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A LONG AND WINDING ROAD TO DEFINABLE SETS

ZOFIA DENKOWSKA AND MACIEJ P. DENKOWSKI

To David Trotman on the occasion of his 60th birthday.

Abstract. We survey the development of o-minimal structures from a geometric point of view
and compare them with subanalytic sets insisting on the differences. The idea is to show the

long way from semi-analytic to definable sets, from normal partitions to cell decompositions.

Some recent results are discussed in the last section.

Introduction

This paper was conceived as a historical survey. In a sense it is a follow up of the book
[DS1]. It does contain some recent results (mostly in the last section, e.g. on the Kuratowski
convergence of definable sets from [DD]) and some results that are not new, but are not very
well known; albeit, its aim is mostly didactical and historical. The younger author appreciated
this historical insight as well as the intertwining of subanalytic geometry, Pfaffian geometry and
o-minimal structures, and wishes to share it with others, as it proved useful to himself.

We have the feeling that definable sets and their cell decompositions have replaced nowadays
every other kind of special sets and stratifications, especially in applications (for instance in
control theory, cf. our later quotes). The cell decompositions have not necessarily the same
proprieties as subanalytic stratifications (not only they may not be analytic, but even not C∞-
smooth cf. [LGR]). Other wrong beliefs are also quite popular (for instance that subanalytic
sets form an o-minimal structure, which is not true). We spotted, as well, numerous omissions
in various references by different authors. This is due partially to the fact that many important
papers (especially those written in French) got forgotten.

This survey has two authors, which are (easily identifiable) mother and son. The older author
worked in  Lojasiewicz’s group ever since 1967, presented Gabrielov’s work [G] at  Lojasiewicz’s
seminar (this was a starting point for the theory of subanalytic sets à la polonaise), wrote (with
J. Stasica) the preprint [DS*] presenting the results obtained by  Lojasiewicz’s group and was
even, by pure chance, present in Dijon when the Pfaffian sets were born there (in 1989, this
was an idea of Robert Moussu developed this year by Claude Roche and Jean-Marie Lion and
continued later cf. [L], [MR]. . . ). The older author can be therefore considered as a witness to
the development we describe here, which began in 1965, when  Lojasiewicz published his IHES
preprint on semi-analytic sets [ L1], now accessible on line on the site of Michel Coste [C L]. Our
survey will present the way that led from semianalytic to subanalytic, Pfaffian and definable sets
(the order here is not as linear as most people tend to believe).

The younger author appreciated the historical knowledge that let him understand better
definable sets and wishes to share it with others. He also contributed to the much modernized
and completed book version [DS1] of the preprint [DS*].
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Let us remark that E. Bierstone and P. Milman, the authors of the very well written IHES
text Semi-analytic and subanalytic sets [BM] were among the first to quote the preprint [DS*]
that served them as a basis for their presentation of subanalytic sets (the Fiber-Cutting Lemma
is, for instance, lemme B from the initial work [D LS] of Denkowska,  Lojasiewicz, Stasica).
L. Van den Dries, who can be considered as a father of definable sets (cf. the book [vdD]) also
knew the preprint [DS*].

As to our friend, David Trotman, we owe him a lot. We met very early in our careers and
David, a world known specialist in singularities and in particular in stratifications, encouraged
our work, asked questions that led to the writing of some of our papers, especially those con-
cerning stratifications (like [DSW], [DW]) and, together with Bernard Teissier popularized the
preprint [DS*]. Later, Trotman and Teissier played a very important role in the publication of
its book version [DS1]. Many thanks to both of them.

The stratifications, a tool largely used by René Thom , were brought to Poland by  Lojasiewicz,
who was one of Thom’s close friends. As we mention in the survey,  Lojasiewicz had his own
way of constructing different stratifications, to begin with normal partitions (they were a main
ingredient used in  Lojasiewicz’s theory of subanalytic sets, as opposed to that of Hironaka, based
on desingularization).

The so called ‘ Lojasiewicz group’ in Kraków consisted of (in order in which they joined the
group), the following  Lojasiewicz’s students: Krystyna Wachta, Zofia Denkowska, Jacek Stasica,
Wies law Paw lucki, Krzysztof Kurdyka and Zbigniew Hajto.

There are many sources of information about semi-analytic sets ([ L1]), subanalytic sets ([H2],
[DS1], [ LZ]) and definable sets ([vdD], [vdDM], [C2]). In this paper we are only trying to
put all this together in some order and in its historical context, with special interest given to
stratifications. We also gathered in this survey a lot of information otherwise scattered in the
literature (the bibliography is still far from being exhaustive, we included in it what we feel
represents the different facets of the subject).

May it serve the younger!

1. A reminder

For a start, recall one of the (equivalent) definitions of an o-minimal structure (see [C2],
[vdD]):

Definition 1.1. A structure on the field (R,+, ·) is a collection S = {Sn}n∈N, where each Sn is
a family of subsets of Rn satisfying the following axioms:

(1) Sn contains all the algebraic subsets of Rn;
(2) Sn is a Boolean algebra (1) of the powerset of Rn;
(3) If A ∈ Sm, B ∈ Sn, then A×B ∈ Sm+n;
(4) If π : Rn × R→ Rn is the natural projection and A ∈ Sn+1, then π(A) ∈ Sn.

The elements of Sn are called definable (or tame) subsets of Rn.
The structure S is o-minimal (o stands for order) if it satisfies the additional condition

(5) S1 is nothing else but all the finite unions of points and intervals of any type.

It is natural to introduce the following notion:

Definition 1.2. Given a structure S, we call definable (in S) any function f : A → Rn, where
A ⊂ Rm, such that its graph, again denoted f , belongs to Sm+n.

1Recall that a family S of sets, subsets of Rn in our case, is a Boolean algebra, if ∅ ∈ S and for every A,B ∈ S,
there is A ∩B,A ∪B,Rn \A ∈ S.
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Remark 1.3. Clearly, axiom (4) implies that if f is definable, its definition set A ∈ Sm. The
image, f(A) ∈ Sn since it coincides with π(f ∩ (A × Rn)), where π is the natural projection
onto Rn, and A × Rn ∈ Sm+n. Finally, the definability of f = (f1, . . . , fn) is equivalent to the
definability of its components fi.

Proposition 1.4. Every o-minimal structure contains semi-algebraic sets. (cf. subsection 1.1)

Proof. Indeed, by condition (1) it contains algebraic sets and thus it suffices to show that it
contains all the sets of the form {x ∈ Rn | P (x) > 0} with P being a polynomial (axiom (2)).
Any such set can be written as {x ∈ Rn | ∃ε > 0: P (x) = ε} and thus it can be written as the
projection π(A) by π(x, t) = x of the algebraic set {(x, t) ∈ Rn×R | t2P (x) = 1}. Condition (4)
yields π(A) ∈ Sn. �

Remark 1.5. It is easy to see that if A ∈ Sm+n and B ∈ Sn, then the set

{x ∈ Rm | ∃y ∈ B : (x, y) ∈ A}
is in Sm, this set being the projection onto Rm of A ∩ (Rm ×B). Since taking the complement
changes the quantifier ∀ to ∃, the same is true for {x ∈ Rm | ∀y ∈ B, (x, y) ∈ B}, i.e., this set
belongs to Sm.

1.1. Semi-algebraic geometry. (See e.g. [C1] or [BCR]). The definition of semi-algebraic
sets is global. In fact,  Lojasiewicz [ L1] used the notion of sets ‘described by’ the functions of a
given subring A of the ring of continuous real functions defined in Rn. These are the sets of the
form

A =

p⋃
i=1

q⋂
j=1

{x ∈ Rn | fij(x) ∗ 0}

where ∗ stands for any of the signs >,<,=. Such sets form a Boolean algebra denoted S(A).
If A is the ring of polynomials of n variables, S(A) is the Boolean algebra of semi-algebraic

sets.
Clearly, semi-algebraic sets verify the conditions (1), (2), (3), (5) of o-minimal structures. It

suffices to check the condition (4) (projection property), the others being easy. This condition
is verified thanks to the following theorem of Tarski-Seidenberg:

Theorem 1.6 (Tarski-Seidenberg). Let π : Rn × R → Rn be the natural projection and let
A ⊂ Rn × R be a semi-algebraic set. Then π(A) is semi-algebraic, too.

The classical geometric approach to this theorem is based on the following lemma.

Lemma 1.7 (Cohen — Lemme de saucissonage). Classical version: Let P (x, t) be a poly-
nomial in n + 1 variables. Then there exists a finite partition of Rn: Rn =

⋃p
i=1Aj into

semi-algebraic sets Aj such that for any i = 1, . . . , p, either P (x, t) has constant sign for x ∈ Ai
and all t ∈ R, or there is a finite number of continuous semi-algebraic functions ξ1 < . . . < ξpi
on Ai such that for x ∈ Ai, {P (x, t) = 0} = {ξj(x), j = 1, . . . , pi} and the sign of P (x, t) depends
only on the signs of t− ξj(x), j = 1, . . . , pi.

 Lojasiewicz’s version: Let A be a ring of real continuous functions defined on a topological
space X. Assume that each set from S(A) has only a finite number of connected components, each
of them belonging to S(A). Then for any E ∈ S(A[t]) there exists a finite partition X =

⋃p
i=1Ai

with Ai ∈ S(A) and real functions ξAi,1 < . . . < ξAi,pi , continuous on Ai (it may happen that
there are none for some i), such that E is the union of sets from S(A[t]) of one of the two forms
below:

Bik := {(x, t) ∈ Ai × R | ξAi,k(x) < t < ξAi,k+1(x)}, k = 0, . . . , pi + 1,

or Cik := {(x, ξAi,`(x)) | x ∈ Ai}, ` = 1, . . . , pi,



60 ZOFIA DENKOWSKA AND MACIEJ P. DENKOWSKI

where ξAi,0 ≡ −∞ and ξAi,pi+1 ≡ +∞.

Clearly,  Lojasiewicz’s version implies the classical one, as the assumption on the finiteness
of the number of connected components follows by induction. Below we quote the original
 Lojasiewicz’s proof of his version:

Proof. The set E is described by some fi(x, t) =
∑m
j=0 aij(x)tm−j , i = 1, . . . n with aij ∈ A. Let

ϕik denote the kth derivative of fi with respect to t, here k = 1, . . . ,m. Put fJ :=
∏

(i,k)∈J ϕik,

where J ⊂ I := {1, . . . , n} × {1, . . . ,m}. Define for r = 1, . . . ,m,∞,

AJ,r := {x ∈ X | fJ(x, t) = 0 has exactly r complex roots t}.
It is easy to check that each AJ,r ∈ S(A). For any fixed J , the sets AJ,r, r = 1, . . . ,m,∞ form
a partition of X, whence we recover a partition of X from the connected components of the
intersections

⋂
J AJ,rJ . We call them A1, . . . , Ap.

