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SINGULARITIES FOR NORMAL HYPERSURFACES OF DE SITTER

TIMELIKE CURVES IN MINKOWSKI 4-SPACE

YONGQIAO WANG AND DONGHE PEI

Abstract. In this paper, we consider the normal hypersurfaces associated with timelike
curves in Minkowski 4-space which are confined in de Sitter 3-space. We classify the generic

singularities of the normal hypersurfaces, which are cuspidal edges, swallowtails and butter-

flies. And reveal the relationships between these singularities and the Lorentzian invariants
of timelike curves by applying the singularity theory.

1. Introduction

Since the second half of the 20th century, singularity theory and semi-Riemannian geometry
have been active areas of research in differential geometry.

In [5], the second author et al. used Montaldi’s characterization of submanifold contacts in
terms of K-equivalent functions, which provided a technical linkage to Lagrangian singularity
theory. They presented the classification of singularities of de Sitter Gauss map of timelike
hypersurfaces which were based on the Lagrangian singularity theory.

In [8], Z. Wang et al. investigated singularities of the focal surfaces and the binormal indicatrix
associated with a null Cartan curve. The relationships were revealed between singularities of the
above two subjects and differential geometric invariants of null Cartan curves. L. Chen defined
the timelike Anti de Sitter Gauss images and timelike Anti de Sitter height functions on spacelike
surfaces in [3], he investigated the geometric meanings of singularities of these mappings. The
authors of these papers investigated the singularities of some geometrical objects by using the
theory of singularities of differential mappings.

In Minkowski 4-space, T. Fusho and S. Izumiya [4] discussed the the generic singularities of
lightlike surface which is generated by a spacelike curve in de Sitter 3-space. De Sitter 3-space is
an important cosmological model for the physical universe. The spacelike curve had a degenerate
contact with a lightcone at the singularities of the lightlike surface. The study on the contact
of lightlike curves with lightcones is an interesting case. The lightcone is an important model in
physics too. T. Fusho and S. Izumiya [4] had classified the singularities of the lightlike surface of
spacelike curve, in addition to investigating the geometric meanings of the singularities of such
surfaces in de Sitter 3-space.

In [9], the null developables of timelike curves that lie on the nullcone in 3-dimensional semi-
Euclidean space with index 2 were investigated by the second author, Z. Wang and X. Fan. They
also classified the singularities of the null developables of timelike curves.

However, to the best of the authors’ knowledge, no literature exists regarding the singularities
of surfaces and curves as they relate to timelike curves in de Sitter 3-space. Thus, the current
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study hopes to serve such a need and it is inspired by the reports of T. Fusho and S. Izumiya
[4].

This paper is supplementary for [4]. We consider the timelike curve in de Sitter 3-space,
then we define a normal hypersurface associated to the timelike curve. The normal hypersurface
is different from the lightlike surface which is in [4]. T. Fusho and S. Izumiya [4] considered
the lightlike surface in de Sitter 3-space while the normal hypersurface is in Minkowski 4-space.
Therefore we stick to the hypersurface in this paper. We get an invariant σ of timelike curve
which describes the contact between a given model and the timelike curve. A kind of height
function has been constructed which is related to the timelike curve, as it will be quite useful to
study the singularities of hypersurface. Our main results are stated in Theorem 2.1. By these
results, we give a classification of the singularities of the normal hypersurfaces in Minkowski
4-space and get some geometric properties of the singularities.

We shall assume throughout the whole paper that all manifolds and maps are C∞ unless the
contrary is explicitly stated.

2. Basic notions and results

In this section we give the basic notions and the main results. For the basic results in the
Lorentzian geometry see [7]. Let R4 be a 4-dimensional vector space. For any two vectors
x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) in R4, their pseudo scalar product is defined by

〈x,y〉 = −x1y1 + x2y2 + x3y3 + x4y4.

The pair (R4, 〈, 〉) is called Minkowski 4-space. We denote it as R4
1.

