = W satisfies condition (D) at x € X <Y, then

Z) f*z(7-> = Tl;

it) The surjective differential map fy. : TY — TY' of the restriction fy : Y — Y’ extends
surjectively to the union of linear maps:

Jyszlc,y = |_| fealr + CoY = |_| o CuY' = I_l -

7 =Ilim; Tin 7 =lim; Tyl.Y 7/ =1lim; T,y(Y/

between the tangent cones C,.Y and CpY’'. [
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Condition (D) for fy also morally means that the differential maps fy., : T,Y — T,/ Y’
have to be surjective including all possible limit maps limy, z fy.y, : Ty, Y — T,/ Y': a kind of
“super-submersivity” defined in the same spirit as Goresky’s super-transversality [5].

Look now at what condition (D) “means” at a regular point yy € Y.

Let f: M — M’ a C' map on a riemannian C'! manifold M and Y C M a submanifold.

If the restriction fy : Y — Y’ is a surjective submersion out of a point 5y € Y, then condition
(D) for fy at yo can be naturally defined as condition (D) for fy, : W — W' by considering for
W and W’ the Whitney stratifications W = (Y — {yo}) U{yo} and W' = (Y’ —{y{}) U{y{} with
yo = f(yo) (we also include the possibility Y = M).

With such an extended meaning we have :
Proposition 3.8. Let fy : Y — Y’ = f(Y) be a surjective C' map and yo €Y such that fy is
a submersion at every point of Y — {yo}. Then the following conditions are equivalent:

1) fy : Y =Y’ is a submersion at yo;

2) lim; y; = yo and 3 lim; D(y;) = fy*yo(limiD(yi)) D lim; fy sy, (D(yi));

3) fy satisfies the condition (D) at yo.

Proof. Since Y and Y’ are C' manifolds, for every sequence {y;}; C Y — {yo} such that
lim; y; = yo, we automatically have that both limits exist:

r=lmT, Yy =lmT,Y =T,Y and 7 =lmT,Y=lmT, Y =T,Y" .

Moreover, fy being a submersion at every y; € Y — {yo}, by decomposing T,,Y in the
orthogonal direct sum: T,,Y = D(y;) & ker fy.,, , with D(y;) = L(ker fy.y,,T,,Y), then
fy sy D@y : D(yi) — Ty Y is an isomorphism of vector spaces, and hence 7/ = lim; fy .y, (D(yz))

(1 = 2). Let us suppose that fy : Y — Y’ is a submersion at yo.
We fix a unit vector v" € lim; fy ., (D(yl)) and we will show that v’ € fy*yo(limi D(yl))

There exists then a sequence of unit vectors {v} € f.,, (D(y;)) }; such that v/ = lim; v].
For every v; € fy.y, (D(y;)) the canonical lifting v; satisfies v; € D(y;) and fy.y(v;) = v.
Now fy being a submersion at yo, by Proposition 3.7 (1 = 3), we find that limsup,,_,, Hy (y)

< 400 and that the sequence {v; = f@1‘p(y_)(v§)}i is bounded and admits a subsequence {v; }n

converging to a vector v = limy, v;, € limy, D(y;;,) = lim; D(y;) for which
Fyayo (V) = frrsyo (h,{n Vip) = li}rln Sy syo (Vin) = li}rln vy, =0
Therefore v’ € fy*yo(limi D(yl))
(2 = 3). Chosen a subsequences such that there exists limy D(y;, ) we immediately have :
fY*yo (T) = fY*yo ( ll}ILIl Tihy) 2 fY*yo ( h}anD(ylh» 2 ll}ILIl fY*yih (D(ylh)) = h}an Ty;h Yi=71".

Hence Condition (D) holds at yo for fy.

(3 = 1). If fy satisfies condition (D) at yo, we have fy.,(7) 2 7 and since yo is a
regular point of the manifold Y, 7 = lim; T7,,,Y = T,,,)Y and 7" = lim, TyéY’ = TyéY’. Thus
fY*yo (Tyoy) 2 Tyéyl'

Hence fy.y, : Ty, Y — Ty, Y’ is surjective, and fy : Y — Y’ is a submersion at yo. [
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4. SUFFICIENT CONDITIONS, ANALYTIC AND GEOMETRIC MEANINGS FOR CONDITION (D).

In this section we prove the main results of the paper given in Theorems 4.3, 4.4, 4.5, 4.6 and
their Corollaries 4.3, 4.4, 4.5, 4.6.

Starting from the analysis of the technical content of condition (D), (Theorem 4.3) we find
various equivalent analytic and geometric properties (Theorems 4.4, 4.5, 4.6), which are all
sufficient conditions for Condition (D) (Corollaries 4.3, 4.5 and 4.6).

4.1. Technical content and sufficient analytic conditions for Condition (D). Theorem
4.3 below explains the essential technical content of the condition (D).