It is easy to see by applying Rouché’s Theorem (in fact, Hurwitz theorem, which is a corollary
for analytic functions) that for any Aj and any J = {(i, k) ∈ I | ϕik 6= 0 onAj ×R} one can find
continuous functions ξAj ,1(x) < · · · < ξAj ,pj (x) such that

{x ∈ Aj | fJ(x, t) = 0} =

pj⋃
i=1

ξAj ,i,

the latter denoting the graphs of ξAj ,i.
Now, since fJ 6= 0 on Bjk, then on this set either ϕik 6= 0, or ϕik ≡ 0, depending on whether

(i, k) ∈ J or not. On the other hand, for Cjk either ϕik ≡ 0 on Aj ×R which is the trivial case,
or ϕik 6≡ 0 on it. If the latter occurs, then the roots of ϕik(x, t) = 0 over Aj are continuous
functions ξ1(x) < . . . < ξr(x). Since each graph ξρ is contained in

⋃pj
ι=1 ξAj ,ι and the graphs

ξAj ,ι are open-closed in this union, there is a unique ιρ such that ξρ = ξAj ,ιρ . Hence, on Cjk one
has either ϕik ≡ 0, or ϕik 6= 0 depending on whether k = ιρ for some ρ or not.

Finally, we show that Bjk, Cjk ∈ S(A[t]). Let D be one of these sets. Then

D ⊂ T :=

n⋂
i=1

m⋂
k=0

{x ∈ Aj | ϕik ∈ Θik},

where Θik is either {t < 0}, or {0}, or {t > 0}. It suffices to prove now that in fact D = T .
If there were a point (a, t) ∈ T \ D, then for some t′ there would be (a, t′) ∈ D. By Thom’s
Lemma (2), the set ({a} × R) ∩ T is convex, whence {a} × [t, t′] ⊂ T . Whatever the form of D
(either Bjk or Cjk), there exists t1, t2 ∈ [t, t′] such that fJ(t1, a) = 0 while fJ(t2, a) 6= 0. That
is a contradiction, since there must be either fJ ≡ 0, or fJ 6= 0 on T depending on whether
Θik = {0} for some (i, k) ∈ J , or not.

It remains to observe that the sets Bik, Cik form a partition of X × R and on each of them
one has either fi ≡ 0, or fi 6= 0, which implies that E is the union of some of them. �

Remark 1.8. Under the assumptions of the Lemma above on A we have:

(1) Each E ∈ S(A[t]) has only a finite number of connected components, each of them
belonging to S(A[t]); therefore, by induction, the same is true in S(A[t1, . . . , tn]).

(2) If π : X×R→ X is the natural projection, then π(E) ∈ S(A) for E ∈ S(A[t]); therefore,
by induction, the same is true for π : X × Rn → X and S(A[t1, . . . , tn]).

2Thom’s Lemma: Let P (t) be a polynomial of degree n. Then each set ∆P :=
⋂n

k=0{t ∈ R | P (k)(t) ∈ Θk},
where Θk is either {t < 0}, or {0}, or {t > 0}, is connected: an open interval, a point, or possibly void. Indeed,
for n = 0 there is nothing to do. If the lemma holds for n − 1 take n and apply the lemma to P ′. Then
∆P = ∆P ′ ∩ {P (t) ∈ Θ0}. If ∆P ′ is an open interval, then P ′(t) 6= 0 in it and thus P is strictly monotone on

∆P ′ and the lemma follows.
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Taking X = {0} and A = R the first remark above yields by induction:

Theorem 1.9. Every semi-algebraic set has a finite number of connected components, each of
them semi-algebraic.

The second remark for A = R[x1, . . . , xm] implies the Tarski-Seidenberg Theorem, also by
induction.

Remark 1.10. The theorem of Tarski-Seidenberg itself implies that the image of a semi-algebraic
set under any semi-algebraic mapping is semi-algebraic as in Remark 1.3. It is clear that semi-
algebraic sets form an o-minimal structure.

The theory of semi-algebraic sets is well exposed in [C1], [C2], [BR], [BCR]. We list here some
of their basic properties:

Theorem 1.11. The Euclidean distance to a nonempty semi-algebraic set is semi-algebraic (i.e.,
has semi-algebraic graph).

The obvious proof follows from the description of the graph and we easily obtain the following
corollary.

Corollary 1.12. If A is semi-algebraic, then the closure A, the interior intA and the border ∂A
are semi-algebraic as well.

Remark 1.13. The theorem and corollary above still hold true if one changes the words semi-
algebraic to definable (partly due to Proposition 1.4).

The most striking property of semi-algebraic sets is the existence of explicit uniform bounds,
for example on the number of connected components. These bounds are nicely gathered in the
book [YC] by G. Comte and Y. Yomdin.

1.2. Definable sets. By ‘definable sets’ we always mean ‘definable in some given o-minimal
structure S’. For this part we refer the reader to the works [vdD], [C3] and the survey [vdDM].

It is worth saying a few words about the point of view of mathematical logic: o-minimal
structures can be introduced in the following way. Given a family of functions (the ‘vocabulary’
of a language) F = {Fn}n∈N, Fn ⊂ RRn , one considers the sets described by first-order formulæ,
or, in other words, by the ‘operations’ =, <, +, · and quantifiers applied to functions from F or
real numbers. The collection of all the sets obtained in this way in the spaces Rn is the structure
denoted by RF . To be more precise, a subset of Rm is said to be definable in RF , if it belongs
to the smallest collection of subsets of Rn , n ∈ N, which

(1) contains the graphs of addition and multiplication, and all the graphs of functions in F ,
and of constant maps;

(2) contains the graph of the order relation <, and of the equality;
(3) is closed under taking Cartesian products, finite unions or intersections, complements,

and images under linear projections.

As earlier, a function f : Rm → Rn is said to be definable if its graph is definable. If each
definable set has finitely many connected components, then RF is o-minimal.

The model theoretic notion of the structure RF generated by F provides useful information
about the real geometry of the sets and functions obtained this way. The starting point of this
approach is the question of how much we have to extend a given language in order to describe
the solutions of systems of differential equations written in it, for instance: to what class does
the solution of analytic differential equations belong?
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Note that functions of one variable are particularly important since they carry most of the in-
formation about the structure (in some sense the whole structure is obtained through projections
of graphs).

For F = ∅, the structure R∅ is just the class of semi-algebraic sets studied already by Tarski.
The o-minimality of such a structure RF means precisely that all its sets have a finite number
of connected components. This fact is important e.g. for differential equations as it excludes
oscillations. If we take F to be the convergent power series in a given polidisc, extendable by
zero outside it (3), then RF is usually denoted Ran (restricted analytic functions). It is model
complete (it follows from [G], see below for this notion) and contains all the globally subanalytic
sets (of which we will speak later on). The structure RPfaff generated by the so-called Pfaffian
functions (see later on) is o-minimal as well (cf. [W2]). This implies the o-minimality of Rexp

which is the structure generated by the exponential function.
One more remark: among the first four axioms of a structure on R the difficulties arise

mostly for two of them, namely the projection property (4) (or elimination of quantifiers) and
the operation of taking the complement in (2). The projection property is what is missing for
semi-analytic sets (see Example 4.1) and thus the larger class of subanalytic sets is needed,
but when these were introduced, the problem with axiom (2) appeared: how to prove that the
complement of a subanalytic set is again subanalytic? This was solved first by A. Gabrielov [G].
That property is called model completeness of the structure (notion introduced by A. Robinson).
In other words, if in the definition of RF the operation of taking the complement is superfluous,
the structure is said to be model complete.

The most important tool from the geometric point of view is the cell decomposition:

Definition 1.14. A set C ⊂ Rm is called a definable cell if
(1) for m = 1, C is a point or an open, nonempty interval;
(2) for m > 1,

• either C = f is the graph of a continuous, definable function f : C ′ → R, where
C ′ ⊂ Rm−1 (Rm−1 is the subspace of the first m − 1 variables in Rm) is a definable
cell; such a cell we shall call thin;

• or C = (f1, f2) is a definable prism, i.e.
(f1, f2) = {(x, t) ∈ Rm−1 × R | x ∈ C ′, f1(x) < t < f2(x)}, where C ′ ⊂ Rm−1 is a
definable cell and both functions fj : C ′ → R∪{±∞} are continuous, definable and such
that f1 < f2 on C ′ and each fj either takes all values in R, or is constant.

Definition 1.15. Let C ⊂ Rn+1 be a definable cell over a cell C ′ ⊂ Rn. Then its dimension
dimC is defined to be either dimC ′, if C is thin, or dimC ′ + 1 if C is a prism. Of course, in R,
dim{a} = 0 and dim(a, b) = 1.

It is easy to check that for a cell C ⊂ Rn one has dimC = n iff C is open and dimC < n
iff C is nowhere-dense. Moreover, there is always a definable homeomorphism sending C, call it
hC , on an open cell in RdimC .

Definition 1.16. A cell C defined over a cell C ′ is said to be of class C (4), if for the defining
function f , or fi respectively, the composition f ◦ h−1

C′ (fi ◦ h−1
C′ respectively) is of that class (5).

Definition 1.17. A cylindrical cell decomposition of Rn+1 is a finite decomposition of Rn+1

into pairwise disjoint cells whose projections onto the first n coordinates yield a cylindrical cell

3To be more precise: Fn consists of functions f : Rn → R which are analytic in [−1, 1]n and vanish off this

cube.
4e.g. class C k with k = 1, 2, . . . ,∞, ω (where ω means analycity)
5In particular, a C k cell is a C k submanifold of dimension dimC.
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decomposition of Rn. The cell decomposition is said to be of class C or C k, k = 1, 2, . . . ,∞, ω,
if all the cells are of that class.

A cell decomposition need not be a stratification in the sense of definition 2.23, since the
frontier condition of the latter definition may fail to hold. To see this consider the decomposition
of R2 into the following five cells: C1 = {(x, y) ∈ R2 | x < 0}, C2 = {0}×R, C3 = (0,+∞)×{0},
C4 = {x, y > 0} and C5 = {x > 0, y < 0}. Then C3 \ C3 cannot be obtained from the other
cells. Turning a cell decomposition into a stratification requires a further refinement.

The following notion is identical with that of definition 2.24.

Definition 1.18. If A1, . . . An ∈ Sn, then a cell decomposition C is said to be compatible (or
adapted to) with these sets if for any C ∈ C and any i, there is C ∩ Ai 6= ∅⇒ C ⊂ Ai. In that
case each Ai is the union of some cells from C.

Cohen’s Lemma 1.7 provides a semi-algebraic cell decomposition of a given semi-algebraic set.
The generalization of this to arbitrary o-minimal structure is the following theorem (compare to
Theorem 2.25):

Theorem 1.19 (Cylindrical cell decomposition of class C k). Given a finite family of definable
sets A1, . . . , An and a k ∈ N there is always a cylindrical cell decomposition of class C k of Rn
compatible with this family.

