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ON STRATIFIED MORSE THEORY: FROM TOPOLOGY TO

CONSTRUCTIBLE SHEAVES

HELMUT A. HAMM

Abstract. Stratified Morse theory is the generalization of usual Morse theory to functions on
stratified spaces. There are versions for the topological type, homotopy type or (co)homology.

A standard reference is the book of Goresky-MacPherson which primarily treats the topolog-

ical type. Corresponding results about the homotopy type or cohomology may be expected
to be consequences but in fact usually one needs some extra information, in particular in the

case of cohomology of constructible sheaves, as we will see in this paper.

Introduction

This paper is based on a talk given at the conference ”Geometry and topology of singular
spaces” (10/29 - 11/02, 2012) in Luminy/Marseille, France, on the occasion of David Trotman’s
60th birthday.

We will study the relation between stratified Morse theory concerning the topological type
and cohomology, including the cohomology of constructible sheaves. It is quite instructive to
look at classical Morse theory first, because already here one has to pay attention - in this case
the geometry is so clear that it may seem pedantic to emphasize this point but one sees where
one should be careful in more general situations.

Stratified Morse theory is the generalization of usual Morse theory to functions on stratified
spaces. A standard reference is the book of Goresky - MacPherson [GM2]. The transition from
topology to constructible sheaves in full generality is indicated there in an appendix ([GM2] II
6.A, p. 222-224). Cf. [Ms], too.

The main purpose of the present paper is to make this step more explicit, showing that the
setup in [GM2] is indeed strong enough to enable the transition, with some extra care.

In fact there are more direct ways to get the statements about cohomology of constructible
sheaves: directly, see Kashiwara-Schapira [KS] or Schürmann [S], or using some weaker version
of stratified Morse theory which is sufficient for this purpose [H2].

In special cases one can argue more simply, as we will see. This holds especially for singular
cohomology, or for homotopy groups which are discussed in [GM2]. Even in this case, however,
one has to be careful, too, and we take the opportunity for some corresponding comments.
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We also take the opportunity to adjust the technique of Moving the Wall which has been
developed and used by Goresky - MacPherson, see [GM2] I 4.3, p. 71f.

1. Classical Morse theory

We start with usual Morse theory which is well-known, see e.g. [Ma]. We treat this case
because we want to stress some point which we will encounter in the general case, too, it can be
more easily discussed in this simple context.
In particular, we will see that it is not completely true that the usual statements about the
topological type imply the ones about homotopy or cohomology groups.

Let M be a C∞ manifold of dimension n and f : M → R a C∞ function. Let us assume that
f has isolated critical points which are non-degenerate. Put Ma := {p ∈ M | f(p) ≤ a}. Let
a < b be regular values, f−1([a, b]) compact. We want to compare Ma with Mb.

First suppose that f−1([a, b]) contains no critical point. Then we have that Mb is homeomor-
phic (and even diffeomorphic) to Ma.

As a consequence we have that Ma and Mb have the same homotopy type.
Furthermore, we obtain that Hk(Mb;Z) ' Hk(Ma;Z) for all k.
More precisely: if h : Ma →Mb is a homeomorphism we obtain that

h∗ : Hk(Mb;Z)→ Hk(Ma,Z)

is bijective for all k.
In fact we want that it is the inclusion i : Ma → Mb which induces bijective mappings for

all k. This is needed e.g. if one wants to reformulate the cohomological result by saying that
Hk(Mb,Ma;Z) = 0 for all k; similarly for homotopy groups.

But this is not obvious, the best is to go back to the proof and show that i ∼ h (homotopic).
This implies that i is a homotopy equivalence, i.e. Ma is a weak deformation retract of Mb (see
[Sp] 1.4, p. 30), which is in turn sufficient to show that Hk(Mb,Ma;Z) = 0 for all k.
Furthermore, we want to have that Hk(Mb,S) ' Hk(Ma,S) if S is a locally constant sheaf (of
abelian groups) on Mb. Here the situation is even worse: h induces isomorphisms

Hk(Mb,S)→ Hk(Ma, h
∗S),

and we cannot simply replace h∗S by S|Ma. But if i is a homotopy equivalence we have that
i∗ : Hk(Mb,S)→ Hk(Ma,S) is an isomorphism for all k, see [H1] Theorem 2.6.

So let us recall how one can obtain the homeomorphism h: Choose a vector field v on M with
compact support such that dfx(v(x)) = b − a for x ∈ f−1([a, b]). Let σ be the corresponding
flow, ht(p) := σ(p, t), 0 ≤ t ≤ 1. Then (ht) defines a one-parameter family of homeomorphisms
Ma → Ma+t(b−a) with h0 = id. In particular, h := h1 is a homeomorphism of Ma onto Mb.
Since Ma+t(b−a) ⊂Mb, 0 ≤ t ≤ 1, we have that i is homotopic to h.

So Ma is, in particular, a weak deformation retract of Mb. In fact, Ma is even a strong
deformation retract of Mb (see [Sp] loc. cit.). This is not completely obvious: Note that h−1

cannot be a retraction (except for the trivial case Ma = Mb) because otherwise h−1 ◦ i = id
which would imply that i is bijective.
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But (Mb,Ma) is a polyhedral pair, cf. [Mu] Theorem 10.6, p. 103, so Ma is a strong defor-
mation retract of Mb if and only if Ma is a weak deformation retract of Mb : This equivalence
follows from a homotopy extension property, cf. [Sp] Cor. 1.4.10, Theorem 1.4.11, p. 31, which
holds, in particular, in the case of polyhedral pairs, cf. [Sp] Cor. 3.2.5, p. 118.

That we have a strong deformation retract can in our case also be shown directly using the
flow σ above, of course.

Now we pass to the case where f−1([a, b]) contains exactly one non-degenerate critical point
p and λ is defined to be the corresponding index. Then we have that Mb is homeomorphic to a
space obtained from Ma by attaching a handle of index λ, i.e. Dλ ×Dn−λ along Sλ−1 ×Dn−λ.
Here we have the same problem when passing to cohomology: We want that

Hk(Mb,Ma;Z) ' Hk(Dλ ×Dn−λ, Sλ−1 ×Dn−λ;Z) ' Hk(Dλ, Sλ−1;Z) ' Z

if k = λ and = 0 if k 6= λ.
So we look at the proof more closely. It is sufficient to show that there is a space X with

Ma ⊂ X ⊂ Mb such that there is a homeomorphism h : X → Mb which is homotopic to the
inclusion i and such that X is obtained from Ma by attaching a handle of index λ:
Then Hk(Mb, X;Z) = 0 for all k, hence Hk(Mb,Ma;Z) ' Hk(X,Ma;Z). By excision,

Hk(X,Ma;Z) ' Hk(Dλ ×Dn−λ, Sλ−1 ×Dn−λ;Z) ' Z

if k = λ and = 0 if k 6= λ.
Such a space X can be found as follows: Choose a suitable closed neighbourhood U of p, a

and b sufficiently close to the critical value. Put X := Ma ∪ (U ∩Mb). Then

(U ∩ {a ≤ f ≤ b}, U ∩ {f = a})

is homeomorphic to (Dλ ×Dn−λ, Sλ−1 ×Dn−λ).