The equivalence (1 < 4) has been used by the author of the present paper in [16] (Theorem
3.3) when fyy = mxyw : W — W' is the restriction of a projection mxy : Sy — X, to prove
that certain stratified mapping cones Cyy» (W) are (b)-regular, to obtain an equivalent version of
Goresky’s essential Proposition 2.2 and 2.4 (Theorem 3.4 and Corollary 3.2, [16]) .

Proposition 2.2 is really the key property in proving Proposition 2.4 which gives a partial
solution of Conjecture 1.2, suggests new ideas for a general approach to it and is fundamental
for the proof of Theorems 1.1 and 1.2 in the theories WH,, W H* of Goresky (see §2).

Theorem 4.3. Let f : M — M’ be a C' map between C' manifolds, W C M and
W' C M’ Whitney stratifications such that the restriction fyy : W — W' is a stratified sur-
jective submersion.

Let X <Y be strata of W, x € X. By denoting fy : Y =Y’ = f(Y) the restriction of f, and
forally €Y,y = f(y) and D(y) =L (ker fy.,,T,Y), the following conditions are equivalent:

(1) The map fyy : W — W' satisfies the condition (D) atx € X <Y

(2) For all{y:}; CY such thatlim;y; = x and both limits T = lim; Ty, Y and 7" = lim; T,/ Y’
evist, for every v' € 7' — {0} there exists a sequence {v; € T, Y' — {0}}; such that

lim; v} = v’ and having a bounded sequence of preimages {w; € f;,}yi (v)) € T,,Y }5.

(3) Forall{y;}; CY such thatlim; y; = x and both limits T = lim; T,,,)Y and 7' = lim; T,/ Y"
exist, for every v' € 7' — {0} there exists a sequence {v; € T, Y' —{0}}; such that
lim; v, = v’ and having the sequence by canonical lifting {v; € f;iyilD(yi)(vl{) € D(yi) hi
bounded.

(4) Forall{y;}; CY such thatlim; y; = = and both limits o = lim; D(y;) and 7" = lim; T,/ Y"
exist, one has: fup(im; D(y;)) 2 imy fyay, (D(yi))-

Proof. Let us consider a sequence {y;}; € Y such that lim,y; = 2 and both limits
7 =1lim; T,,Y and 7/ = lim; TyéY’ exist in the appropriate Grassmann manifold.

Remark also that, fy : Y — Y’ being submersive, TyéY’ = fyuy, (T,,Y) = fuy, (T,,Y) for
each i.

(1 =2). If iy : W — W satisfies the condition (D) at z € X <Y, fur(7) 2 7' then for
every vector v € 7’ there exists a vector v € 7 such that v/ = f,,(v).

Since v € 7 = lim; T,,,Y, there exists a sequence {w; € T,,Y}; such that v = lim; w; and
{w;}; is in particular obviously bounded. The sequence of the images {v] := f., (w;)}; satisfies
then:

i) lim; o] = lim; foy, (wi) = fap(im; w;) = fuz(v) =0 ;

ii) {v] = fuy, (wi)}; admits the bounded sequence of lifting {w; € f} (v])}:.
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(2 = 3). Under the hypothesis 2), by decomposing every vector w; in the orthogonal sum
w; = v; +u; € D(y;) & ker fy.,, one immediately has ||v;|| < ||w;|| so that if {w;}; is bounded
then {v;}; is bounded too and moreover: v; € D(y;) and fuy, (v;) = v.

(3=4). Let v’ € lim; fuy, (D(y;)) C 7’ and let us suppose that lim; D(y;) = o exists.

By hypothesis 3) for every v" € 7’ there exists a sequence {v; € T,,/Y"}; such that lim; v; = v’
whose sequence of canonical lifting {v; € f;iyi (v)) ND(y;) € T}, Y }; is bounded.

Thus for a convenient subsequence of indexes {ip, }p, there exist v = limp, v;,, 7 = limy, TyihY
and (obviously) limy D(y;,, ) so that

v = li}an Vs, € li}rln D(y;,) = Uim D(y;)
K3

and
v = h]gn Uz/‘h, = hin fY*yih ('Uih) = fiz (v) € feax (h%nD(yi))

and in conclusion:
f*:vaisz(yi)) 2 li%rn Ty sy, (D(yi)) -

(4 = 1). Let {y;}; C Y be a sequence such that lim; y; = = and both limits 7 = lim; T,,Y
and 7/ = lim; T,/ Y exist in the appropriate Grassmann manifold.

The Grassmann manifold being compact, there exists a subsequence of indices (ip)p, such
that there exists also limp, D(y;,) =: 0.

Thus fy : Y — Y’ being a submersion, T Y = fysy, Ty, Y) = fay,, (Ty,, Y) and hence:

7 =lm T, Y’ =l Ty, V' =h;glfmyih< (0,)) = lim fuy, (D(yi,)) €

by the hypothesis 4)
- f*x<1i’IlnD(yih)) - f*z(hlgnTyih Y) = f*m(lignTin) = fua(7)

Then in conclusion f: W — W' satisfies the condition (D) at x € X <Y. O

Theorem below extends to the stratiffied case the previous Propostion 3.7 and allows to give
in Corollary 4.3 a sufficient analytic condition for Condition (D).