Remark 1.20. Until quite recently it has been an open question whether an arbitrary o-minimal
structure admits a C∞ cell decomposition. The negative answer was given by O. Le Gal and
J.-Ph. Rolin in [LGR], where an explicit example is given. Actually, most of the known o-
minimal structures on the field R admit analytic cell decomposition. An earlier result — that
the o-minimal structures generated by convenient quasianalytic Denjoy-Carleman classes admit
C∞ cell decomposition but no analytic cell decomposition was obtained in [RSW]. See also
Remark 2.63.

Corollary 1.21. A definable cell being connected, the theorem above implies that any defin-
able set A has only finitely many connected components (6) and they all are definable, too (cf.
Theorem 1.9). Moreover, they are open-closed in A.

For a given set E ⊂ Rn let cc(E) denote the family of its connected components. If
A ⊂ Rm × Rn, then we put Ax := {y ∈ Rn | (x, y) ∈ A}. The following holds:

Theorem 1.22. For any definable set A ⊂ Rm × Rn there is an N such that for all x ∈ Rm,
#cc(Ax) ≤ N .

The possibility of obtaining a C k cell decomposition for any k is based on the following:

Theorem 1.23. Let f : Ω → R be a definable function on an open set Ω ⊂ Rn. Then for each
k ∈ N there is a closed definable and nowhere-dense set Z ⊂ Ω apart from which f is of class
C k.

In particular:

Theorem 1.24. For any definable f : A → R, A ⊂ Rn, and any k ∈ N, there is a C k cell
decomposition of Rn, compatible with A and such that on any of its cells contained in A, f is of
class C k.

6Actually, they are even definably arcwise connected.
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Remark 1.25. The Cell Decomposition Theorem provides also an interesting and useful obser-
vation:

Let A ⊂ Rn be definable and let L ⊂ Rn be a linear subspace. If for any a ∈ Rn the set
A ∩ (L+ a) is nowhere-dense in L+ a, then A is nowhere-dense.

This clearly follows from the fact that A is nowhere-dense iff it does not contain an open cell
and the trace of an open cell on L+ a is open.

Definition 1.26. One can define the dimension of a definable set to be

dimA := max{dimC | C is a cell : C ⊂ A}.

Proposition 1.27. If A ⊂ Rn is definable, then dimA = n if and only if intA 6= ∅ and
dimA < n if and only if A is nowhere-dense. Moreover, for any definable B ⊂ Rm one has
dimA × B = dimA + dimB; if m = n, then dimA ∪ B = max{dimA,dimB} and if B ⊂ A,
then dimB ≤ dimA. Finally, if f : A→ Rm is definable, then dim f(A) ≤ dimA (7).

Remark 1.28. One can also prove that there is a definable bijection f : A → B between two
given definable sets (in different ambient spaces), then dimA = dimB.

The next proposition shows how a cell decomposition induces a cell decomposition in sub-
spaces:

Proposition 1.29. Let C be a cell decomposition of Rm × Rn and, for (x, y) ∈ Rm × Rn, let
π(x, y) = x. Then

(1) C̃ := {π(C) | C ∈ C} is a cell decomposition of Rm;

(2) Let D ∈ C̃ and let CD := {C ∈ C | π(C) = D}. Then for any x ∈ D the sections
{Cx | C ∈ CD} are a cell decomposition of Rn and dimCx = dimC − dimD.

Finally, o-minimal structures offer the possibility of triangulating definable sets:

Theorem 1.30. Let A ⊂ Rn be a compact definable set and let Bi ⊂ A, i = 1, . . . , k be definable.
Then there is a simplicial complex K, with vertices in Qn, and a definable homeomorphism
φ : |K| → A sich that each Bi is a union of images by φ of open simplices from K.

One important fact that excludes from o-minimal structures such an untame behaviour as
that of the graph of sin 1/x is the following theorem:

Theorem 1.31. Let A ⊂ Rn be definable. Then dimA \A < dimA.

We end with the following useful lemma:

Lemma 1.32 (Curve Selecting Lemma). If A ⊂ Rn is definable and a ∈ A \ {a}, then there is a
definable curve γ : [0, 1)→ Rn, homeomorphic on its image and such that γ(0) = a, γ((0, 1)) ⊂ A.

2. Locally semi-algebraic, semi-analytic and subanalytic sets

The properties of locally semi-algebraic, semi-analytic and subanalytic sets are often richer
than these of general o-minimal structures. We are now in the local situation. We will still
have Boolean algebras with the properties (1), (2), (3) and (5) of the definition of o-minimal
structures but the projection property is not satisfied in general without additional hypotheses
like the set being bounded in the direction of the projection.

7This expresses well the tameness of the topology involved. No pathologies as that of the Peano curve are
permitted.
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Definition 2.1 ( Lojasiewicz). Let E ⊂ M where M is a real analytic variety (8). Then
dimE = −1, if E = ∅, or, if E is nonempty,

dimE = max{dim Γ | Γ an analytic submanifold : Γ ⊂ E}.

Definition 2.2. A point a ∈ E is called smooth or regular, if E ∩U is an analytic submanifold
for some neighbourhood U of a. Then we define dimaE := dimE ∩ U (it does not depend on
the choice of U).

Remark 2.3. Clearly dimE = max{dimaE | a regular in E}.

In the case of the dimension of a definable set A, we have for any k ∈ N,

dimA = max{dim Γ | Γ a definable C k submanifold : Γ ⊂ A}.

Proposition 2.4. In any of the classes of sets discussed in this part the assertions of Proposition
1.27 and of Theorem 1.31 remain true.

2.1. Semi-algebraic and locally semi-algebraic sets. An important feature of semi-algebraic
functions is that their smoothness implies analycity. Even more, the smoothness of a semi-
algebraic function is equivalent to it being an analytic-algebraic or Nash function (see [ L1]):

Definition 2.5. An analytic function f : U → R, where U ⊂ Rn is open, is called a Nash
function if for any x0 ∈ U there is a neighbourhood V 3 x0 and a non-zero polynomial P (x, t)
for which there is P (x, f(x)) ≡ 0 in V (9).

Example 2.6. The analycity assumption in the definition is better understood in view of the
following example of a (semi-algebraic) function f(t) =

3
√
t2 for t ∈ R. The polynomial

P (x, y) = y3 − x2

annihilates the graph, but f is not even differentiable at the origin.

Theorem 2.7 (see [BCR]). Given a semi-algebraic open set U ⊂ Rn and a semi-algebraic
function f : U → R the following equivalence holds:

f is of class C∞ ⇔ f is a Nash function.

For what follows we refer the reader to [ L1] where locally semi-algebraic sets were introduced
(later they were known as Nash sets).

Definition 2.8. A locally semi-algebraic set in an open set Ω ⊂ Rn is a set which in a neigh-
bourhood of any point a ∈ Ω can be described by a finite number of polynomial equations or
inequalities.

Remark 2.9. In particular, any set E ⊂ Ω described by Nash functions in an open semi-algebraic
set Ω is locally semi-algebraic. This implies that a semi-Nash set, i.e., a set described locally by
Nash functions, is a locally semi-algebraic set (and vice versa).
Recall that a Nash submanifold is a submanifold admitting an atlas of Nash functions. Let us ob-
serve that a point of a locally semi-algebraic set is regular if and only if in a small neighbourhood
of this point the set is a Nash submanifold.

Proposition 2.10. For any semi-algebraic set E ⊂ Rn there exists an algebraic set V ⊂ Rn
such that V ⊃ E and dimV = dimE.

8In this text ‘variety’ and ‘manifold’ mean the same.
9If U is connected, it is easy to check that the same polynomial is good at each point, i.e., P (x, f(x)) ≡ 0 in

the whole of U .
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Proposition 2.11. Each connected Nash submanifold N ⊂ Rn which is closed in a semi-
algebraic set is semi-algebraic. In particular, the frontier N \ N is semi-algebraic iff N is
semi-algebraic.

The following proposition provides a link between semi-algebraic and locally semi-algebraic
sets:

Proposition 2.12. If U is an affine chart of Pn and A ⊂ U , then A is semi-algebraic in U if
and only if A is locally semi-algebraic in Pn.

It can be proved that any semialgebraic function f : Ω → R, where Ω ⊂ Rn open, is Nash
ouside a nowhere-dense semialgebraic set Z ⊂ Ω. This implies that the category of semi-algebraic
sets admits Nash-analytic cell decomposition.

Two more facts about semi-algebraic functions, that we provide with  Lojasiewicz’s proofs:

Lemma 2.13. Let f : (a,+∞) → R be semi-algebraic. Then for some b,N > 0, there is
|f(x)| ≤ xN , when x > b.

Proof. Write f =
⋃
i

⋂
j{Pi = 0, Qij > 0} and observe that due to univalence of the graph,

for each i there is Pi 6≡ 0. Let P =
∏
i Pi. Since P (x, f(x)) ≡ 0, then f(x) is the root of

the polynomial P (x, ·) with polynomial coefficients ai(x), i = 1, . . . , d. If a0(x) is the leading
coefficient, then for some b > 0 there is a0(x) 6= 0, if x > b. Now, f(x) being a root, one has

|f(x)| ≤ 2
d

max
i=1

(
|ai(x)|
|a0(x)|

)1/j

, x > b,

and the lemma follows. �

Theorem 2.14 ( Lojasiewicz’s inequality). If f, g : K → R are continuous semi-algebraic func-
tions on a compact semi-algebraic set K and f−1(0) ⊂ g−1(0), then for some C,N > 0 there
is

|f(x)| ≥ C|g(x)|N , x ∈ K.

Proof. For t > 0 let Gt := {x ∈ K | t|g(x)| = 1}. These are compact semi-algebraic sets. If
Gt 6= ∅, then let m(t) := maxGt 1/|f |, otherwise put m(t) = 0. The function m : (0,+∞) → R
is semi-algebraic and thus by the preceding lemma, m(t) ≤ tN for t > b. This means that for all
x ∈ K, |g(x)| ∈ (0, 1/b) implies |g(x)|N ≤ |f(x)|. Finally let

M := max{|g(x)|N/|f(x)| | x ∈ K : |g(x)| ≥ 1/b}
and C := max{M, 1}. The assertion follows. �

Remark 2.15. Taking g(x) := dist(x, f−1(0)) we obtain the semi-algebraic version of the general
 Lojasiewicz inequality:

(#) |f(x)| ≥ const.dist(x, f−1(0))N , x ∈ K.
On the other hand, by applying the theorem to the functions G and F defined as

G : K ×K 3 (x, y) 7→ |f(x)− f(y)|
and F (x, y) = ||x− y|| we obtain the Hölder continuity of f (with exponent 1/N).

Corollary 2.16 (Regular separation). If A,B are compact nonempty semi-algebraic sets, then
for some constants C,N > 0,

dist(x,A) ≥ Cdist(x,A ∩B)N , x ∈ B.