If we look at a locally constant sheaf S instead of Z we do not meet new difficulties: As before
we can deduce Hk(Mb, X;S) = 0 for all k. Then, by excision:

Hk(X,Ma;S) ' Hk(U ∩ {a ≤ f ≤ b}, U ∩ {f = a};S),

and U is contractible, which implies that S|U is isomorphic to the constant sheaf Sp (as usual,
Sp denotes the stalk of S at p). So Hk(Mb,Ma;S) ' Sp for k = λ and = 0 if k 6= λ.

2. Decomposed homotopy equivalence

Now let us prepare the case of stratified Morse theory.

Let I be a partially ordered set (denoted by S in [GM2] I 1.1, p. 36). Let X be an I-
decomposed space, i.e. a topological space with a locally finite decomposition (= partition) into
locally closed subsets S(i), i ∈ I, such that S(i) ∩ S̄(j) 6= ∅ ⇔ i ≤ j. Similarly let Y be an
I-decomposed space with subsets R(i). An I-decomposed map f : X → Y is a continuous map
such that f(S(i)) ⊂ R(i) for all i. See [GM2] I 1.1, p. 36. A homotopy F between I-decomposed
maps f0, f1 : X → Y is a homotopy such that F (S(i) × [0, 1]) ⊂ R(i) for all i.

We will fix I and speak of decomposed instead of I-decomposed.

It is now straightforward to define a decomposed homotopy equivalence and a decomposed
weak/strong deformation retract.
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An important ingredient in [GM2] is the technique of Moving the Wall which is based on
Thom’s first isotopy lemma. In fact there are two versions of Moving the Wall in [GM2], here
we will concentrate on the first one. The moving is parametrized by a parameter t. In the corre-
sponding theorem ( [GM2] I 4.3, p. 72) the parameter space is R. However, in later applications
obviously [0, 1] is taken as a parameter space. Therefore it is appropriate to modify Theorem
I 4.3 of [GM2] as follows. Note that we weaken the properness hypothesis, too. In order to
facilitate the comparison we use the notations of [GM2]:

Let M,N be smooth manifolds, f : M → N smooth, Z ⊂ M a Whitney stratified closed
subset, see [GM2] I 1.2, p. 37. Then Z is a space which is decomposed by the strata; so I is
the corresponding index set. Subsets of Z are naturally decomposed, too. Let −∞ ≤ α < 0,
1 < β ≤ ∞, Y ⊂ N×]α, β[ a closed Whitney stratified subset such the projection on the second
factor yields a stratified submersion π : Y →]α, β[, cf. [GM2] I 1.5, p. 41. Assume that for
each (p, t) ∈ Y with p ∈ f(Z), t ∈ [0, 1], and each non-zero characteristic covector λ ∈ T ∗pN
of f |Z : Z → N , we have λ|TpSt 6= 0, where S is the stratum of Y which contains (p, t) and
St = π−1(t) ∩ S. Recall that a covector λ ∈ T ∗pN , p ∈ N , is characteristic if and only if for all

z ∈ Z ∩ f−1(p) we have that f∗λ|TzS = 0, where S is the stratum of Z which contains z, see
[GM2] I 1.9, p. 46, together with [GM2] I 1.8, p. 44.

Furthermore assume that the mapping (Z×]α, β[)∩ (f × idR)−1(Y )→]α, β[ given by the pro-
jection onto the second factor is proper.
Put Yt := {q ∈ N | (q, t) ∈ Y }.

Now we have the following modified version of Moving the Wall ( [GM2] I Theorem 4.3), cf.
[S] Lemma 4.3.5, p. 267, too:

Theorem 2.1: Under these hypotheses there is a decomposed homeomorphism

h : Z ∩ f−1(Y0)→ Z ∩ f−1(Y1)

which preserves the Whitney stratification of both sides and is smooth on each stratum.

Note that these spaces must be compact!

Proof. We may assume that α, β are arbitrarily near to 0 resp. 1. Then we may assume that
the assumption about characteristic covectors holds for all t ∈]α, β[ instead of t ∈ [0, 1], by
continuity. This means that we have the hypotheses of [GM2] loc. cit. with ]α, β[ instead of R,
except for a weaker properness assumption.

Since ]α, β[ is diffeomorphic to R we may reduce to ]α, β[= R by base change.

Now proceed similarly as in the proof loc. cit.:

Our hypothesis guarantees that f × idR|Z×R is transverse to Y in the stratified sense (cf.
[GM2] I 1.3.1, p. 38), hence (Z × R) ∩ (f × idR)−1(Y ) inherits an induced stratification, and
that π ◦ (f × idR) : (Z×R)∩ (f × idR)−1(Y )→ R (projection onto the second factor) is a proper
stratified submersion. Then apply Thom’s first isotopy lemma, see [GM2] I 1.5, p. 41, with R
instead of Rn, f = canonical projection. �

In order to handle certain situations where we get difficulties with the compactness assump-
tion involved above it is useful to have
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Remark 2.2: Suppose moreover that there is a closed subset Y+ of N such that Y+×]α, β[ is a
union of strata of Y of the form S×]α, β[. Then we may achieve that h|Z∩f−1(Y+) is the identity.

In order to prove this we need the following complement to Thom’s first isotopy lemma ([M],
[GM2] I 1.5, p. 41):

Theorem 2.3 (see [M] if X+ = ∅): Suppose that M is a smooth manifold and that X ⊂M×R
is a Whitney stratified subset. Let f : X → R be the restriction of the projection onto the second
factor. Let X+ be a closed subset of M such that X+ × R is a union of strata of X of the form
S × R. Assume that f is a proper stratified submersion. Then there is a stratum preserving
homeomorphism H : f−1({0})× R→ X such that:

(1) f(H(p, t)) = t for p ∈ f−1({0}), t ∈ R,
(2) H((q, 0), t) = (q, t) for q ∈ X+, t ∈ R.

Proof. The isotopy lemma is proved in [M] using a vector field which is constructed inductively
with respect to the strata. On X+ × R choose the obvious one, using control data for X+ × R
which come from control data for X+. �

Because of the difficulty when passing from topological type to homotopy or cohomology
groups mentioned in the first section a statement about the homotopy type is appropriate, too:

Theorem 2.4: Beyond the hypotheses of Theorem 2.1 suppose that Yt ⊂ Y1 for 0 ≤ t ≤ 1.
Then Z ∩ f−1(Y0) is a decomposed weak deformation retract of Z ∩ f−1(Y1). Cf. [S] loc. cit.,
too.