Theorem 4.4. Let f : M — M’ be a C' map between C' manifolds, W C M and
W' C M’ Whitney stratifications such that the restriction fyy : W — W is a stratified sur-
jective submersion.

Let X <Y be adjacent strata of W, x € X, Y' = f(Y) and y' = f(y) forallyeY.
Let us consider for fy : Y — Y’ the distribution D(y) =L (ker fy.y,T,Y) and the maps

hy 1Y =]0,00[ , hy(y) = min{||fy.ype (@Il : [lull =1},
Hy:Y = 0,400, Hy(y) = max{ll fylype, @)1 5 1]l =1,

The following conditions are equivalent:

1) For all {y;}; C Y such that lim; y; = « and both limits 7 = lim; T,,,Y" and 7" = lim; T, Y
exist, for every vector v' € 7' — {0}, every sequence of vectors {v; € T,;Y' — {0} }; such that
lim; v; = v’ has a bounded subsequence of canonical liftings {v;, = fY*yih\D(yih)( i) h -

2) For all {y;}; CY such that lim; y; = x and both limits 7 = lim; T,,Y and 7" = lim, T, Y’
exist, for every unit vector u' € 7', every sequence of unit vectors {uj € Ty Y'}; such that

lim; w}, = v’ has a bounded subsequence of canonical liftings {u;, = f;iy |D(ys (ui, ) tn -
in | D(Ys, .
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3) liminf, ., hy(y) > 0.
4) limsup, _,, Hy (y) < +oo.

Proof 1) = 2). Obvious.
Proof 2) =1). Ifv et - {O} and {v; € T,,)Y" — {0}}; is a sequence such that lim; v; = v/,

then v/ = Hv’ll € 7' and u 'H €Ty Y are unit vectors such that lim; u =

o ||v

By the hypothesis 2) the sequence of canonical liftings {u; := fY*inD(yi (uf)} admits a
bounded subsequence {u;, }5. So there exists K > 0 such that

155 ot (I < K andbemees 1167, 1 ()11 1L,
The canonical liftings {v;, := f;:yih ‘D(yih)(v;h)}h of the {v], }, are then bounded by:

i< K-, || < K - supHv K' < +o00.

loiall = 11£5Lye 1oy (2 L=

Proof 2) = 3). Let | = liminf,_,, hy (y) the minimum value of adherence of hy.

There exists then a sequence {y;}; CY such that lim; y; = z € X and lim; hy (y;) =1 € R.

By definition of each hy (y;), there exists a sequence of unit vectors {u; € D(y;) C T, Y}
such that each hy (y:) = || fywy|D(y:) ()| realizes the minimum norm defining hy (y;) (Definition
3.5).

There exists a subsequence {y;, }1, such that both limits exist:

limT7,, V=7 and limT, Y' =7,
% v % *h

Every u;, being a unit vector € D(y;,) — {0}, its image uj, = fy.y, Dy, )(ui,) € Ty Y —{0}
*h
is not zero (as well as for all images of vectors in D(y;, ) — {0}) and we can write:

/
Ugy,

-1
Uy, = fY*yih\D(yih)(u/ih) € D(yzh) and m = fY*y1h|D(ylh)(m) € D(ym)

For a suitable further subsequence (note it again {ij}5), there exists then the limit :

_ u'y, . ,
u hm — € hlgnTy;hY —{0}.

[lu's, |
It follows that:
i) The unit vector v/ = limy, ”Z,ilh” e 7 —{0}.
.. uih u/ ’U./
ii) Every vector el T~ fy*ylh \p(ybh)( T, ||) is the canonical lifting of the unit vectors T 7 -
Hence, by the hypothesis 2), there exists a bounded subsequence (let us denote it again)

{H ; H}h That is there exists K > 0 such that ||fY*y,\D(ylh)(Hu/ H)|| < K.
Therefore,
L= Tl = 155, g ()l < K - [l 1| = K - By (35,)

and in conclusion:

N : . 1
I = hmylgthy(y) = h%nhy(yi) = ll}l;nhy(yih) > > 0.

Proof 3) = 4). It follows immediately because by Remark 3.3.3 one has: Hy (y) = ﬁ(y)
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Proof 4) = 2). Let {y;}; CY be a sequence of points such that lim; y; = z, lim; T,,,Y = 7,
lim; Ty Y = 7" and let us fix v’ € 7/ a unit vector and a sequence of unit vectors {u; € T,/ Y'};
such that lim; u] = u'.