Proof. Apply the preceding theorem to f(x) = dist(x,A) and g(x) = dist(x,A ∩B). �
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Remark 2.17. Both inequalities exclude any kind of flatness. In particular regular separation
means that the possible tangency of two sets at a common point is not of infinite order.

Example 2.18. The above properties may not be satisfied in general o-minimal structures —
for instance, Rexp contains exp(t) and exp(−1/t2) as definable functions: the first one does
not satisfy the inequality in the lemma above, the second one does not satisfy the  Lojasiewicz
inequality where g is the distance to the origin (neither is its graph regularly separated from its
domain).

Let us also note the following theorem, whose direct and elegant proof is presented in [S]:

Theorem 2.19. Let A be semi-algebraic and let A(k) = {x ∈ A | A ∩ U is a k-dimensional
analytic (Nash) manifold for some neighbourhood U 3 x}. Then A(k) is semi-algebraic. In
particular, the set of singular (i.e., non regular) points is semi-algebraic of dimension < dimA.

Remark 2.20. Finally, observe that for Rn the semi-algebraic homeomorphism h(x) = x/(1+||x||)
sends any semialgebraic set onto a semi-algebraic bounded set. This remark is important in view
of the fact that subanalytic sets form an o-minimal structure only if we restrict ourselves to those
of them which are ‘bounded at infinity’. In that case we have of course an analogy between that
class of sets (considered already in [T]) and semi-algebraic sets. See Definition 2.59.

2.2. Semi-analytic sets ( Lojasiewicz 1965).

Definition 2.21. A set A ⊂ Rn (or, more generally A ⊂M , where M is an analytic variety) is
called semi-analytic, if for any x ∈ Rn, there are a neighbourhood U 3 x and analytic functions
fi, gij in U such that

A ∩ U =

p⋃
i=1

q⋂
j=1

{x ∈ U | fi(x) = 0, gij(x) > 0}.

A mapping f : E → Rn with E ⊂ Rm is said to be semi-analytic if its graph is a semi-analytic
set in Rm+n.

Example 2.22. Note that the description is local but not in the sense that we are moving along
the set in question. The difference is better understood on the following example:
the graph G := {(x, sin(1/x)) | x > 0} is semi-analytic in R+ × R but not in the whole of R2

because no point (0, y) with |y| ≤ 1 has a neighbourhood in which G can be described by a finite
number of analytic equations and inequalities.

It is easy to check that the sets semi-analytic in a given analytic manifold form a Boolean
algebra. Moreover, the union of a locally finite family of semi-analytic sets and the pre-image
of a semi-analytic set by a semi-analytic mapping are semi-analytic. Semi-analytic sets have
almost all the nice properties of semi-algebraic sets except that they need not be stable under
proper projections.

The theory of semi-analytic and subsequently subanalytic sets originates in  Lojasiewicz’s
solution to Laurent Schwartz’s famous Division Problem (1957), see [ L2] for an account.
S.  Lojasiewicz was the first person who meticulously built the fully systematized theory of semi-
analytic sets (as in his preprint [ L1]), using normal partitions which are a very clever tool, being
a particular instance of a stratification:

Definition 2.23. A family of submanifolds of a manifold M is called a stratification of M if

• M is the union of the sets of the family
• the family is locally finite,
• the sets of the family are pairwise disjoint,
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• for any leaf (or stratum) Γ belonging to this family, its frontier Γ\Γ is the union of some
members of the family with dimensions strictly smaller than dim Γ.

Definition 2.24. Let f be a function of nonvanishing germ at a, a point of a real analytic
manifold M . A stratification of a neighbourhood of a is said to be compatible with f if on any
leaf of the stratification either f ≡ 0, or f 6= 0.
Let E ⊂ M . A stratification N is compatible with the set E if, for any stratum Γ ∈ N , either
Γ ⊂ E, or Γ ∩ E = ∅ (10).

In 1965,  Lojasiewicz presented a construction of the so called normal partitions which are
special stratifications of normal neighbourhoods. The normal neighbourhoods form a topological
basis of neighbourhoods. The normal partition of a neighbourhood starts with choosing the
direction that is good for the Weierstrass Preparation Theorem and replacing the zeroes of an
analytic germ by the zeroes of a distinguished polynomial. Then the construction goes down.
At each step a good direction must be chosen (this makes the construction non-explicit), the
distinguished polynomials are complexified and their determinants are studied in order to control
multiple zeroes. All this ends up as a very detailed stratification called normal partition. For a
thorough construction, consult [ L1] and [DS1].

Theorem 2.25 ( Lojasiewicz). Let f1, . . . , fr be analytic functions defined in a neighbourhood of
the origin of a finite dimensional real vector space. Then there exists a normal partition N at 0
compatible with f1, . . . , fr. (The same is true on any real analytic manifold.)

Normal partitions play a crucial role in the theory of semi-analytic sets. The striking fact
about the normal partitions is that the existence of such a partition compatible with a given set
is a necessary and sufficient condition for the set to be semi-analytic:

Theorem 2.26 ([ L1]). A set E ⊂M is semi-analytic if and only if at any point a ∈M there is
a normal partition compatible with E.

Remark 2.27. Of course, given a finite family of semi-analytic sets in a real analytic manifold
we can always find a normal partition compatible with them, which is just a restatement of
Theorem 2.25.

Normal partitions are also used to prove the semi-analytic version of the Bruhat-Cartan-
Wallace Curve Selecting Lemma:

Lemma 2.28 (Semi-analytic curve selecting lemma). Let E be a semi-analytic set and suppose

that a ∈ E \ {a}. Then there exist an analytic function γ : (0, 1) → E yielding a semi-analytic
curve and such that limt→0+ γ(t) = a.

As the construction of normal partitions is somehow tiring, this strong (but elementary) tool
was used almost uniquely by Polish mathematicians, with one important exception: Pfaffian
varieties, the theory of which started in Dijon (see section 3).

Although the distance to a semi-analytic set need not be semi-analytic (it is subanalytic —
see last section Theorem 4.3) we have the following:

Theorem 2.29. The statement of Corollary 1.12 is true in the semi-analytic category. More-
over, the  Lojasiewicz inequalities 2.14 and (#) as well as the regular separation 2.16 and Hölder
continuity hold for semi-analytic sets.

To finish this part let us quote two important theorems:

10In other words, Γ ∩ E 6= ∅⇒ Γ ⊂ E, just as in Definition 1.18.
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Theorem 2.30 ( Lojasiewicz). For any semi-analytic set A, the family cc(A) is locally finite
and each component C ∈ cc(A) is semi-analytic.

Theorem 2.31 ( Lojasiewicz). An obvious analogon of Theorem 2.19 holds for semi-analytic
sets.

2.3. Subanalytic sets (1975). For this part we refer the reader to [DS1] for the most detailed
presentation. Otherwise, there are: [BM] (a much more concise presentation but including an
elementary approach to uniformization), and still less detailed,  Lojasiewicz’s book [ LZ] written
in Spanish and  Lojasiewicz’s short survey [ L2]. And of course there is the preprint of H. Hironaka
presenting his approach via desingularization [H2].

After completing the theory of semi-analytic sets in 1965 S.  Lojasiewicz tried to study the
projections of relatively compact semi-analytic sets but was stopped by the difficulty of the
theorem of the complement.

The theorem of the complement was finally proved, independently, by H. Hironaka and
A. Gabrielov. For H. Hironaka the theory of subanalytic sets was a kind of by-product of his
famous desingularization theorem (compare [H1]). Gabrielov in [G] proved the theorem in an el-
ementary way, reducing it to the study of complements of the graphs of functions. S.  Lojasiewicz
decided to build the theory of subanalytic sets from a scratch, using normal partitions and an
idea of René Thom, which was later given the name of Fibre-Cutting Lemma.

Many mathematicians proved very interesting subanalytic results using Hironaka’s approach.
Let us quote M. Tamm or R. Hardt and his very interesting stratification theorems [Ht1]. All
theorems about subanalytic sets can be obtained by  Lojasiewicz’s methods, too. They are
gathered in [DS1].

Definition 2.32. A set E in a real analytic variety M is called subanalytic if for any x ∈ M
there is a neighbourhood U 3 x such that E ∩ U = π(A), where π : M ×N →M is the natural
projection, N is a real variety and A is semi-analytic and relatively compact in M ×N .

Remark 2.33. Projections of semi-analytic sets need not be subanalytic even if the sets are
relatively compact and the projections are proper(11) — see Example 4.1. That is a major
difference with the definable case that should be borne in mind.

Remark 2.34. The union of a locally finite family of subanalytic sets and the intersection of a
finite family of subanalytic sets are subanalytic.

Let us speak now about a very useful concept of S.  Lojasiewicz, namely N -relatively compact
sets and their projections.

Definition 2.35 ([ L1]). Let M,N be two analytic varieties and let π : M ×N →M the natural
projection. A subset E ⊂ M × N is called N -relatively compact if for any A ⊂ M relatively
compact the set (A×N) ∩ E is relatively compact, too.

Remark 2.36. If the set E in the definition above is subanalytic in M ×N , then π(E) is suban-
alytic, too.

Definition 2.37. A map f : E → N , where E ⊂M is a nonempty subanalytic set, is subanalytic
iff its graph f is subanalytic in M ×N .

Note that the domain of a subanalytic map need not be subanalytic, especially if its graph is
not N -relatively compact.

11The pre-image of any compact set is compact
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Definition 2.38. A map f ⊂M ×N is said to be h-relatively compact if the pre-image of any
relatively compact subset of N is relatively compact. The map f is called v-relatively compact
if the image of any relatively compact subset of M is relatively compact (12).

Remark 2.39. f is h-relatively compact iff its graph est M -relatively compact and f is v-relatively
compact iff its graph is N -relatively compact. If f is proper, then it is h-relatively compact and
each continuous f : M → N with closed domain is v-relatively compact.

Proposition 2.40. Let f ⊂ M × N be a map and E a subanalytic subset of N . Any of the
following conditions guarantees that f−1(E) is subanalytic:

(a) f is subanalytic v-relatively compact (13),
(b) E is relatively compact and f is subanalytic.

Proof. Observe that f−1(E) = π(f ∩ (M ×E)), where π : M ×N →M is the natural projection,
and apply 2.36. �

Remark 2.41. Note that in o-minimal structures the assertion holds without any extra assump-
tions on the definable function f .

Proposition 2.42. Let f ⊂ M ×N be a map and H a subanalytic subset of M . Then any of
the following conditions implies that f(H) is subanalytic in N :

(a) f is subanalytic h-relatively compact (14);
(b) H is relatively compact and f is subanalytic;
(c) H is relatively compact and f is analytic in a neighbourhood of H;
(d) f is analytic in a neighbourhood of H and f |H is proper.

Proof. It suffices to apply Remark 2.36 and observe that, if π : M × N → N is the natural
projection, then f(H) = π(f ∩ (H ×N)). �

We give below three other definitions of subanalytic sets (they all are equivalent):

Definition 2.43. A subset E of a real analytic variety M is called subanalytic if for each x ∈M
there is a neighbourhood V such that E ∩ V is the image of a semi-analytic set by a proper
analytic mapping.