Proof. The proof of Theorem 2.1 shows that we may assume that ]α, β[= R and that the as-
sumption about covectors holds with t ∈ R instead of t ∈ [0, 1]. So we can apply Thom’s isotopy
lemma to pr : (Z ×R)∩ (f × idR)−1(Y )→ R, where pr is the projection onto the second factor,
and get a homeomorphism

H : pr−1({0})× R→ (Z × R) ∩ (f × idR)−1(Y )

such that f(H(p, t)) = t for p ∈ pr−1({0}), t ∈ R .
We may achieve that H(p, 0) = p for all such p because H is obtained by integration of a vector
field. Note that pr−1({0}) = (Z ∩ f−1(Y0))× {0}, and H can be written as

H((q, 0), t) = (H ′(q, t), t)

with a continuous mapping H ′ : (Z ∩ f−1(Y0))× R→ Z. Then

H ′(q, t) ∈ Z ∩ f−1(Yt) ⊂ Z ∩ f−1(Y1)

for t ∈ [0, 1]. Put ht : Z ∩ f−1(Y0)→ Z ∩ f−1(Y1) : ht(q) := H ′(q, t). Then H ′ yields the desired
homotopy between the the inclusion h0 and a homeomorphism h1. �

We have a remark similar to Remark 2.2:

Remark 2.5: Suppose moreover that Y+ is a closed subset of N such that Y+×]α, β[ is a
union of strata of Y . Then there is a decomposed homotopy H ′ between the inclusion and a
homeomorphism h : Z ∩ f−1(Y0)→ Z ∩ f−1(Y1) such that H ′(p, t) = p for all p ∈ Z ∩ f−1(Y+).

The proof is as before but apply Theorem 2.3 instead of the usual Thom’s first isotopy lemma.
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It is not clear whether one can get a decomposed strong deformation retract by this method.

We need some preparation for dealing with constructible sheaves.

A constructible sheaf on the decomposed space X =
⋃
i S(i) is a sheaf which is locally con-

stant on each S(i). A constructible sheaf complex is a nonnegative complex of sheaves whose
cohomology sheaves are constructible on X. We do not impose any finiteness condition.

We have the following general fact: If S is a sheaf complex on a topological space Y and
f : X → Y is continuous we get induced homomorphisms Hk(Y,S)→ Hk(X, f∗S).
In particular, if f is a homeomorphism it induces isomorphisms.
Here Hk denotes the k-th hypercohomology group.

Theorem 2.6: Let S be a constructible sheaf complex on the decomposed space Y .

a) Let f0, f1 : X → Y be decomposed maps which are decomposed homotopic. Then
f∗0S and f∗1S are quasiisomorphic, and the mappings f∗i : Hk(Y,S) → Hk(X, f∗i S),
i = 0, 1, coincide (if we identify Hk(X, f∗i S), i = 0, 1).

b) If f : X → Y is a decomposed homotopy equivalence we have that the mappings

f∗ : Hk(Y,S)→ Hk(X, f∗(S))

are isomorphisms.
c) In particular, if X ⊂ Y is a decomposed weak deformation retract we have that the

mappings Hk(Y,S)→ Hk(X,S) are isomorphisms for all k.
d) If (X,X1) and (Y, Y1) are pairs of spaces and X resp. X1 is a decomposed weak defor-

mation retract of Y resp. Y1 we have that Hk(Y, Y1;S) ' Hk(X,X1;S) for all k.

Proof. a) The case where S consists of a single sheaf can be attacked in an elementary way, cf.
[H1] Theorem 2.2, 2.7. In general we argue as follows: Let p : X × [0, 1]→ X be the projection,
and let it : X → X × [0, 1] be defined by it(x) := (x, t). Let T be a constructible sheaf complex
on the I-decomposed space X × [0, 1]. By [KS] Prop. 2.7.8, p. 122, we have T ∼ p∗Q with
Q = Rp∗T , where ∼ denotes “quasiisomorphic”. So Hk(X × [0, 1], T ) → Hk(X, i∗tT ) can be
rewritten as Hk(X, (Rp∗)p

∗Q)→ Hk(X, i∗t p
∗Q). This mapping is induced by (Rp∗)p

∗Q → i∗t p
∗Q

which is independent of t ∈ {0, 1} because i∗t p
∗Q ∼ Q. So i∗0T ∼ i∗1T , and

Hk(X × [0, 1], T )→ Hk(X, i∗tT )

is independent of t ∈ {0, 1} under the corresponding identification of cohomology.
Now let F : X × [0, 1]→ Y be a decomposed homotopy between f0 and f1. Then ft = F ◦ it,

t = 0, 1, so f∗t S = i∗tF
∗S, t = 0, 1, are quasiisomorphic: put T := F ∗S above. Furthermore look

at the composition Hk(Y,S) → Hk(X × [0, 1], F ∗S) → Hk(X, i∗tF
∗S). Here the right arrow is

independent of t, see above.
The rest (b - d) is easy. �

3. Stratified Morse theory

a) The Main Theorem of Goresky-MacPherson

Now pass to stratified Morse theory in the sense of Goresky-MacPherson [GM2] which con-
stitutes a deep generalization of usual Morse theory. Let Z be a Whitney stratified subset of a

manifold M , see [GM2] I 1.2, p. 37, f̂ : M → R smooth, f := f̂ |Z. Let Zc := {f ≤ c}.
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In [GM2] it is supposed that f is proper (see [GM2] I 3.1, p. 61). Note that this does not imply
that Zc is compact, for this we need an extra assumption:

f is bounded from below. (*)

However we will not assume that (*) is fulfilled and weaken the properness assumption:
Let a < b be fixed. Then we assume that there are a1, b1 such that a1 < a < b < b1 and that
f−1([a1, b1]) is compact.

Let us begin with the easiest case:

Theorem 3.1: Suppose that [a, b] contains no critical value.
a) Za is homeomorphic to Zb, the homeomorphism being decomposed, compatible with the strat-
ifications.
b) Za is a decomposed strong deformation retract of Zb.
Note that Za, Zb are stratified in an obvious way.

As in the case of classical Morse theory we need b) if we want to show the vanishing of relative
homotopy or cohomology groups.

Proof. We assume without loss of generality that [a, b] = [0, 1].

a) Similar to [GM2] I 7.2, p. 90, we may use the technique of Moving the Wall as modified in
Theorem 2.1.

We can choose α < 0, β > 1 sufficiently near to 0 resp. 1 so that t is not a critical value,
t ∈ [α, β].

First suppose that (*) is fulfilled.