Since L := limsup,,_,, Hy (y) < +oo, then limsup; Hy (y;) < L is finite and so, by Definition
3.5 of each Hy (y;), the sequence

Hf;iyim(yi)(ug)ﬂ < Hy(y;) <L isbounded. O

We deduce then, as corollary, a sufficient condition for Goresky’s Condition (D):

Corollary 4.3. Let f : M — M’ be a C' map between C' manifolds, W C M and
W' C M’ Whitney stratifications such that the restriction fyy : W — W' is a stratified sur-
jective submersion.

Let X <Y be adjacent strata of W and x a point of X.

If liminf, ,, hy(y) > 0 or equivalently limsup, _,, Hy (y) < +oc then:

fw W =W satisfies the condition (D) at v € X <Y .
Proof. 1t follows immediately by 3) = 1) of Theorem 4.4 and 3) = 1) of Theorem 4.3. O

4.2. Distance functions between vector subspaces of an Euclidian space. We will give
a sufficient condition for Condition (D) in terms of all possible limits of the sequences of essen-
tial angles {o/(T,,Y,ker fy,,)}: between the vector subspaces T,,Y and ker f,,, of T,,M. We
introduce then the essential minimal distance between two vector subspaces.

Definition 4.6. Let V be a vector subspace of a Euclidian space E.
For every vector u € E let us define the distance of u from V as usual [22] by:
) = inf —v|l.
(w V) = inf fJu—v]
Such a minimum value inf,cy ||[u—v]| is realized when u — v is orthogonal to V', so precisely
when v = py (u) is the orthogonal projection of u on V. In particular:
= ] f — = —
5w, V) = inf flu—vll =l u—pr()
and if u # 0 we let a(u, V) := a(u,py(u)) denote the unoriented angle € [0, 7] between u and
pv (u).
Let us recall now some simple properties of the fonction §:

Remark 4.8. Under the above hypotheses we have:

1) [lu=pv) || =l ull sina(u,V) and |[lull =1 = [[u—pv(u)||l =sina(u,V);
2) [Ipv@) |l = |lull cosa(u,V) and [|ul|=1 = || pv(u)]|| =cosa(u,V);
JueV <= 6u,V)=0;

Do@V) = llall-6(:25,V), forall a€ E—{o};

5)limju; = v = lim;0(w;, V) = d(u,V);

6)lim;V; =V = lim;du,V;) = 6(u,V);

7)lim;u; = uwand lim;V; =V = lim;0(u;, Vi) = o(u, V).

Proof. 1),...,4) are immediate, while 5) follows thanks to: lim; py (u;) = py(u) and 6) by:
lim; py; (u) = py (u). The proof of 7) holds since the inequalities:

0(u, V) = llu=pv()ll < [lu—will+0(us, Vi) + [Ipv; (w:) — pv ()]
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0(ui, Vi) = i = pv, (il < fu—wll + 6w, V) + [lpv(u) = pv; (w)l|

imply
10(u, V) = 6(ui, Vi)| < fu—will + [lpvi (wi) — pv ()]

and since the hypotheses lim; u; = v and lim; V; = V imply lim; py, (u;) = py (u) . |

One usually considers as “distance” function between two vector subspaces U,V C FE, not
necessarily of the same dimension, the following :

(U, V) 5= sup 0w, V) = sup inf ||u—v]| .
wel , [Jul|=1 wel , ||ul|]=1 Y€V
Thanks to the equality (true since every || u || = 1):
5(U, V)= sup [lu—pv(u)|| =  sup sina(u, V) € [0,1],
uel , |ul|=1 uel , |[ul|=1

by denoting a(U, V') the maximum angle € [0, 7] between a vector of U and its projection on V,
one can write:

0(U, V) = sup sina(u,V) = sina(U,V).
uelU
One finds then:
Remark 4.9. The function §(U, V) satisfies the following properties:

1)6(U,V)=0 <<= UCV;
2)6(V,U)=1 <= 3FoveV-U : vLlU (this holds if U CV is strictly contained);
3) 6(U, V) # §(V,U) is not symmetric in general;
4)ull=1 = 6(L(u),V)=4(u,V) where L(u) is the vector subspace spanned by u;
5)6(a,V) < 2|la—0b||+ (b, V) for every unit vectors a,b € E;
6) 6(a,U) 26(a, V) 4+ 6(V,U) for every unit vector a € E ;
7)1lim; U; = U, and lim; V; =V = lim; 6(U;,V;) = 6(U,V).