Proposition 2.42 implies that this definition is equivalent to the previous one.

Theorem 2.44 (Gabrielov). If E ⊂M is subanalytic, then so is M \ E.

Proposition 2.45. Basic properties of a subanalytic set E ⊂M :

• The closure and thus the interior (cf. Gabrielov’s Theorem) of a subanalytic set are
subanalytic.

• The connected components C ∈ cc(E) are all subanalytic.
• The family cc(E) is locally finite in M .
• If E is relatively compact, then #cc(E) <∞.
• E is locally connected.
• If F ⊂ E is open-closed in E, then it is subanalytic.
• The Curve Selecting Lemma holds for subanalytic sets: if a ∈ E \ {a}, then there is an

analytic function γ : (−1, 1)→M such that γ(0) = a and γ((0, 1)) ⊂ E. Moreover, γ is
a homeomorphism on its image Γγ|[0,1) which is a semi-analytic arc of class C 1.

12h comes from ‘horizontally’, while v stands for ‘vertically’, cf. one looks ‘through’ the graph.
13This is the case if e.g. f is analytic in M .
14This is the case if e.g. f is analytic in M and proper.



A LONG AND WINDING ROAD TO DEFINABLE SETS 71

The proofs are based on the analoguous properties of semi-analytic sets and the Fibre-cutting
Lemma (Lemmata A and B below).

Proposition 2.46. Basic properties of subanalytic functions:

• The composition g ◦ f of subanalytic functions is subanalytic provided that either f is
v-relatively compact, or g is h-relatively compact.

• If fi . . . , fk : A→ Ni, i = 1, . . . , k are subanalytic, then the mapping

(f1, . . . , fk) : A→ N1 × . . .×Nk
is subanalytic, too.

• The sum, the product and the quotient of real subanalytic functions defined on M is
subanalytic, provided they are all locally bounded.

Remark 2.47. Similar properties are satisfied by definable functions without extra assumptions.
Note in particular that the composition of two subanalytic functions need not be subanalytic.
The apparent analogy to semi-algebraic geometry or o-minimal structures is responsible for the
fact that authors that use the subanalytic theory are often oblivious to that subtlety.

Definition 2.48. A semi- or subanalytic leaf in M is any analytic submanifold of M which is
at the same time a semi- or, respectively, subanalytic set.

Example 2.49. The graph of y = sin 1/x is not subanalytic in the plane (note that the dimension
of its frontier is again 1 which would be impossible for a subanalytic set, as Theorem 1.31 holds
in the subanalytic category) although it is an analytic submanifold of it.

The following theorem of  Lojasiewicz plays an important role in his theory of subanalytic sets
without desingularization:

Theorem 2.50 ( Lojasiewicz). Let Γ be a semi-analytic leaf in an affine space X. Denote by
Gk(X) the kth Grassmannian of X. Let τ : Γ 3 x 7→ TxΓ ∈ Gk(X), where k = dim Γ, be the
tangent mapping (TxΓ is the tangent space at x). Then for any semi-algebraic set E ⊂ Gk(X),
the pre-image τ−1(E) is semi-analytic in X.

For the subanalytic generalization see Theorem 4.23.
The key role in the subanalytic theory is played by the following lemmata suggested by René

Thom (see [D LS]):

Lemma (A) (Decomposition). Let A be a semi-analytic, relatively compact subset of real, finite-
dimensional vector space X. Assume that X = U ⊕ V is the direct sum of two vector spaces
and let π : X → U be the projection parallel to V . Assume that Gk(X) is decomposed into a

finite number of open semi-algebraic sets: Gk(X) =
⋃
G

(k)
i . Then there exists a finite family of

semi-analytic leaves {Γj} such that A =
⋃

Γj and

(1) the rank rk πΓj is constant on each Γj,
(2) the Γj are members of some normal partitions,

(3) for any j there is an i such that τ(Γj) ⊂ G(k)
i where k = dim Γj.

Lemma (B) (Replacement). Let A,X,U, V, π and G
(k)
i be as in Lemma A. Then there is a finite

family of semi-analytic leaves {Γj} such that Γj ⊂ A, π(A) = π(
⋃

Γj) and

(1) for any j, πΓj is an immersion,
(2) the Γj are members of normal partitions,

(3) for any j there is an i such that τ(Γj) ⊂ G(k)
i , k = dim Γj.
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Remark 2.51. If E is semi-analytic, then τ−1(E) is only subanalytic (see 4.23), but in case where
Γ is semi-algebraic, τ is semi-algebraic as well.

Hironaka started his theory with a different definition of subanalytic sets:

Definition 2.52. A set E is called subanalytic if for any point of M there is a neighbourhood
V such that

E ∩ V =

p⋃
i=1

fi1(Ai1) \ fi2(Ai2)

where fij are analytic and proper and Aij are analytic sets.

The fourth definition of subanalytic sets is:

Definition 2.53. A subset E ⊂ M is called subanalytic in M if for any point of M there is a
neighbourhood V such that

E ∩ V =

p⋃
i=1

fi1(Mi1) \ fi2(Mi2),

with fij : Mij →M analytic and proper, and this time Mij analytic varieties.

Theorem 2.54 (see [DS1] for a proof). All four definitions of subanalytic sets are equivalent.

Finally let us recall other important theorems:

Theorem 2.55 ( Lojasiewicz). The  Lojasiewicz inequality 2.14 and (#) as well as the regular
separation 2.16 and Hölder continuity of functions hold for subanalytic sets.

Theorem 2.56 (Gabrielov). Let E ⊂ M × N be a relatively compact subanalytic set, where
M,N are analytic varieties. Then there is a constant N such that #cc(Ex) ≤ N for all x ∈M .

A deep result of W. Paw lucki below is a subanalytic version with parameter of the well-known
complex Puiseux Theorem:

Theorem 2.57 ([P1]). Let X,Y be two real, finite-dimensional vector spaces, Γ a subanalytic
leaf relatively compact in X, Θ: Γ×(0, 1)→ Y an analytic map which is subanalytic in X×R×Y
and bounded.

Then there exists a closed subanalytic set E ⊂ Γ, dimE < dim Γ and k ∈ N such that:
for all a ∈ Γ \E the map (x, t) 7→ Θ(x, tk) has an analytic extension to a neighbourhood of (a, 0)
in Γ× R.

Using this K. Wachta obtained an important version of the Curve Selecting Lemma 2.28 for
open subanalytic sets:

Theorem 2.58 (Wachta). Let E ⊂ Rn be an open subanalytic set and a ∈ E. Then the arc
from the Curve Selecting Lemma can be chosen semi-algebraic (i.e., Nash).

Of course, the openness assumption is unavoidable due to the existence of transcendental
curves.

At this point we stress again the fact that subanalytic sets do not form an o-minimal structure
(15). They will, if we restrict ourselves to the so-called globally (or totally) subanalytic sets:

15The difference in behaviour of subanalytic and definable sets may be illustrated by the main result of [Di],
see the last section.
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Definition 2.59. A subanalytic set E ⊂ Rn is called globally subanalytic if its image by the
semialgebraic homeomorphism h(x) = x/(1 + ||x||) sending it to the unit Euclidean ball is
subanalytic.

Theorem 2.60. Globally subanalytic sets form an o-minimal structure which coincides with
Ran.

Remark 2.61. The same class of sets is obtained starting from functions subanalytic at infinity
(see [T], see also [DS1]), i.e., such subanalytic functions f : M → R which are subanalytic in
M × S1.

We end with a very useful lemma of K. Kurdyka, generalizing a result of M. Tamm (for C k),
and its application:

Lemma 2.62 (Kurdyka). Let f : U → R be a function subanalytic at infinity, U ⊂ Rn an
open set. Then there is k ∈ N such that for any x ∈ U , if f is of Gâteaux class G k (16) in a
neighbourhood of x, then f is analytic at x.

Remark 2.63. In connection with Remark 1.20 we may observe that this lemma readily implies
that the structure Ran admits analytic cell decomposition (compare Theorem 1.19).

This was used by Kurdyka to obtain a desingularization-free proof of the following:

Theorem 2.64 (Tamm [T]). For any subanalytic set E the set of singular points E \ RegE is
subanalytic of dimension strictly smaller than dimE.

Remark 2.65. There is no direct counterpart of the subanalytic Puiseux Theorem or the lemma
above in general o-minimal structures (a necessary condition would be their polynomial bound-
edness, cf. Definition 4.5). Tamm’s Lemma can be extended to the structure Ran,fr,r∈R defined
by the restricted analytic functions together with fr(t) = tr for t > 0 and fr(t) = 0 for t ≤ 0.
This implies analytic cell decomposition in the structure. See [vdDM] for details.

3. Pfaffian varieties and subpfaffian sets

This case is treated separately because it is much more recent than those dealt with in sections
1 and 2 and has an interesting history, often forgotten when Pfaffian sets are considered only on
the ground of the model theory.

Subanalytic sets are insufficient for studying, for instance, the problems that arise in differ-
ential equations. Let us quote the following example from [MR]:{

ẋ = y,

ẏ = x2.

The solutions of such a simple polynomial system are flat functions const.exp(−1/x) which are
not subanalytic, but still quite regular, not to mention the fact that they arose from a simple
polynomial dynamical system.

Outside France the history of Pfaffian varieties and the context in which they were born are
totally unknown. And this despite the fact that [Ho2] contains a good historical introduction
about how Pfaffian, semi-Pfaffian and sub-Pfaffian sets came into being. It all started with

16Recall that a function f : U → R with U ⊂ Rn open is of class G k in U if at any point x ∈ U f possesses its

kth Gâteaux derivative: for any h ∈ Rn, the function t 7→ f(x+ th) is k times differentiable at zero and the kth
derivative is a homogeneous polynomial of degree k in h.
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Hilbert XVIth problem and the works of Khovanskĭı (see [Kh], [MR], [W2]). Hilbert XVIth
problem deals with polynomial dynamical systems in the plane:

(PDS)

{
ẋ = P (x, y),

ẏ = Q(x, y),

and the question whether their limit cycles (closed trajectories that are isolated in the set of all
closed trajectories of the system) can accumulate.

Extensive work was done on the subject in France and in Russia in the late 80’s. Let us
recall the names of Ilyashenko and Trifonov as well as those of Roussarie, Moussu, Ecalle and
Ramis. Hilbert’s question went further (Hilbert wanted to obtain a formula relating the maximal
number of limit cycles to the degrees of P and Q above) but just their non-accumulation was
a very difficult problem. As limit cycles can only accumulate on limit sets (cf. e.g. [DR]), it is
possible to write a generalization of the classical Poincaré map, called the map of first return
as it associates to the starting point (time t) the point of the first return to the curve we chose
as transversal to the limit set, γ(t). Back in 1988 R. Moussu started studying the properties of
such mappings in order to show that γ(t)− t, even when it is not analytic, has no accumulation
of zeroes. The map γ(t) is seldom subanalytic — it often comes out infinitely flat. The idea was
then to show it cannot oscillate.