Then Y := {(y, t) |y ∈ R, α < t < β, y ≤ t}. The hypothesis of Theorem 2.1 (Moving the
Wall) is fulfilled, and we get the assertion. Note that the properness assumption is guaranteed
because of (*), whereas the projection Y →]α, β[, (y, t) 7→ t, is not proper.
Note that we cannot take R here instead of [0, 1] and ]α, β[ because then the condition on
covectors may not be satisfied because of critical points of f . Also, if we modify Yt by taking
Yt := Y0 for t ≤ 0, Yt := Y1 for t ≥ 1 we have to introduce the strata {(0, 0)} resp. {(1, 1)} in Y
which are not mapped submersively to R. So we need our modified version of Moving the Wall
(Theorem 2.1).

If assumption (*) does not hold we take a different Y : Y := {(y, t) |α < t < β, α ≤ y ≤ t}.
Now the hypothesis of Remark 2.2 is fulfilled, and we obtain a decomposed homeomorphism
h : f−1([α, 0]) → f−1([α, 1]) such that h|f−1({α}) = id. We glue with f−1(]∞, α]) in order to
obtain the desired decomposed homeomorphism Z0 → Z1.
Alternative: Use Thom’s first isotopy lemma ([GM2] I 1.5, p. 41) more directly. Choose α < 0
close to 0. There is a decomposed homeomorphism H : f−1({α}) × [α, 1] → f−1([α, 1]) such
that f(H(p, t)) = t for all (p, t), H(p, α) = p. Now the homeomorphism h : Z0 → Z1 is defined
as follows: h(p) := p if f(p) ≤ α, h(p) := H(q, (1− 1

α )t+ 1) if f(p) > α, p = H(q, t).

b) Use moreover Theorem 2.4 in order to obtain a weak decomposed deformation retract. In
the case where (*) is not fulfilled use Remark 2.5, too.

In order to obtain a strong decomposed deformation retract we use again Thom’s isotopy
lemma directly. Let H ′ be, similarly as in the alternative above, a decomposed homeomorphism
f−1({0})× [0, 1]→ f−1([0, 1]) such that f(H ′(p, t)) = t for all (p, t), H ′(p, 0) = p. It is sufficient
to show that f−1({0}) is a strong decomposed deformation retract of f−1([0, 1]). Using H ′
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this amounts to proving that f−1({0}) × {0} is a strong decomposed deformation retract of
f−1({0})× [0, 1] which is obvious. �

Now suppose that f−1([a, b]) contains exactly one critical point p. Let S be the stratum which
contains p. Assume that p is a nondepraved critical point of f , see [GM2] I 2.3, p. 55. This in-
volves a condition on f |S which holds automatically if the critical point of f |S is non-degenerate
or if S and f |S are real analytic, see [GM2] I 2.3, 2.4. Moreover it is demanded that the critical

point p of f is normally nondegenerate (called nondegenerate in [GM2]), i.e. df̂p|T 6= 0 for every
generalized tangent space to Z at p, T 6= TpS. Furthermore we call p a nondegenerate point of
index λ if p is a nondegenerate point of f |S of index λ and p is normally nondegenerate, too.

Put v := f(p). We may take a, b as close to v as we wish, namely a = v − ε, b = v + ε, where
ε > 0 can be taken arbitrarily small.

In order to express the main theorem use the following notations, see [GM2] I 3.3-3.6, pp.
62-65:

If (A,B) is a pair of decomposed topological spaces such that Zb is decomposed homeomorphic
to a space obtained from Za by attaching A along B we say that (A,B) is a Morse data for f
at p.

Example: (A,B) := (f−1([a, b]), f−1(a)): “coarse” Morse data.

Morse data (A,B) are not well-defined (this even holds for the homotopy type of A/B):

Examples: a) Z = Z, f(x) = x, v = 0. Then (∅, ∅) as well as ({0}, ∅) are Morse data for f
at 0.
b) Z = {0, 1} × [−1, 1], f(x, y) = y, v = 0. Then not only ({0, 1} × [0, 1], {0, 1} × {0}) but also
([0, 1] × {0, 1}, {0, 1} × {0}) is Morse data for f at (0, 0) (it is harmless to regard the regular
point (0, 0) as a critical one, too).
In the following drawings A consists of the fat lines and B of the encircled points. On the left
side the whole space is Z, on the right side the whole space is homeomorphic to Z.

Choose a Riemannian metric which is the canonical one with respect to some local coordinates
near p, and let r be the square of the distance from p.

Let U be a suitable closed neighbourhood of p in Z: U := Z ∩{r ≤ δ}, δ > 0 small. Choose ε
above small compared with δ. Then the coarse Morse data of f |U at p is called the local Morse
data of f at p. The local Morse data of f |S at p are called the tangential, the local Morse data
of f |N at p the normal Morse data at p, where N is a normal slice at p, see [GM2] I 1.4, p. 41.
It is of the form N = N∗ ∩{r ≤ δ}, N∗ being the intersection of Z and some submanifold of M .

In a first step it is shown that local Morse data is Morse data. More precisely:

Theorem 3.2: a) (Za ∪ U) ∩ Zb is homeomorphic to Zb, the homeomorphism being decom-
posed ([GM2] I 7.6, p. 95),
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b) (Za ∪ U) ∩ Zb is a decomposed strong deformation retract of Zb.

Again b) is needed, too, in order to pass to the vanishing of relative homotopy or cohomology
groups.

Proof. a) Use Moving the Wall, see [GM2] I 7.6, i.e. use Theorem 2.1.

We encounter the same difficulties as in the proof of Theorem 3.1a), so we assume first (*).

Note that Yt, t ∈ [0, 1], is depicted on [GM2] p. 96, it is obvious how to define Yt for t < 0
close to 0 and t > 1 close to 1.

In general replace Yt by its intersection with {(x, y) | y ≥ c} for a suitable c and proceed as in
the proof of Theorem 3.1a).

Or: Apply the methods of [H2]. By [H2] Lemma 3.6 we have that (f, r) is submersive along
{r = ε, a ≤ f ≤ b}. By the Preparatory theorem (Theorem 1.2) of [H2] we get our statement.

b) If we apply Moving the Wall in the proof of a) we can use Theorem 2.4 in order to show
that we have a decomposed weak deformation retract. If (*) is not fulfilled use Remark 2.5, too.
Or apply the Preparatory Theorem of [H2] loc. cit. �

Now the Main Theorem says:

Theorem 3.3 ([GM2] I 3.7, p. 65): Local Morse data is homeomorphic to Tangential Morse
data × Normal Morse data.

In particular, the product Tangential Morse data × Normal Morse data is a Morse data - a
consequence which can be proved directly much more easily, as proved in [H2] (Theorem 1.9)
(see also King [K] Theorem 5).

As we will see in the next section, the Main Theorem has corresponding consequences for sin-
gular cohomology groups and simple cases of constructible sheaves. For treating constructible
sheaves in general one needs to look at the proof again, see section 5. Applications will be given
in section 6.