<
<

Proof. 1),...,4) are immediate.
The proof of 5) follows easily by d(a, V) = ||a — py(a)|| and
lla —pv(a)]| <la =0l + b —pv (O)I| + [lpv (b) —pv(a)ll < [la =0l +6(b,V)+I[b—all.
The proof of 6) follows similarly, since:
8(a,U) = [la = pu(a)l| < lla —pv(a)ll +lpv(a) = pupv(@))l| + [lpu(pv(a) = pula)l] =
6(a, V) + 6(pv(a),U) + llpu(a = pv ()l < 6(a, V) +6(V,U) +|la —pv(a)|| =
26(a,V)+6(V,U).
To prove 7), let u be the unit vectors € U such that §(U, V) = ||u — py (u)|| = d(u, V)
Since lim; U; = U then lim; py, (u) = u, so by Remark 4.8.7 and since every py,(u) € U; one

has:
(U, V) = 6(u,V) = limd(py,(u),Vi) < limé(Us,Vi).
Simalrly if ; is the unit vector € U; such that 6(U;, V;) = ||lui — pv; (uw;)|] = 6(u;, Vi) (taking
a subsequence if necessary), there exists lim; u; = a € U and by 5) one finds:
6(Ui, Vi) = 6(ui, Vi) < 2l|ui —all + 6(a, Vi) < 2[[u; —al| + 6(U, Vi)

hence also that :
lim6(U;, Vi) < 2 lim|[[u; — al| + lmd(U,V;) = 6(U,V). O
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In order to define a finer “distance” §'(U, V) between U and V', we will be interested in the
“minimum essential angle”, o/(U, V), between U and V, a notions which needs the following
more detailed definition.

Definition 4.7. Let U,V C FE two vector subspaces not necessarily of the same dimension.

If U = {0} or V = {0} let us define ¢’(U, V) = 0. Suppose then U # {0} and V # {0}.

If UNV = {0}, every unit vector u € U does not lie in V' so || u —py(u) || > 0 and using the
previous Remark 4.8.1) one can simply define:

(U, V) = l|u—py(u)|] = min sina(u,py(u)) € ]0,1],

min
uel , [|lul|=1 uel , [Jul|=1

and denoting o/ (U, V') the minimum positive angle between a vector of U and its projection on
V', one can write

8§ (U, V) =sind' (U, V).
Thus using that o/ (U, V) = o/(V,U), one has:
Remark 4.10. If U,V # {0}, then:
Unv={0} = UZV and VZU = ¥§UV) =4V, U)>0. 0O

Our definition 4.7 of §'(U, V), in the case U # {0} and V # {0} and U NV = {0}, coincides
with the definition given in [8] (p. 534, where it is denoted by 6(U, V)).
On the other hand the definition in [8] in the case U NV # {0} satisfies 6(U, V) = 0.
This is not convenient enough for our aims, so we have to extend it in a finer way:
Definition 4.8. If U NV # {0}, we consider their essential mutual subspaces:
U :=1LUnNV;U) and V' :=1L(UNV;V),
that easily satisfy U’ N V' = {0} and define

y(U, V) = 8 ULV = [|v —py ()| = sina (U, V')

min
uweu’ , ||u'|l=1
and call o/ (U, V) := o/ (U’, V") the minimum essential angle between U and V and similarly we
call §'(U, V) := §'(U’', V') the minimum essential distance between U and V.
Definition 4.8 and Remark 4.9, obviously imply:

Remark 4.11. For every two arbitrary vector subspaces U,V of E :
1) UNV={0} <= U=Uand V' =V <+ U=Upor V=V.
2) 6" (U, V) :=6U", V") =6V U)=0¢WV,U). O

Thus Definition 4.8 extends Definition 4.7 and allows us to obtain that the fonction:
§ : G(E) x G(E) — [0,1] , &(U,V):=8U" V)

is a symmetric function, where G(E) denotes the Grassmann manifold of all vector subspaces of
E. Moreover we have:
Remark 4.12. For every pair of vector subspaces U,V of E:

1) U V)=0 <= UCVo UDV.

2) If dimU=dimV; ¢¢{UV)=0 <= U=V.

3) U V)=46U"V)=§U,V)=46UV".
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Proof 1), 2). Tt follows easily since: U C V if and only if U’ = {0} and then ¢'(U,V) = 0.

Proof 3). Since V = (UNV )&V’ is an orthogonal sum, for every w’ € U’ its projection py (u’)
on V decomposes into the orthogonal sum py (u') = punv (u') + pyv+ (v).

Moreover, since u/, lying in U’, is orthogonal to U NV, one has pyny(v/) = 0 and
py (u) = pv (u').

By definition 4.8,

yUv) = JULV) = min f[u’ —py (W) ] .
weu’ , ||lu ||=1

Since U'NV CUNU' NV =0N{UNV)={0}, then U'NV = {0} and
y(ULv) = lu" —pv @)l .

min
uw' €U’ ||u||=1
Since py (u') = py(u') for every «’' € U’ one finds: §'(U,V) := 46" (U, V') = 4§ (U, V).
Finally, ¢’ being a symmetric function (Remark 4.11.2), this last equality also implies:
S, v) = §wu,vh = §WVvu) =8V, U) = §U V). O
One sees moreover easily that 8’ is a decreasing function with respect to both variables U, V.

As one can see with simple examples, §’ is not a metric also when restricted to a family of
subspaces of the same dimension, except for the 1-dimensional case.