Since solving (PDS) is equivalent to studying ω = 0, where ω is the differential form (i.e.,
Pfaffian form) ω = −Q(x, y)dx + P (x, y)dy, the notion of Pfaffian varieties was introduced by
R. Moussu and C. Roche and studied, initially by Moussu, Roche and J.-M. Lion. There is a
very good survey about that written by Moussu [M], based on [MR].

Definition 3.1. A Pfaffian hypersurface in Rn is a triplet (V, ω,M), where M ⊂ Rn is open and
semi-analytic, ω is an analytic one-form defined on a neighbourhood of M and V is a maximal
integral variety of ω = 0 in M , smooth and of codimension 1 (17).

In other words we are given a codimension one foliation of a neighbourhood of M having V
as one of its leaves and no singularities on M .

Definition 3.2. Let X ⊂ Rn. (V, ω,M) is of Rolle in X (or just of Rolle, if X = M), if for any
analytic γ : [0, 1]→ X ∩M there is a t ∈ [0, 1] such that γ′(t) ∈ Kerω(γ(t)) (18).

In other words, any analytic path in X ∩M connecting two points of V is tangent at some
point to the field of hyperplanes defined by ω = 0. In particular this excludes spiralling.

Definition 3.3. A Pfaffian hypersurface (V, ω,M) is separating, if the complement M \ V has
exactly two connected components whose common border in M is V .

By a theorem of Khovanskĭı, a separating Pfaffian hypersurface is always of Rolle. The
converse is not true as can be seen by considering M = R2 \ {0} and ω = x2dy − ydx. Any
integral curve of ω = 0 is a Pfaffian hypersurface of Rolle and thus in particular the graphs of
const.exp(−1/x), x > 0. But their complement in M is connected. Besides, that example shows
that in general V is just an analytic immersed submanifold which is not semi-analytic in Rn.

Theorem 3.4 ([MR]). Let S(ω) = {x | ω(x) = 0} be the singular locus of ω. If M \ S(ω) is
simply connected, then any Pfaffian hypersurface (V, ω,M) is of Rolle. If ω is integrable (19),
then for any Pfaffian hypersurface (V, ω,M), V is a leaf of the foliation defined by ω.

17That is to say: ω(x) 6= 0 if x ∈ V , Kerω = TxV and V is the maximal variety with this property among all

the connected immersed subvarieties of M .
18In some sense that is an inverse approach to the classical Rolle Theorem: think of ω = dy in R2 and any

differentiable function y = γ(x) such that e.g. γ(0) = γ(1) = 1 — at some point t there is γ′(t) = 0.
19In the sense that ω ∧ dω = 0 cf. the Frobenius Theorem.
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Theorem 3.5 ([MR]). Let X ⊂ Rn be semi-analytic and bounded and let ω1, . . . , ωk be analytic
one-forms in a neighbourhood of M , where M ⊂ Rn is an open semi-analytic set. Then there
exists a natural number b = b(M,X,ω1, . . . , ωk) such that #cc(X ∩ V1 ∩ . . . ∩ Vk) ≤ b, where
(Vi, ωi,M) are Pfaffian hypersurface of Rolle.

Remark 3.6. The last theorem implies  Lojasiewicz’s Theorem bounding the number of connected
components of the sections of a semi-analytic set.

The interesting point here is that this is the only case of applications of  Lojasiewicz’s normal
partitions outside Poland. Despite the fact that  Lojasiewicz did this work in France (his preprint
was published in 1965 by IHES), the normal partitions were almost exclusively used in Poland.
Applying them to study the sets that appear as solutions of differential equations was, indeed,
a very original, ingenuous and unexpected way to use them.

This happened before the o-minimal structures were introduced.
Lion and Rolin [LR] proved that relatively compact Rolle (i.e., non-spiralling) leaves of a real

analytic foliations belong to a class of stratifiable subsets of Rn which is stable under intersection,
union, set difference, linear projections and closure. That means that Rolle leaves belong to an
o-minimal structure.

The basic properties of Pfaffian hypersurfaces are all gathered (with proofs) in the article of
R. Moussu and C. Roche. Later, numerous other extremely useful properties of Pfaffian sets
were proved. For instance Lion [L] showed, (with the use of  Lojasiewicz’s normal partitions) that
there is a semi-analytic stratification of a neighbourhood of each point a ∈ Rn, compatible with
an analytic differential one-form ω and a semi-analytic open set M . This stratification allows a
local decomposition of every integral hypersurface V of ω = 0 into ‘plaques’ . Every leaf is the
graph of an analytic function and if a is in the closure of a leaf, then a Pfaffian curve ending in a
with a tangent lies in V . Lion and Roche obtained a Pfaffian Curve Selecting Lemma and then
Lion proved a Pfaffian version of the  Lojasiewicz inequality.

A natural thing is to construct subpfaffian sets starting from semipfaffian sets defined using
intersections of leaves of Pfaffian foliations with the strata of  Lojasiewicz’s normal partitions
(just like it was done for subanalytic sets). This way of proceeding originates in a question asked
by R. Moussu and M. Shiota — what do we obtain by adding to the class of subanalytic sets the
solutions of Pfaffian equations? And this is how the whole theory is presented in the interesting
paper [Ho1]. (In what follows we can replace Rn by an analytic manifold N .) Semipfaffian
geometry was suggested already by [L] or [MR]. In [Ho1] Z. Hajto proved a kind of analog of
Gabrielov theorem on the complement 2.44. We present it hereafter.

Definition 3.7. A normal partition N is said to be strongly adapted to a finite family of Pfaffian
hypersurfaces V := {(Vi, ωi,Mi), }i∈I if it is adapted to {Mi}i and any subfamily of {ωi} in the
sense that for any leaf Γ ∈ N there are ωi1 , . . . , ωik forming a base at each point x ∈ Γ for the
linear span (in (Rn)∗) of {ωi(x)}.

Then by [L], for any leaf Γ ∈ N such that all the hypersurfaces from V is of Rolle for paths in
Γ, the collection VΓ := {

⋂
i∈J Vi ∩ Γ}J⊂I is a finite family of analytic submanifolds with normal

crossings in Γ; we call them Pfaffian leaves. These induce a stratification of Γ when we consider
the connected components of Nk \Nk−1 (with N−1 = ∅) where Nk =

⋃
{L ∈ VΓ | dimL ≤ k},

k = 0, . . . ,dim Γ. These connected components are called semi-pfaffian leaves.

Definition 3.8. A subset E ⊂ Rn is semi-pfaffian (respectively: basic semi-pfaffian) if at every
point a ∈ Rn there is a finite family of Pfaffian hypersurfaces V defined for neighbourhoods
Mi 3 a and a normal partition N , defined in a normal neighbourhood U 3 a, strongly adapted
to V and such that E ∩U is a finite union of semipfaffian leaves. (respectively: of Pfaffian leaves
defined by some strata of N ).
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Locally finite unions and intersections and the Cartesian product of semipfaffian sets are
semipfaffian. The family of connected components of a semipfaffian set is locally finite and
the components are semipfaffian as well. However, there lacks the theorem on the closure of a
semipfaffian set (and this is exactly a theorem one needs in the subanalytic category in order to
prove the Gabrielov Theorem on the complement of a subanalytic set).

Definition 3.9. A subset E ⊂ Rn is subpfaffian if each point a ∈ Rn has a neighbourhood U
such that E ∩ U = π(A) where A ⊂ Rn × Rk is a relatively compact basic semipfaffian set and
π : Rn × Rk → Rn is the natural projection.

Again locally finite unions and intersections remain in the category as well as the connected
components which again form a locally finite family. Moreover, the projection on Rn of a Rk-
relatively compact subpfaffian set E ⊂ Rn × Rk is subpfaffian. In [Ho2] lemmata A and B are
proved for subpfaffian sets. We remark that by a result of Cano, Lion and Moussu, the frontier
of a Pfaffian hypersurface of Rolle is a subpfaffian set.

Definition 3.10. A semipfaffian set E ⊂ Rn is subregular if E \ E is contained in a closed
subpfaffian set of dimension < dimE (the dimension being computed in the sense of  Lojasiewicz
2.1).

Theorem 3.11 (Hajto). Any basic semipfaffian set is subregular.

Remark 3.12. This theorem implies that the closure of any subpfaffian set is subpfaffian.

Theorem 3.13 (Hajto). The complement of a subpfaffian set is a subpfaffian set.

All this is a good starting point for further study of the solutions of Pfaffian equations.

There is also another approach to Pfaffian geometry and we really do mean another, since
until now nobody has compared RPfaff with the following construction.

Definition 3.14. A C 1 function f : Rn → R is called Pfaffian if there exist C 1 functions
f1, . . . , fk : Rn → R with fk = f , such that

∂fi
∂xj

(x) = Pij(x, f1(x), . . . , fi(x)), i = 1, . . . , k, j = 1, . . . , n,

for some polynomials Pij .

The exponential function is clearly a Pfaffian function. Actually, any exponential polynomial

f(x1, . . . , xn) := P (x1, . . . , xn, e
x1 , . . . , exn),

where P is a polynomial in 2n variables, is a Pfaffian function. By a theorem of Khovanskĭı
[Kh], any set of the form f−1(0) where f is Pfaffian, has only finitely many connected com-
ponents. Using these functions one constructs the structure RPfaff . It has remained for long
an open question whether this structure is o-minimal. In 1991, A. J. Wilkie [W1] proved the
theorem of the complement (an analogous to the Gabrielov theorem for subanalytic sets) for
geometric cathegories that include functions of the form P (x1, ..., xn, log x1, ...., log xn) or again
P (x1, ..., xn, exp(x1), ..., exp(xn)).
Finally, in 1999 it was proved by Wilkie that:

Theorem 3.15 ([W2]). The structure RPfaff is o-minimal.
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4. Relations and differences between the classes of sets introduced so far

We start with observing that the following inclusions of the Boolean algebras we were talking
about hold:

semi-algebraic sets ⊂ locally semi-algebraic sets ⊂ semi-analytic sets ⊂ subanalytic sets.

In other words we have an increasing chain of classes used as a model for introducing o-minimal
structures.

The simplest example of a semi-analytic set whose projection is no longer semi-analytic was
given by  Lojasiewicz using the Osgood transcendental function f(x, y) = (xy, xey).

Example 4.1. Let A := {(x, y, xy, xey) | x, y ∈ (0, 1)} and consider π(x, y, u, v) = (x, u, v).