Remark 3.4: In [GM2], stratified Morse theory is mainly applied to homotopy groups or
homotopy type instead of cohomology. In particular, Lefschetz type theorems are proved. Here
one needs the following argument: If the local Morse data is k-connected the same holds for the
pair (Z≤b, Z≤a), too. But here one needs Theorem 3.2b), as in the case of singular cohomology
which will be treated in section 4a.

b) Variants

There are variants of the Main Theorem of [GM2] developed in the same book.

Relative case: Suppose that g : X → Z is a proper stratified mapping, i.e. X is Whitney
stratified, too, and each stratum of X is mapped submersively to a stratum of Z. We consider X
as a decomposed space, the decomposition being given by the stratification. Let f be as before.
Put Xa := X ∩ {f ◦ g ≤ a}.
Relative local Morse data: inverse image of local Morse data of f under g. Relative normal
Morse data: local relative Morse data of f |N , N being a normal slice, under g.
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Theorem 3.5: Local relative Morse data is Morse data, more precisely, there is a decomposed
homeomorphism h : Xa ∪ (X ∩ {f ◦ g ≤ b, r ◦ g ≤ ε})→ Xb ([GM2] I 9.4, p. 115).
Moreover we can achieve that h ∼ i, i inclusion, via a decomposed homotopy, so we have a
decomposed weak deformation retract.

The proof is based on Moving the Wall again.

Theorem 3.6 (Main Theorem in relative case) ([GM2] I 9.5, p. 116): Local relative
Morse data is homeomorphic to Tangential Morse data of f × Relative normal Morse data.

Nonproper case: Suppose that X is an open subset of Z which is a union of strata. We
can define local nonproper Morse data similarly as before, using the inclusion of X in Z instead
of g. Similarly: nonproper normal Morse data. See [GM2] I 10.3, p. 120.

Again we have that nonproper local Morse data are Morse data, see [GM2] I 10.4, p. 120.
Moreover, Xa ∪ (X ∩ {f ≤ b, r ≤ ε}) is a decomposed weak deformation retract of Xb.

Main Theorem in the nonproper case: the formulation is straightforward ([GM2] I Theorem
10.5, p. 121).

c) Additional remarks

Instead of Za we can also study Z<a := {p ∈ Z | f(p) < a}. This will be useful when treating
intersection cohomology.

Theorem 3.7: Suppose that [a, b] contains no critical value.
a) Z<a is homeomorphic to Z<b, the homeomorphism being decomposed and compatible with
the stratifications.
b) Z<a is a weak decomposed deformation retract of Z<b.
Of course, Z<a, Z<b are stratified in an obvious way.

It is not true that Z<a is a retract of Z<b if f is surjective: if r is a retraction, we must have
r(z) = z for z ∈ Z<a, hence for z ∈ Za by continuity, which contradicts r(Z<b) ⊂ Z<a.

Proof. a) This follows from Theorem 3.1 a) because the homeomorphism there preserves strata.
So the homeomorphism is obtained by the technique of Moving the Wall.
b) This follows by application of Theorem 2.4 resp. Remark 2.5. �

In fact we can compare the spaces Z<a and Za:

Theorem 3.8: Suppose that [a, b] contains no critical value. Then Za is a strong decomposed
deformation retract of Z<b.

Proof. This is obvious by Thom’s first isotopy lemma because f−1({a}) × {a} is a strong de-
composed deformation retract of f−1({a})× [a, b[. But it does not follow from Theorem 2.4. �

4. Transition to cohomology

The assumptions are those of section 3.
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a) Cohomology with integral coefficients

If f−1([a, b]) contains no critical points, Hk(Zb;Z) ' Hk(Za;Z) for all k. As in classical
Morse theory, the isomorphism is induced by the inclusion but one needs Theorem 3.1b) rather
than Theorem 3.1a) to see this: Za is a deformation retract of Zb.

If f−1([a, b]) contains exactly one critical point p which is non-degenerate of index λ,

Hk(Zb, Za;Z) ' Hk−λ(N ∩ {a ≤ f ≤ b}, N ∩ {f = a};Z)

Here one needs more information than that the product Tangential × Normal Morse data is
Morse data. We need Theorem 3.2b), too:
Hk(Zb, Za ∪ (U ∩ {a ≤ f ≤ b});Z) = 0 for all k,
so the exact cohomology sequence of a triple gives

Hk(Zb, Za;Z) ' Hk(Za ∪ (U ∩ {a ≤ f ≤ b}), Za;Z) ' Hk(U ∩ {a ≤ f ≤ b}, U ∩ {f = a};Z)

' Hk((Dλ ×Dm−λ, Sλ−1 ×Dm−λ)× (N ∩ {a ≤ f ≤ b}, N ∩ {f = a});Z)

' Hk−λ(N ∩ {a ≤ f ≤ b}, N ∩ {f = a};Z)

where m denotes the dimension of the stratum which contains p.
Here we have used the Main Theorem (Theorem 3.3).

b) Relative case

Suppose first that [a, b] contains no critical value. Then Xa is a weak deformation retract of
Xb, so Hk(Xb, Xa;Z) = 0. Here argue as in a) with f ◦ g instead of f .

If f−1([a, b]) contains exactly one non-degenerate critical point of index λ,

Xa ∪ {f ◦ g ≤ b, r ◦ g ≤ δ}
is a decomposed weak deformation retract of Xb, hence Hk(Xb, Xa∪{f ◦g ≤ b, r◦g ≤ δ};Z) = 0.
Now use the Main Theorem in the relative case and apply Künneth. So

Hk(Xb, Xa;Z) ' Hk−λ(g−1(N ∩ {a ≤ f ≤ b}), g−1(N ∩ {f = a});Z)

c) Nonproper case

Similarly as before we get:

If [a, b] contains no critical value of f we have that Hk(Xb, Xa;Z) = 0.
If f−1([a, b]) contains exactly one non-degenerate critical point of index λ,

Hk(Xb, Xa;Z) ' Hk−λ(N ∩X ∩ {a ≤ f ≤ b}, N ∩X ∩ {f = a});Z).

d) Intersection cohomology

Let p be any perversity. Then the corresponding intersection cohomology can be defined on
a purely n-dimensional pseudomanifold Z using the Deligne intersection complex

ICp(Z) = ICp(Z;Z)

which is constructible. Then look at IHk
p (Z;Z) := Hk−n(Z, ICp(Z)). See [GM1] p. 98.

Now let Z be as before, Z being purely n-dimensional. In order to have a pseudomanifold we
need that there are no strata of codimension 1.
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For the same reason we cannot take Za directly. So look at Z<a := Z ∩ {f < a} instead.

By Theorem 2.6 and 3.7 we obtain IHk
p (Z<b;Z) ' IHk

p (Z<a;Z) for all k if [a, b] contains no
critical value.