4.3. Sufficient conditions and geometric meaning. With the same hypotheses and nota-
tions as in §4.1 and §4.2, if U,V are the two vector subspaces U := T,Y and V := ker f,, of
E :=T,M, the essential mutual subspace U’ is:
U = [1,Y] =L (T,Y Nnker fu; T,Y) = L (ker fy.,; T,Y) =Dl(y).
We can then define (using also Remark 4.12.3) the function
Sy 1Y = (0,00 , dy(y):=8(T,Y, ker fu) = &' (D(y), ker fiy)

and we have:

Theorem 4.5. Let f : M — M’ be a C' map between C' manifolds, W C M and
W' C M’ Whitney stratifications such that the restriction fyy : W — W' is a stratified sur-

jective submersion.
Let X <Y be strata of W and x € X and consider the function dy defined by

dy 1Y = [0,00] , Oy(y) =08 (T,Y, ker f) = 8" (D(y), ker fuy) -
If f : M — M’ is a submersion at x, the following conditions are equivalent:
1) liminf,_,, dy (y) >0 .

2) For every sequence {y;}; CY such that lim;y; = ¢ € X and lim; D(y;) = o exists, for
every unit vector u € lim; D(y;) and every sequence {u; € D(y;)}i, of unit vectors converging to
u = lim; u;, there exists a subsequence of images {u;, = fyy,, (ui,)}n such that infy, [[ug || >0.

3) For every sequence {y;}; CY such that lim;y; = x € X and lim; fy ., (T,,Y) = 7' exists,
for every v' € limy fy ., (T,,Y) — {0}, every sequence {v] € fy .y, (T},,Y) —{0}}; converging to
v =lim; v}, has an upper bounded subsequence of canonical liftings {v;, = f;iy D(ys )(vgl Vi

ip, ip v

Proof (1 = 2). Let suppose that 2) does not hold.

Then, for a sequence {y;}; C Y, lim;y; = « € X, lim; D(y;) = o and there exists a unit
vector u € lim; D(y;) which is a limit of a sequence of unit vectors {u; € D(y;)}; such that
lim; || fy sy, (wi)|| = 0 and hence necessarily lim; fy .y, (u;) = 0.
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As f is C' at z, one has:

fez(u) = fig(limu;) = lim fio, (u;) = 0 that is: u € ker fi.

Since, for every i, D(y;) Nker f,,, = {0} and dy (y;) is the essential minimal distance
Oy (yi) = 0"(D(ya), ker fuy,) = O(uj, ker fuy,),

min
u;€D(yi) , ||uf [|=1
and as u; € D(y;) by Remark 4.9.6, we can write:
0 <0y (yi) = 6" (D(ys), ker fuy,) < 0(us, ker fiy,) < 26(us, ker foz) + 0(ker fop, ker fuy,) -
Since lim; u; = u, and u € ker fi., (by Remark 4.8.5) we have: lim; 6 (u;, ker f.,) = 0.
By hypothesis f : M — M’ is a submersion at x! so by Proposition 3.5 and Remark 4.9.7:
li¥n ker f.,, =ker fiy and lign O(ker fiz, ker fiy,) =0.

These two limits being 0, one concludes that lim; dy (y;) =0 which implies
lim inf dy (y) =0
y—}m
in opposition to the hypothesis 1).

Proof (2=-1). Let us suppose in opposite that liminf, ., éy(y) = 0.
There exists then a sequence {y;} C Y such that

limy, =z and lim &' (D(y;), ker fipy,) = limdy(y;) = 0.

Being ¢’ the essential minimal distance and D(y;) Nker f.,, = {0} for everi 4, there exists then
a sequence of unit vectors {u; € D(y;)}; realizing such a minimal essential distances, i.e. such
that:
lim §(u;, ker fi,,) =0.
K2

By Remark 4.9.6) one has:
(%) : O(uj, ker fip) < 20(uj, ker fiy,) + d(ker fuy,, ker fiz).
Now since f is C! at z, lim; ker f.,, C ker f., (Remark 3.1) so by Remarks 4.9.7 and 4.9.1

one has*:
limd(ker fiy,, ker fip) = o(limker f.,, ker f.;) = 0.

Then since one also has lim; 6 (u;, ker f,,,) = 0 by the () above using Remark 4.8.5.(<) one
finds:
lim 6 (u;, ker fiop) =0.
Every u; € D(y;) being a unit vector, there exists a subsequence of indexes {ij}; such that
both limits limy D(y;,,) = o and u = limy, u;, € limg D(y;, ) exist.
Then by Remark 4.8.3 one has:
O(u, ker fip) = lilgn O(ui,, ker fip) =0  and hence  u € ker fiy.

In conclusion, the sequence of images u;, := fiy, (ui,) of the unit vectors {u;, € D(y;, )}k
satisfies:

Hf f is not a submersion at @, kerfiz O lim;ker fuy,, strictly and by Remark 4.9.2:
O(ker fiq,lim;ker fiy,) = 1.
2Here we did not need the hypothesis: f: M — M’ is a submersion at z.