Then π(A) = {((x, y, xey/x) | 0 < y < x < 1} and this set is not semi-analytic at 0 ∈ π(A). If
this were the case, there would be a description

π(A) ∩ U =

p⋃
i=1

q⋂
j=1

{fi(x, y, z) = 0, gij(x, y, z) > 0}

with fi, gij analytic in the neighbourhood U of zero. The set π(A) is the graph of an analytic
function and so it is not open. This implies that for some i there is fi 6≡ 0 and fi vanishes on some
open subset of π(A). By the identity principle, fi ≡ 0 on π(A) ∩ V with some neighbourhood
V ⊂ U of zero, i.e., f(x, xy, xey) = 0 for x ∈ (0, ε), y ∈ (0, 1).

Expanding fi =
∑
ν≥k Pν into a series of homogeneous forms Pν of degree ν, with Pk 6≡ 0,

yields then Pν(1, y, ey) ≡ 0 for all ν and all y ∈ (0, 1), and thus for all y ∈ R. Then

Q(y, z) := Pk(1, y, z)

is a non-zero polynomial vanishing on the graph of the exponential function which is a contra-
diction.

There are however two instances when the projection respects semi-analycity:

Theorem 4.2 ([ L1]). Let M,N be analytic varieties and A ⊂ M × N a semi-analytic set M -
relatively compact. Let π : M ×N → N be the natural projection. If either dimA ≤ 1, or there
is a semi-analytic set in N of dimension ≤ 2 containing π(A), then π(A) is semi-analytic. In
particular, this is the case, if dimN ≤ 2.

• Among the well-known and widely used results concerning subanalytic sets there is the fact
that the Euclidean distance to a semi- or subanalytic set is subanalytic. As we have seen, this
result is valid also in o-minimal structures: the distance to a definable set is definable. However,
with subanalytic sets one has to be somewhat more cautious — the assertion stated above is not
quite right (though one comes across it even in textbooks!).

Theorem 4.3 (Raby). Let E be subanalytic in an open set U ⊂ Rn and let δ(x) := dist(x,E)
denote the Euclidean distance. Then δ is subanalytic in some neighbourhood V ⊂ U of E.
Besides, if U = Rn, then V can be taken to be Rn, too.

However, if U 6= Rn, then in general V ( U as is shown in the following example of Raby:

Example 4.4. The set E = {(1/n, 0) | n = 1, 2, . . . } is semi-analytic in R2 \ {0}. If δ were
subanalytic in the whole of R2 \ {0}, one would have

{x ∈ R2 \ {0} | δ(x) = 1} ∩ (R× {1}) = {(0, 1), (1/n, 1), n = 1, 2, . . . }

which clearly is not subanalytic, being discrete and accumulating in R2 \ {0}.
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It is worth noting that for α ∈ R the function tα, t > 0 is subanalytic if and only if α ∈ Q.
This is a consequence of Theorem 2.57. On the other hand, in the structure Rexp any tα is
definable, because ln t is so (as the inverse of the exponential) and tα = exp(α ln t). Of course
each tα is definable in Ran,fr,r∈R.

On the other hand, as noted in Example 2.18, such nice properties as the  Lojasiewicz inequal-
ities do not hold in general o-minimal structures. They are satisfied in polynomially bounded
o-minimal structures. These are defined by analogy to Lemma 2.13:

Definition 4.5. A structure is polynomially bounded if every function f : R→ R definable in it
satisfies for some N , f = O(tN ) at infinity.

This property has a very nice characterization:

Theorem 4.6 (Miller [Mi]). An o-minimal structure is not polynomially bounded iff the expo-
nential function is definable in it.

Theorem 4.7 (cf. [vdDM]). In a polynomially bounded o-minimal structure, continuous defin-
able functions on compact sets are Hölder continuous and they satisfy the  Lojasiewicz inequality
2.14 (therefore also the property of regular separation 2.16 is satisfied in such structures).

Nonetheless, there is a general definable counterpart of the  Lojasiewicz inequality, namely:

Theorem 4.8 ([vdDM]). If f, g : A → R are continuous definable functions such that
f−1(0) ⊂ g−1(0) and A ⊂ Rn is compact, then there exists a C p definable, strictly increas-
ing bijection φ : R→ R which is p-flat at zero (20), such that |φ(g(t))| ≤ |f(t)| on A.

In [K1] Kurdyka showed in this spirit the general definable analogon of the  Lojasiewicz gradi-
ent inequality, which is important due to its applications to the study of the gradient dynamics.
We recall both versions:

Theorem 4.9. (Gradient inequality.)
(1)  Lojasiewicz’s classical gradient inequality: Let f : (Rn, 0)→ (R, 0) be an analytic germ (21).
Then there exists θ ∈ (0, 1) such that in a neighbourhood of zero ||gradf(x)|| ≥ |f(x)|θ.
(2) Kurdyka’s definable version: Let f : Ω→ (0,+∞) be a definable differentiable function on an
open and bounded Ω ⊂ Rn. Then there exist positive constants c, r > 0 and a strictly increasing
positive definable function φ : R+ → R of class C 1 such that ||grad(φ ◦ f)(x)|| ≥ c whenever
f(x) ∈ (0, r).

Remark 4.10. Of course the classical version cannot be applied to flat functions. Therefore it
cannot hold e.g. in Rexp. Though it may not be apparent, Kurdyka’s version is equivalent to
the Kurdyka-Parusiński generalization of the classical  Lojasiewicz’s gradient inequality.

It may seem at first glance that the definable version consists only in avoiding the problem
of possible existence of flat definable functions by composing f with a kind of ‘desingularizing’
function. However, even in this form the generalized gradient inequality has a great impact on
the gradient dynamics (see [ L3], [K1]):

Theorem 4.11. (1)  Lojasiewicz’s gradient theorem: If f : (0,Rn) → ([0,+∞), 0) is analytic,
then there is a neighbourhood U of zero such that each trajectory yx(t) of x′ = −gradf(x) with
yx(0) = x ∈ U satisfies:

(1) yx(t) is defined for all t ≥ 0;

(2) the length lg(yx) =
∫ +∞

0
||y′x(t)|| dt is finite and uniformly bounded;

20i.e., ϕk(0) = 0, k = 0, . . . , p.
21It is still true for f just subanalytic C 1.
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(3) there is an equilibrium point z ∈ {gradf = 0} for which there is limt→+∞ yx(t) = z (22).
Moreover, the covergence is uniform with respect to x ∈ U .

(2) Kurdyka’s gradient theorem: If f : U → R is definable and C 1 on a bounded open set U ⊂ Rn,
then:

(1) all the trajectories of −gradf have uniformly bounded length;
(2) the ω-limit set of any trajectory consists of only one point.

Remark 4.12. For further information on applications in non-smooth analysis and optimization
we refer the reader to [BDLM]. Note by the way, that the first applications in optimal control
were done for subanalytic geometry, see e.g. [T], (or works of H. Sussmann,  Lojasiewicz jr,
Brunovsky in optimal control, some other applications by B. Teissier — cf. the most recent [BT]
with J.-P. Brasselet — and J.-P. Françoise, Y. Yomdin, e.g. [FY] . . . ).

Another kind of application of subanalytic geometry, this time in approximation theory, was
performed by Paw lucki and Pleśniak who introduced in [PP] uniformly polynomially cuspidal
sets in connection with the Markov inequality for bounded subanalytic sets (here the Wachta’s
Curve Selecting Lemma 2.58 is useful). Their result was then carried over to the definable
setting (some o-minimal structures generated by quasi-analytic functions) by R. Pierzcha la [Pr]
— polynomial boundedness of the structure is needed.

Another result that found direct applications:

Theorem 4.13 (Denkowska-Wachta). Let V and W be two finite-dimensional real vector spaces
and π : V ×W → V the natural projection. If E ⊂ V ×W is subanalytic and F = π(E), then
there exists a subanalytic function ϕ : F →W such that ϕ ⊂ E.

Here E can be seen as a subanalytic multifunction:

F 3 v 7→ Ev ⊂W
and ϕ is what is called a selection for this multifunction. The theorem above has applications
in optimization where subanalytic multifunctions appear most naturally (cf. the works of R. J.
Aumann, H. Halkin and E. C. Hendricks or, more recently M. Quincampoix) and the problem
of finding a subanalytic selection is often crucial.

Remark 4.14. There exists a natural definable counterpart of this theorem, see e.g. [vdD]. It
may be used to obtain the Curve Selecting Lemma.

• Some more metric properties:

Definition 4.15. A set E ⊂ Rn has Whitney property (in the class C ) if any two points x, y ∈ E
can be joined in E by a rectifiable arc (in the class C ) γ of length lg(γ) ≤ c||x − y||r for some
c, r > 0.

The above notion is important. For instance if E is a fat set (i.e., intE = E) satisfying the
Whitney property, then any C∞ function in intE whose derivatives have continuous extensions
onto E, has a C∞ continuation to Rn \ E.

Theorem 4.16 ( Lojasiewicz-Stasica). The analytic Whitney property holds for semi- and sub-
analytic closed sets.

Remark 4.17. Note that many properties of subanalytic sets hold in a ‘parameter version’, for
instance regular separation (with a uniform exponent,  Lojasiewicz-Wachta), Whitney property
(uniform exponent, Denkowska), there is also a uniform bound on the lengths of arcs joining

22In other words, the ω-limit set of yx consists of a single point.
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points in the fibres of a bounded subanalytic set (Teissier and Denkowska-Kurdyka). See [DS1]
for details.

On the other hand, Kurdyka in [K2] showed that any subanalytic set can be stratified into
subanalytic leaves (regular in the sense of Mostowski-Parusiński) each of which satisfies the
Whitney property with exponent 1. The same kind of result for definable sets, this time with
parameter, has been obtained recently by B. Kocel-Cynk [KC].

The Whitney property is obviously involved in comparisons of the inner metric of a subanalytic
or definable set (23) with the outer one and bi-Lipschitz equivalence problems. Here Kurdyka’s
Pancake Lemma from [K2] is the main ingredient: see the works of L. Birbrair and others e.g.
[Bb]). We recall shortly the idea:
A definable or subanalytic set X ⊂ Rn is said to be normally embedded, if the identity map
induces a bi-Lipschitz isomorphism between the metric spaces (X; do) and (X; di), do being
the outer (Euclidean) metric, and di the inner one (this means precisely that the  Lojasiewicz
exponent of X is equal to 1).

Theorem 4.18 (Pancake Decomposition [K2]). Let X ⊂ Rn be definable or subanalytic and
bounded. Then there exists a finite collection of definable/subanalytic subsets Xi ⊂ X such that

(1)
⋃
Xi = X;

(2) Each Xi is normally embedded in Rn;
(3) ∀i 6= j, dim(Xi ∩Xj) < min{dimXi,dimXj}.

The collection {Xi} is called Pancake Decomposition.

A nice decomposition of subanalytic sets, crucial from the point of view of the Whitney
property (both in the subanalytic as in the definable setting):

Definition 4.19. An (L)-analytic leaf is a semi- or subanalytic subset of Rn which can be
written in appropriate coordinates as the graph of a function f ⊂ Rk ×Rn−k with open domain
and which is analytic with bounded differential.