Note that IHk
p (Z<a;Z) ' Hk−n(Za, ICp(Z)) if a is a regular value, by Theorem 5.2 below.

Now assume that f−1([a, b]) contains exactly one non-degenerate critical point p of index λ.
Let d be the dimension of the stratum S which contains p.

Let us look at

IHk
p (Z<b, Z<a;Z) := Hk−n(Z<b, Z<a; ICp(Z)) ' Hk−n(Zb, Za; ICp(Z)).

The Main Theorem of Goresky-MacPherson implies, using Theorem 3.2b) and 2.6c), that

Hk−n(Zb, Za; ICp(Z)) '

Hk−n((Dλ ×Dd−λ, Sλ−1 ×Dd−λ)× (N ∩ {a ≤ f ≤ b}, N ∩ {f = a}), ICp(S ×N∗)).
Here N∗ is chosen as in the definition of a normal slice, it contains N .

Note that first we should take a pull-back of ICp(Z) on the right hand side but the Deligne
intersection complex can be characterized axiomatically, see [GM1] §4, p. 107.
Let i : N∗ → S ×N∗ be defined by q 7→ (p, q). Then we have

Hk−n((Dλ ×Dd−λ, Sλ−1 ×Dd−λ)× (N ∩ {a ≤ f ≤ b}, N ∩ {f = a}); ICp(S ×N∗)

' Hk−n−λ(N ∩ {a ≤ f ≤ b}, N ∩ {f = a}); i∗ICp(S ×N∗)).
Here we argue as in part (iv) of the proof of Theorem 5.4 below, replacing the commutative
square there by

(
o

Dλ ×Dd−λ)× (N ∩ {a < f ≤ b}) p1→ N ∩ {a < f ≤ b}
↓ π1 ↓ π0

o

Dλ ×Dd−λ p0→ {p}
where p1 and π1 are canonical projections.

Then, i∗ICp(S ×N ′) ∼ ICp(N ′)[d], by [GM1] 5.4.1, p. 115.

Finally,
Hk−n+d−λ(N ∩ {a ≤ f ≤ b}, N ∩ {f = a}); ICp(N∗))

' Hk−n+d−λ(N ∩ {r < δ, a < f < b}, N ∩ {r < δ, a < f < a′}); ICp(N∗))
' IHk−λ

p (N ∩ {r < δ, a < f < b}, N ∩ {r < δ, a < f < a′};Z)

where a′ > a is sufficiently close to a.
In total,

IHk
p (Z<b, Z<a;Z) ' IHk−λ

p (N ∩ {r < δ, a < f < b}, N ∩ {r < δ, a < f < a′};Z)

e) Locally constant coefficients

Let L be a locally constant sheaf on Z. Then Hk(Zb, Za;L) = 0 if [a, b] contains no critical
value: use Theorem 2.6 and Theorem 3.1b).
If there is just one critical point in f−1([a, b]) which is non-degenerate of index λ we have
Hk(Zb, Za;L) ' Hk(U ∩ Z ∩ {a ≤ f ≤ b}, U ∩ Z ∩ {f = a};L). Now U ∩ Z is contractible, so
L|U ∩ Z is constant, therefore

Hk(U ∩Z ∩ {a ≤ f ≤ b}, U ∩Z ∩ {f = a};L) ' Hk(U ∩Z ∩ {a ≤ f ≤ b}, U ∩Z ∩ {f = a};Lp).
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Now we can continue as in the case of constant coefficients:

Hk(Zb, Za;L) ' Hk−λ(N ∩ {a ≤ f ≤ b}, N ∩ {f = a};Lp) '

Hk−λ(N ∩ {a ≤ f ≤ b}, N ∩ {f = a};L).

5. Stratified Morse theory for constructible sheaves

Let S be a constructible sheaf complex on the decomposed space Z. So the cohomology
groups of S are locally constant along the strata.

We take up the assumptions of the beginning of section 3.

By Theorem 3.1 b) and 2.6 we obtain immediately:

Theorem 5.1: Hk(Zb, Za;S) = 0 for all k if [a, b] contains no critical values.

We can also compare the cohomology of Za and Z<a:

Theorem 5.2: If a is a regular value, the inclusion induces isomorphisms

Hk(Za,S) ' Hk(Z<a,S)

for all k.

Proof. It is an exercise to prove this using Theorem 5.1 and Theorem 3.7: Let a′ < a and b > a
sufficiently close to a so that [a′, b] contains no critical value. Then Hk(Z<b,S) ' Hk(Z<a,S),
Hk(Za,S) ' Hk(Za′ ,S), which implies our statement.
Or: Za′ is a strong decomposed deformation retract of Z<a, see Theorem 3.8. By Theorem 2.6
we have Hk(Z<a, Za′ ;S) = 0 for all k. Finally use Theorem 5.1, too. �

Now suppose that there is just one critical point p in f−1([a, b]) with a < f(p) < b which is
non-degenerate of index λ.
Then we can also pass to (co)homology, see e.g. [GM2] II Remark (2) after Theorem 6.4, p. 211:
conclusion for Hi(Zb, Za;Z), but again one has to be more careful!

Let r be chosen as in section 3, U := Z ∩{r ≤ δ}, where δ > 0 is sufficiently small, v := f(p),
ε > 0 small compared with δ, a := v − ε, b := v + ε.

Using Theorem 3.2 and 2.6 we obtain first:

Theorem 5.3: Hk(Zb, Za ∪ (U ∩ Zb);S) = 0 for all k.

By excision, H(Zb, Za;S) ' Hk(Za ∪ (U ∩Zb), Za;S) ' Hk(U ∩ {a ≤ f ≤ b}, U ∩ {f = a};S).

The final aim is to show that

Hk(Zb, Za;S) ' Hk−λ(N ∩ {a ≤ f ≤ b}, N ∩ {f = a};S)

(i) By Theorem 3.3 (Main Theorem of Goresky-MacPherson) we have a homeomorphism

h : (U ∩ S ∩ {a ≤ f ≤ b}, U ∩ S ∩ {f = a})× (N ∩ {a ≤ f ≤ b}, N ∩ {f = a})

→ (U ∩ {a ≤ f ≤ b}, U ∩ {f = a})
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This implies:

Hk(U ∩ {a ≤ f ≤ b}, U ∩ {f = a};S)

' Hk((U ∩ S ∩ {a ≤ f ≤ b}, U ∩ S ∩ {f = a})× (N ∩ {a ≤ f ≤ b}, N ∩ {f = a}), h∗S)

' Hk−λ(N ∩ {a ≤ f ≤ b}, N ∩ {f = a}), i∗h∗S)

where

i : N ∩ {a ≤ f ≤ b} → (U ∩ S ∩ {a ≤ f ≤ b})× (N ∩ {a ≤ f ≤ b})
is defined by x 7→ (p, x).