200 CLAUDIO MUROLO

and cannot have a subsequence such that infy, [[u, || > 0.

Proof. (3 < 2). If v/ € lim; fy.y, (T,,Y) — {0} and {v] € fy.y, (T,,Y) — {0}}; is a sequence

such that lim; v; = v’, by Remark 3.3.1) the unit vectors u; := % of the canonical liftings
v; = f;iym(yi)(vg) € D(y;) — {0} of the v} satisfy:
v || = || o3 |l _ il
K3 - - .
| Fysyano @l 11 Frraey: ()]

Hence, being {v}}; converging to v’, the sequence of canonical liftings {v;}; has an upper
bounded subsequence {v;, }, if and only if the sequence of images {u} := fy.y, (u;)}; admits a
subsequence {uj, := fy.y, (ui,)}n such that infy, [[uj, [| >0. O

By recalling the definition 3.5 of the fonctions hy and Hy with the same proof as above,
Theorem 4.5 can be simply and analytically stated as follows:

Corollary 4.4. Let f : M — M’ be a C' map between C' manifolds, W C M and
W' C M’ Whitney stratifications such that the restriction fyy : W — W' is a stratified sur-
jective submersion.

Let X <Y be strata of W, x € X and dy the function:

by Y 50,000 dv(y) = F(TYiker o) = (D(y), ker fuy)
If f : M — M’ is a submersion at x, the following conditions are equivalent:
1) liminf,_,; dy(y) >0 ;
2) liminf, ., hy (y) > 0 ;
8) limsup,,_,, Hy (y) < +o0 . O

We deduce then the following analytic sufficient condition for fyy, : W — W' to satisfy
condition (D) at x € X <Y

Corollary 4.5. Let f : M — M’ be a C' map between C' manifolds, W C M and
W' C M’ Whitney stratifications such that the restriction fyy : W — W' is a stratified sur-
jective submersion.

Let X <Y be strata of W andx € X. If f : M — M’ is a submersion at x, we have:

liminf 0y (y) >0 = fiv : W — W satisfies condition (D) at x € X <Y.
Yy—x

Proof. The proof follows easily by Theorem 4.5 (or Corollary 4.4) and Corollary 4.3. |

In Theorem 4.5 and its Corollaries 4.4 and 4.5, we gave sufficient conditions to obtain condition
(D) at apoint z € X <Y using a function dy (y) = ¢’ (T, Y, ker f.,) = ¢'(D(y), ker f,) depending
on the stratum Y and intrinsically defined with respect to the point x € X C Y.

We can also obtain a similar result using a function depending on Y and z, by setting this
time U := T,,Y and V :=ker f,,. In this case the essential mutual subspace U’ is:
U' = [1,Y] =L (T,Y Nker fuy ; T,Y)
and we can define the function:
Oy Y = [0,00[ Oy (y) == 0'(T,)Y, ker fiy) -
A priori, [T,)Y]" is not equal to D(y) and dy,;(y) is not equal to ¢'(D(y), ker f.z).
Later on we will denote D’(y) for [T,,Y]'.
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Proposition 4.9. Let f : M — M’ be a C* map, W C M and W' C M’ Whitney stratifications
such that the restriction fyy : W — W' is a stratified surjective submersion.

Let X <Y be strata of W, x € X and {y;}; CY a sequence such that lim; y; = x and both
limit below exist. If f: M — M’ is a submersion at x, then:

liminf dy . (y;) = 0 = lim inf dy (y;) =0 .

Proof. For every i € N, let D'(y;) := [T,,Y]" and D(y;) be the vectors subspaces of T,,Y:
D'(yi) = L (T, Y (ker fuy; T, ¥)  then D'(yy) N ker fu, = {0}
D(y,) =L (T, Y Nker fu, ; Tp,,Y) then D (y;) Nker f.,, = {0}.
By considering possibly subsequences we can suppose that both the limits exist:
o= lignD’(yi) and o= lilm D(y;) -
and since f : M — M’ is a submersion at z, lim; ker f,,, = ker f., (Proposition 3.5) and ¢’ = o.

By Remark 4.12.3 and being every dy,;(y;) = 6'(D’(y:), ker f.,) a minimal essential distance,
there exists, for every 4, a unit vector v; € D'(y;) C Ty, Y such that:

5Y,m(yi) = 5'(D'(yi),ker Jex) = 5(“;» ker fip) = 0(vs, ker fip)

min
ui€D’(yi) , ||uf ||=1
and (by taking possibly a subsequence) we can also suppose that there exists lim; v; = v € o”.