Theorem 4.20 (Stasica). Any bounded subanalytic set in Rn is a finite union of (L)-analytic
leaves.

An analoguous theorem for semi-analytic sets is due to de Rham.
Just to stress once again the difference between the definable and subanalytic settings we quote

part one of the results from [Di] where the following problem is considered. Let M ⊂ Rkt × Rmx
be a set with closed t-sections Mt (not all empty) and let

m(t, x) = {y ∈Mt | ||x− y|| = dist(x,Mt)}.
Proposition 4.21 ([Di]). If M is definable, then the set

E := {(t, x) | #m(t, x) > 1}
is definable, too.

Example 4.22. We have already observed that without an additional assumption (like that
of M being x-relatively compact i.e., having proper projection onto Rk) we cannot expect the
function (t, x) 7→ dist(x,Mt) to be subanalytic for a subanalytic M . Neither is the proposition
true in the general subanalytic setting:

M = {(x, 1/x) | x > 0} ∪
+∞⋃
n=1

{(1/n,−n)} ⊂ R× R

23i.e., the greatest lower bound of the lenghts of rectifiable curves joining two points in this set; triangulation
theorems warrant this is well defined.
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is subanalytic, but E =
⋃
{(1/n, 0)} is not.

Nevertheless, the proposition above is true for subanalytic sets if we get rid of the parameter
t. In this case we could be tempted to derive the proof from the definable case applied to the
globally subanalytic sets Mν = M ∩ [−ν, ν]n ⊂ Rn. However, the thing is more subtle than it
seems and we do not have E =

⋃
Eν where Eν is constructed for Mν . Indeed, take for instance

M to be the union of semi-circles {x2 + (y − ν)2 − (3/4)2, y ≤ ν}. Then (0, ν) ∈ Eν \Eν+1 and
in particular (0, ν) /∈ E.

• Many, though not all semi-analytic theorems have their subanalytic versions (cf. [DS1] for a
thorough survey, e.g. each semi-analytic set germ admits an analytic germ of the same dimension
as a superset which is no longer true for subanalytic germs cf. Example 4.1) and once again
many, though not all, of these can be transposed to the definable setting. Here come some
examples; first the theorem of the tangent mapping (compare Theorem 2.50):

Theorem 4.23. Let Γ ⊂ Rn be a semi- or subanalytic leaf of dimension k. Then the tangent
map τ : Γ 3 x 7→ TxΓ ∈ Gk(Rn) is semi- or subanalytic (according to the case).

Corollary 4.24. If Γ is a subanalytic leaf, then for any subanalytic subset F of the Grass-
mannian Gk(Rn), τ−1(E) is subanalytic, and for any bounded subanalytic set E ⊂ Rn, τ(E) is
subanalytic, too.

Remark 4.25. The theorem above has a definable counterpart to be found in the articles by Ta
Lê Loi.

The next result is a generalization of the Curve Selecting Lemma to higher dimensions:

Lemma 4.26 (Wings’ Lemma). Let Γ ⊂ M be a subanalytic leaf and E ⊂ Γ \ Γ a subanalytic
set. Then there exists a subanalytic leaf Λ of dimension dimE + 1 and such that Λ ⊂ Γ and
dim Λ ∩ E = dimE.

A definable counterpart of the result above is given in [Loi] (24).

• Stratifications
Stratifications are an important tool and they are often asked to satisfy some additional

properties — we shall discuss this briefly. Let V be a finite-dimensional real vector space and
denote by J the family of pairs (V ′, V ′′) of subspaces of V satisfying V ′ ⊂ V ′′.
Let N0, N be two differentiable subvarieties of V of dimension k and l respectively, with k < l.

Definition 4.27. We say that the pair (N0, N) satisfies Whitney’s condition (a) at c ∈ N0 ∩N
if (TcN0, TzN) tends to J in Gk(V )×Gl(V ) when z ∈ N tends to c.
We say that (N0, N) satisfies Whitney’s condition (b) at c if the pair (R · (z− x), TzN) tends to
J in G1(V )×Gl(V ) when the point (x, z) ∈ (N0 ×N) ∩ {x 6= z} tends to (c, c).

Remark 4.28. The convergence above is invariant with respect to diffeomorphisms, whence it can
be formulated in the same way for a differentiable variety. Recall also that Whitney’s condition
(b) implies (a).

Theorem 4.29. Let M be an affine space. Let E1, . . . , Er be subanalytic in M . Then there
exists a stratification N of M into subanalytic leaves, compatible with E1, . . . , Er and such that
for all pairs of strata Γ1,Γ2 ∈ N such that Γ1 ⊂ Γ2 \ Γ2, the varieties Γ1,Γ2 satisfy Whitney’s
condition (b) at any point of Γ1.

24We thank the referee for pointing this out.
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Definition 4.30. Let f : M → N be an analytic map, T a stratification of the analytic variety
M , S a stratification of another analytic variety N . The pair T ,S is said to be compatible with
f if

(i) for all T ∈ T , f(T ) ∈ S,
(ii) for all T ∈ T , rkf |T ≡ dim f(T ),
(iii) if rkf |T = dimT , then f |T is injective.

Theorem 4.31 (Hardt). Let f : M → N be analytic. Given two locally finite families M,N of
subanalytic sets in M,N , respectively, and an open subanalytic set K such that f |K is proper,
there exists a stratification S compatible with N and a stratification T compatible withM together
with K, such that the pair (TK ,S) is compatible with fK , where TK = {T ∈ T : T ⊂ K}.

Let X be a finite-dimensional real vector space and U, V its linear subspaces. We define
after T.-C. Kuo the function δ(U, V ) := sup{d(x, V ) : x ∈ U, |x| = 1} where d is the Euclidean
distance. There is δ(U, V ) = 0 if and only if U ⊂ V .

Definition 4.32. Let M,N be two C∞ subvarieties of X such that M∩N 6= ∅. We say that the
pair (M,N) satisfies the Verdier condition (w) at a point a ∈M ∩N if there is a neighbourhood
V of a in X and a constant C > 0 such that

δ(TxM,TyN) ≤ C||x− y||, for any x ∈ V ∩M,y ∈ V ∩N.

We say that (M,N) satisfies the condition (w) if it satisfies this condition at all points a ∈M∩N .

Remark 4.33. Kuo in [Kuo] showed that condition (w) implies Whitney’s condition (b) in the
semi-analytic case. Since the Curve Selecting Lemma and the Tangent Mapping Theorem hold
also in the subanalytic case, the same kind of argument as that used by Kuo works also in the
subanalytic case. Nonetheless, condition (w) in general is not stronger than condition (b) (see
[Vd]). For more informations see [DSW], [DW], [KT], [OTr], [Tr].

Theorem 4.34 (Verdier [Vd] (25)). Let {Ei} be a locally finite family of subanalytic subsets of
X. Then there is a subanalytic stratification of X compatible with that family and such that any
pair of its strata satisfies the Verdier condition (w).

It is worth adding a few words about  Lojasiewicz’s approach to stratifications. Needless to
say, unlike e.g. Verdier, he made no use of Hironaka’s desingularization. Instead, his idea was
to start with the following key-lemma:

If M and N are subanalytic varieties in an affine space X and N ⊂ M \M , then the set
{x ∈ N | (M,N) verifies condition (#)} where (#) stands for one of the conditions introduced
so far, is subanalytic in the space X and dense in N .

To prove dense in N (subanalytic is easy), we use Whitney’s Wings’ Lemma 4.26. See [D],
[DW], [DS2].

• A natural question is whether subanalytic sets admit triangulation (cf. Theorem 1.30). The
positive answer was given by Goresky [Go] as well as Verona [V]. Independently of the general
result, H. Hironaka [H3] and R. Hardt [H2] gave both explicit methods of triangulation for
subanalytic sets. Their constructions are natural and geometric. As noted by H. Hironaka the
method is close to that used by S.  Lojasiewicz for semi-algebraic sets, for both classes of sets —
semi-algebraic and subanalytic — are closed with respect to projections.

25There are other proofs by  Lojasiewicz-Stasica-Wachta, Coste-Roy and historically the first one by

Denkowska-Wachta [DW] as an answer to a question of D. Trotman for a desingularization-free proof, presented
in [D].
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Theorem 4.35 (Hironaka). Let {Xα}α∈A be a locally finite family of subanalytic subsets of Rn.
Then there exists a simplicial decomposition of Rn =

⋃
σµ into open simplices and a subanalytic

homeomorphism θ : Rn → Rn such that

(i) each Xα is a locally finite union of some of the images θ(σµ),
(ii) for any µ, θ(σµ) is an analytic subvariety of Rn and θ|σµ : σµ → θ(σµ) is an analytic

isomorphism.

Theorem 4.36 (Hardt). Let {Xα}α∈A be a locally finite family of subanalytic subsets of Rn.
Then there exists a simplicial decomposition Σ of Rn and a subanalytic map f : [0, 1]×Rn → Rn
such that

(i) for each t ∈ [0, 1] the map ft(x) = f(t, x) is a homeomorphism,
(ii) f0 = id,
(iii) for any α ∈ A, f−1

1 (Xα) is a subcomplex of Σ.

Remark 4.37. In the case of semi-analytic sets, a class of sets without the projection property,
the construction of a semi-analytic triangulation is much more delicate (see S.  Lojasiewicz [ L4]).

Remark 4.38. Semi-algebraic, semi-analytic and subanalytic sets admit triangulation.
Quite recently, a student of W. Paw lucki, M. Czapla, proved in her Ph. D. Thesis (using a
description of the Lipschitz structure of definable sets by G. Valette [Val]) that every definable
set has a definable triangulation which is locally Lipschitz and weakly bi-Lipschitz on the natural
stratification of a simplicial complex. She also proved that such a stratification may be obtained
with Whitney’s (b) condition or Verdier’s condition.

On the other hand, it is well-known that subanalytic sets admit Lipschitz stratification (see
[Pa]). A direct method of constructing a Lipschitz cell decomposition (which must involve some
coordinate changes) has been produced recently by Paw lucki in [P2].

We started with semi-algebraic sets and we will end with them. The following theorem, proved
using simple stratifications, show how ubiquous they are:

Theorem 4.39 ([DD]). Let E ⊂ Rm be a compact subanalytic or definable set. Then there
exists a sequence {Aν} of semi-algebraic sets such that

(1) E = limAν ;
(2) For each a ∈ E and any neighbourhood U of a one has for ν large enough,

dimU ∩ E = dimU ∩Aν .
Moreover, for each such a sequence {Aν} one has the following: for any S ∈ cc(E) there is a
sequence {Sν} such that each Sν is the union of some connected components of Aν and (1) and
(2) holds for S and the sequence {Sν}.

Here the convergence is understood in the following sense (Kuratowski convergence of closed
sets):
A = limAn iff each point a ∈ A is the limit of a sequence of points an ∈ An, n ∈ N and for each
compact set K such that K ∩A = ∅ one has K ∩An = ∅ for almost all indices n.
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