There are cases where we can replace i∗h∗S by S without difficulty: if S is constant or
merely locally constant (because we are dealing with a small neighbourhood). Similarly for the
intersection cohomology complex which extends a constant sheaf on the union of the maximal
strata of Z. See Section 4. But in other situations - e.g. if we look at an open subspace
X of Z and a locally constant sheaf on this space or at the intersection cohomology complex
extending a locally constant sheaf, see Section 6 - we must be more careful and look at the proof
of Goresky-MacPherson’s Main Theorem:

(ii) One considers a pair (A,B) of subspaces of Z which is more easily seen to be homeomor-
phic to the product of normal and tangential Morse data. The main difficulty is to construct
a homeomorphism of the local Morse data onto (A,B). This is obtained as a composition of
homeomorphisms each of which is obtained by the technique of “moving the wall”.

For technical reasons, 2δ will be taken instead of δ, and let us assume v = 0.

More precisely: one considers a sequence (Ai, Bi) of subspaces and shows that two subsequent
pairs are homeomorphic via a decomposed homeomorphism. In fact one applies the technique
of Moving the Wall. This is indicated in [GM2] I 8.4, 8.5, pp. 103-113. In particular one has to
describe walls depending on a parameter t which varies not only in [0, 1] but in a slightly larger
interval. But it is straightforward in most cases how to do this, except maybe for the stage of
“rounding the corner” (I 8.5.1, p. 107) where the family of walls can be extended like follows:

Note that each Ai is defined as the “realization” of a diagram which is a pair of stratified
regions in R2, together with functions to R. In [GM2] pp. 103-106 these diagrams are depicted,
with the two regions on the left and right respectively, the functions are written along the co-
ordinate axes. Each time a subspace is indicated which is a union of strata, the realization of
which yields Bi. With Moving the Wall one obtains a homeomorphism Ai → Ai+1. Since it is
stratum preserving it maps Bi homeomorphically onto Bi+1.

Note that we can ignore the transition D0 → D1 and D5 → D6 because nothing happens
there. Let us be more specific about Moving the Wall in the other cases. On [GM2] p. 71 it
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is said that the wall space is taken to be 4-dimensional. We prefer R2 instead, because in each
case only one of the two “pictures” Pa, Pb (left/right) is varied.

Example: D6 → D7 (cf. [GM2] pp. 105, 111). Then we have a variation of Pa and get a
corresponding subset Y =

⋃
t∈]α,β[(Pa(t) × {t}) ⊂ R2×]α, β[. Here ]α, β[ is a small neighbour-

hood of [0, 1]. Furthermore, replace Z in “Moving the Wall” by the inverse image of Pb under
the mapping on the right hand side, i.e. by Z ∩ {r ≤ 2δ}. The mapping f is replaced by the
mapping (f ◦ π, f) on the left. In the case of other pictures proceed similarly but intersect also
by {r < 2δ′}, δ′ > δ near δ, in order to stay in a neighbourhood of p.

There is a technical problem because π is not defined everywhere but extend f ◦ π, r ◦ π, ρ
outside {r ≤ 2δ} arbitrarily: this is harmless because the relevant considerations concern subsets
of {r ≤ 2δ}.

Furthermore, in most cases we can apply Theorem 2.4 to the transition from Ai to Ai+1 as
well as from Bi to Bi+1 or vice versa. However we cannot proceed in this way for Bi in all
cases: it may happen that neither Bi ⊂ Bi+1 nor Bi+1 ⊂ Bi. Therefore we modify the diagrams
D2, D3, D4 in order to pass from D2 to D3, D3 to D4: On the left we have to consider a “region”
Pa together with a subregion Qa. Replace the region Pa by P ′a := {(x, y) | y ≥ −ε′} instead,
where ε′ > ε is sufficiently near to ε. Also Qa is replaced by Q′a := closure of the complement of
Qa in P ′a, i.e. by

{(x, y) | − ε′ ≤ y ≤ −ε} in the case of D2

{(x, y) | y ≥ −ε′, x ≤ −3ε

4
or y ≤ −ε} in the case of D3

{(x, y) | y ≥ −ε′, x ≤ −3ε

4
or y − x ≤ − ε

4
} in the case of D4

We take obvious stratifications so that the subspaces are unions of strata. Instead of pairs
(Ai, Bi), we thus obtain (A′i, B

′
i). Now we have A′i = A′i+1, B′i ⊂ B′i+1, i = 2, 3. By Theorem

2.1, we obtain a homeomorphism A′i → A′i+1 such that the restriction gives homeomorphisms
B′i → B′i+1, Ai → Ai+1, Bi → Bi+1. Furthermore, by Theorem 2.4 and 2.6 the inclusion defines

isomorphisms Hk(A′i+1, B
′
i+1;S)→ Hk(A′i, B

′
i;S). By excision, we obtain

Hk(Ai+1, Bi+1,S) ' Hk(Ai, Bi;S)

for all k. This shows that we obtain isomorphisms for the cohomology groups with the same
constructible sheaf S.

So we have Hk(U ∩ f−1([a, b]), U ∩ {f = a},S) ' Hk(A,B;S).

The precise description of (A,B) will be recalled in (iv) below.

In total we now have: Hk(Zb, Za,S) ' Hk(A,B;S).

(iii) This result can be obtained more easily using different techniques, as in [H2]. Then we
get:
The space Za is a decomposed strong deformation retract of Z ′a := {f ≤ −ε} ∪ E, with

E := {f ◦ π ≤ −
3ε

4
, f − f ◦ π ≤

ε

4
, ρ ≤ δ, r ◦ π ≤ δ} ∪ {f − f ◦ π ≤ −

ε

4
, f ◦ π ≤

3ε

4
, ρ ≤ δ, r ◦ π ≤ δ}

and

Z′b := {f ≤ −ε} ∪ {f ◦ π ≤
3ε

4
, f − f ◦ π ≤

ε

4
, ρ ≤ δ, r ◦ π ≤ δ}

is a decomposed strong deformation retract of Zb. See [H2] Prop. 4.4.
Therefore, Hk(Z ′a,S) ' Hk(Za,S) , and Hk(Zb,S) ' Hk(Z ′b,S).
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Finally, Z ′b = Z ′a ∪A, and B = Z ′a ∩A, so Hk(Z ′b, Z
′
a,S) ' Hk(A,B,S), which shows again that

Hk(Zb, Za,S) ' Hk(A,B,S).