Similarly there exists a unit vector w; € D (y;) C T,,Y such that:

6Y(yz) = 6,(2) (yi)7ker f*yz) = min J(UM ker f*yq) = (5(10“ ker f*?h)
wi €D (yi) , |Jus |[=1 ' '

and such that there exists lim; w; = w € o.
Proof (=). If liminf; dy 5 (y;) = 0, by extracting possibly a subsequence, one can write:
0 = limdy,,(y;) = limd(v;, ker fop) = 0(v, ker fi) andso: v € ker fi,.
Let p; : T,,,Y — D(y;) be the orthogonal projection on D(y;) and w; := p;(v;) € D(y;). Then:
limw; = limp;(v;) = p,(v) = v as wveEd =o.
K3 3
Since w; € D (y;) and by Remark 4.9.6) we find:
Oy (yi) = o(wi, ker fup,) < 0(wi, ker fuy,) < 26(ws, ker frp) + O(ker fig, ker fiy,)
and being lim; w; = v € ker f,, and lim; ker f,,, = ker f., we conclude:
0 < limdy(y;) < 26(v,ker fip) + d(ker fig,limker f,,,) =04+0=0.
Proof (<). Tt is completely dual to the proof (=) and it could be omitted.
If liminf; §y (y;) = 0, by extracting possibly a subsequence, one can write:
0 =lim oy (y;) = lim6(w;, ker f.y,) = 6(w, limker f,y,,) andso: w € limker f,,, Cker f.,.
Let p} :T,,,Y =D’ (y;) be the orthogonal projection on D’(y;) and 6; := p}(w;) € D’'(y;). Then:
lim6; = limp(w;) = por(w) =w as weo=0.
Since 6; € D'(y;) and by Remark 4.9.6) we find:
Ovo(yi) = O(wi,ker fop,) < 6(0;,ker fup,) < 20(6;,ker fuy,) + 0(ker fiy,, ker fiz)
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and being lim; 0; = w € lim; ker f,,, = ker f,, we conclude:
0 < limdyq(y;) < 26(w,limker f,,) + d(limker f,,, ker for) =04+0=0. O

Proposition 4.10. With the same notations as in Theorem 4.5 and Proposition 4.9:

lim inf dy . (y) >0 <= lim inf dy(y) > 0.
y—z y—z

Proof. Both implications follow by Proposition 4.9 using that liminf,_,, §(y) is the minimum
value of adherence of any function §. 0

Using the specific (to ) function dy,, instead of the intrinsic (by x) dy, Corollary 4.4 gives:

Theorem 4.6. Let f : M — M’ be a C' map between C' manifolds, W C M and
W' C M’ Whitney stratifications such that the restriction fyy : W — W' is a stratified sur-

jective submersion.
Let X <Y be strata of W, x € X and by, the function defined by

Sy :Y = (0,00 , Oyu(y) =8 (T,Y ker fui) = 8 (D' (yi), ker fuz) -
If f : M — M’ is a submersion at x, the following conditions are equivalent:
1) liminf, ,; dy,+(y) > 0 ;
2) liminf, ., hy (y) >0 ;
8) limsup,,_,, Hy (y) < +o0 .
Proof. (1 < 2). It follow by Proposition 4.10 and Corollary 4.4.
Proof. (2 < 3). It is formally the same of the proof of Theorem, 4.5. O

By Theorem 4.6 and Theorem 4.4 (or Corollary 4.3) one has:

Corollary 4.6. Let f : M — M’ be a C' map between C' manifolds, W C M and
W' C M’ Whitney stratifications such that the restriction fyy : W — W' is a stratified sur-
jective submersion.

For every strata X <Y of W and x € X we have:

1ini>inf dya.(y) >0 = fn: W =W satisfies condition (D) at x€ X <Y . O
Yy x

Geometric meanings. The analytic conditions liminf, ., dy (y) > 0 (in Theorem 4.5 and
Corollary 4.4), and liminf,_,; 0y »(y) > 0 (in Theorem 4.6 and Corollary 4.6) for fyy : W — W'
at x € X <Y, have respectively the following geometric meanings:

“No limit of essential subspaces lim,,_,, D (y;) has a common direction with lim; ker f,,,”.

“No limit of essential subspaces limy, . D'(y;) has a common direction with ker f.,”.

So, in Exemple 2.1 for f : R? x {1} — {0} x R x {0}, f(a,b,1) = (0,b,0) and = = (0,0,1) one
has:

lim ker f., = ker f., = L(1,0,0) and for both choices of Y’ D(y) =D'(y) = T,,Y.

Yy—x

Hence the limits of the essential subspaces D(y) and the limits of the test function dy (y) are:
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1) For W =Y U {z} = {y = (a,tan(a),1) : @ > 0} U {z}, when Condition (D) holds (Fig. 1):

. , 1
lim D(y) = th(1 W,o) — L(1,1,0) ¢ L(1,0,0)

y—x a—0 " cos?

and
1 2
ylig;dy(y) = lim sinarctan co@) — g > 0.

2) For W =Y U{z}={y = (a,a? 1) : a > 0}U{z} when Condition (D) does not hold (Fig. 2):

lim D(y) = lim L(1,2a,0) = L(1,0,0) € L(1,0,0)
a—

Yy—x

and

lim dy (y) = lim sinarctan (2¢) = 0. O

y—x a—0
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