(iv) Now

A = Z ∩ {|f − f ◦ π| ≤
ε

4
, |f ◦ π| ≤

3ε

4
, r ◦ π ≤ δ, ρ ≤ δ}

B = Z ∩ {r ◦ π ≤ δ, ρ ≤ δ} ∩ ({|f − f ◦ π| ≤
ε

4
, f ◦ π = −

3ε

4
} ∪ {f − f ◦ π = −

ε

4
, |f ◦ π| ≤

3ε

4
})

cf. [GM2] I Prop. 8.2. p. 101.
Furthermore,

π : (Z ∩ {r ◦ π ≤ δ, ρ ≤ δ, |f − f ◦ π| ≤ ε

4
}, Z ∩ {r ◦ π ≤ δ, ρ ≤ δ, f − f ◦ π = − ε

4
})

→ S ∩ {r ≤ δ}
is a fibre bundle pair with contractible base, hence trivial. The fibre pair over p is

(N ∩ {|f | ≤ ε

4
, r ≤ δ}, N ∩ {f = − ε

4
, r ≤ δ})

A trivialization yields a mapping pair

pr : (Z ∩ {r ◦ π ≤ δ, ρ ≤ δ, |f − f ◦ π| ≤ ε

4
}, Z ∩ {r ◦ π ≤ δ, ρ ≤ δ, f − f ◦ π = − ε

4
})

→ (N ∩ {|f | ≤ ε

4
, r ≤ δ}, N ∩ {f = − ε

4
, r ≤ δ})

The fibres are contractible, and S is cohomologically locally constant along the fibres. By [KS]
Prop. 2.7.8, p. 122, we can conclude that S is quasiisomorphic to pr∗T with

T := S|N ∩ {|f | ≤ ε

4
, r ≤ δ} = i∗0S,

where i0 : N ∩ {|f | ≤ ε
4 , r ≤ δ} → (Z ∩ {r ◦ π ≤ δ, ρ ≤ δ, |f − f ◦ π| ≤ ε

4} is the inclusion:
Indeed, S ∼ pr∗(Rpr∗S), by [KS] loc. cit., so i∗0S ∼ i∗0pr

∗(Rpr∗S) ∼ Rpr∗S because
pr ◦ i0 = id.

From now on it is easier to work with cohomology with compact support instead of relative
cohomology. Note that

A \B = Z ∩ {− ε
4
< f − f ◦ π ≤ ε

4
,−3ε

4
< f ◦ π ≤ 3ε

4
, r ◦ π ≤ δ, ρ ≤ δ}

Put C := S ∩ {− 3ε
4 < f ≤ 3ε

4 , r ≤ δ}, D := N ∩ {− ε
4 < f ≤ ε

4 , r ≤ δ}. Let π1 : A \ B → C
and π0 : D → {p} be the restrictions of π, and let p1 : A \ B → D and p0 : C → {p} be the
restrictions of pr, so that we have a commutative diagram:

A \B p1→ D
↓ π1 ↓ π0
C

p0→ {p}
Then we have:

Hk(A,B,S) ' Hk(A,B, pr∗T ) ' Hkc (A \B, p∗1T ′) ' Hk(R(p0)!R(π1)!p
∗
1T ′)

where T ′ := T |D.
Now

R(p0)!R(π1)!p
∗
1T ′ ∼ R(p0)!(ZC ⊗L R(π1)!p

∗
1T ′)

∼ R(p0)!(ZC ⊗L p∗0R(π0)!T ′) ∼ (R(p0)!ZC)⊗L R(π0)!T ′

The second quasiisomorphism follows by base change, the third one by some kind of projection
formula, see [KS] Prop. 2.6.6, p. 113.
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Hence

Hk(A,B,S) ' Hk((R(p0)!ZC)⊗L R(π0)!T ′) ' Hk−λc (D, T ′)

' Hk−λ(N ∩ {|f | ≤ ε

4
, r ≤ δ}, N ∩ {f = − ε

4
, r ≤ δ},S)

Altogether we obtain as final result, with N = N∗ ∩ {r ≤ δ}:

Theorem 5.4: Hk(Zb, Za;S) ' Hk−λ(N ∩ {a ≤ f ≤ b}, N ∩ {f = a};S).

The final result has been shown by J. Schürmann [S] directly, too, with milder conditions on
the critical point. See [S] Theorem 5.3.3.

6. Applications of stratified Morse theory for constructible sheaves

a) Cohomology with locally constant coefficients in the relative case

Let us look at the relative case as in section 4. Let L be a locally constant sheaf on X. Then
we obtain:

If [a, b] contains no critical value, Hk(Xb, Xa;L) = 0 for all k.

If f−1([a, b]) contains exactly one non-degenerate critical point of index λ,

Hk(Xb, Xa;L) = Hk−λ(g−1(N ∩ {a ≤ f ≤ b}), g−1(N ∩ {f = a}),L)

In order to prove this, proceed as in the last section (Theorem 5.4) with f ◦ g instead of f , r ◦ g
instead of r etc.

Or apply our theorem above to Rg∗L, similarly as in [S] p. 275.

Note that Rg∗ commutes with restriction to closed subsets because Rg∗ = Rg!, g being proper.

b) Cohomology with locally constant coefficients in the nonproper case

Suppose that X is an open subset of Z which is a union of strata and L a locally constant
sheaf on X. Put Xa := X ∩ Za. Then:

If [a, b] contains no critical value, Hk(Xb, Xa;L) = 0 for all k.

If f−1[a, b] contains exactly one non-degenerate critical point of index λ,

Hk(Xb, Xa;L) = Hk−λ(N ∩X ∩ {a ≤ f ≤ b}, N ∩X ∩ {f = a},L)

In order to prove this, proceed as in the last section finding decomposed weak deformation
retracts.

Or apply Theorem 5.4 to Rj∗L, where j : X → Z is the inclusion, similarly as in [S] p. 275.
But the conclusion is not evident. Note that Rj∗ commutes in general with i!, hence with i∗ if
i is the inclusion of an open but not of a closed subset.

One needs a base change property which is proved in [S] Prop. 4.3.1, p. 261.

We argue in the same way for the normal slice and obtain

Hk(N ∩ {a ≤ f ≤ b}, Rj∗L) ' Hk(N ∩X ∩ {a ≤ f ≤ b};L)
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Similarly with f = a instead of a ≤ f ≤ b.

c) Intersection cohomology with coefficients in a locally constant sheaf

Note that the locally constant sheaf has to be given outside codimension 2. We assume that
Z is pure-dimensional. Again the reduction to the local case does not allow to assume that the
locally constant sheaf is constant when applying the Main Theorem.

Similarly as in section 4 we obtain, using the complex ICp(Z;L):

IHk
p (Z<b, Z<a;L) = 0 if [a, b] does not contain critical values.

If there is exactly one non-degenerate critical point of index λ in f−1([a, b]):

IHk
p (Z<b, Z<a;L) = IHk−λ

p (N ∩ {a < f < b, r < δ}, N ∩ {a < f < a′, r < δ};L)

where a′ > a is sufficiently close to a.
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