For any three vectors x = (x1, x2, x3, x4), y = (y1, y2, y3, y4), z = (z1, z2, z3, z4) ∈ R4
1, we

define a vector x ∧ y ∧ z by

x ∧ y ∧ z=

∣∣∣∣∣∣∣∣
−e1 e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣ ,
where {e1, e2, e3, e4} is the canonical basis of R4

1. We have 〈x0,x ∧ y ∧ z〉=det(x0,x,y, z),
so x ∧ y ∧ z is pseudo orthogonal to x, y and z. A non-zero vector x ∈ R4

1 is called spacelike,
lightlike or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0 or 〈x,x〉 < 0, respectively. The norm of x ∈ R4

1 is
defined by ‖x‖ = (sign(x)〈x,x〉)1/2, where sign(x) denotes the signature of x which is given by
sign(x) = 1, 0 or−1 when x is a spacelike, lightlike or timelike vector, respectively.

Let γ : I → R4
1 be a regular curve in R4

1 (i.e.,γ̇(t) = dγ/dt 6= 0), where I is an open
interval. For any t ∈ I, the curve γ is called spacelike, lightlike or timelike if 〈γ̇(t), γ̇(t)〉 > 0,
〈γ̇(t), γ̇(t)〉 = 0 or 〈γ̇(t), γ̇(t)〉 < 0 respectively. We call γ a nonlightlike curve if γ is a spacelike
or timelike curve. The acr-length of a nonlightlike curve γ measured from γ(t0)(t0 ∈ I) is

s(t) =
∫ t

t0
‖γ̇(t)‖dt.

The parameter s is determined by ‖γ′(s)‖=1 for the nonlightlike curve, where γ′(s) = dγ/ds
is the unit tangent vector of γ at s. The de Sitter 3-space is defined by

S3
1 = {x ∈ R4

1|〈x,x〉 = 1}.
Let γ : I → S3

1 be a timelike regular curve (〈γ̇(t), γ̇(t)〉 < 0, t ∈ I). Since the curve γ
is timelike, we can reparametrize it by the acr-length s. Then we have the tangent vector
t(s) = γ′(s), obviously ‖t(s)‖ = 1. When 〈t′(s), t′(s)〉 6= 1, we define a unit vector

n(s) =
(
t′(s)− γ(s)

)
/‖t′(s)− γ(s)‖,
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let e(s) = γ(s) ∧ t(s) ∧n(s). Then we have a pseudo orthonormal frame {γ(s), t(s),n(s), e(s)}
of R4

1 along γ. By directly calculating, the following Frenet-Serret type is displayed, under the
assumption that 〈t′(s), t′(s)〉 6= 1.

γ′(s) = t(s)
t′(s) = γ(s) + κg(s)n(s)
n′(s) = κg(s)t(s)− τg(s)e(s)
e′(s) = τg(s)n(s).

Here, κg(s) = ‖t′(s)−γ(s)‖ is the geodesic curvature, τg(s) = −κ−2g (s)det
(
γ(s),γ′(s),γ′′(s),γ′′′(s)

)
is the geodesic torsion.

We now define a normal hypersurface associate to a timelike curve. Let γ : I → S3
1 be a unit

speed timelike curve, we define NHS : I × R× R→ R4
1 by

NHS(s, u, w) = γ(s) + un(s) + we(s).

We call NHS(s, u, w) the normal hypersurface of γ. We also define the following model surface.
For any v0 ∈ NHS(s, u, w), S2

1(v0) = {x ∈ S3
1 | 〈x,v0〉 − 1 = 0}, where

〈v0,v0〉 = 1 + u2 + w2 ≥ 1.

In this paper, the major purpose is to study the Lorentzian geometric meanings of the singular-
ities of the normal hypersurface. We get σ equivalent to the conformal torsion in [2],

σ(s) = κ2g(s)τ3g (s)− κg(s)κ′′g (s)τg(s) + 2(κ′g(s))2τg(s) + κg(s)κ′g(s)τ ′g(s).

On the other hand, let F : S3
1 → R be a submersion and γ : I → S3

1 be a timelike curve. We
say that γ and F−1(0) have k-point contact for t = t0 if the function g(t) = F ◦ γ(t) satisfies
g(t0) = g′(t0) = · · · = g(k−1)(t0) = 0, g(k)(t0) 6= 0. We also have that γ and F−1(0) have at
least k-point contact for t = t0 if the function g(t) = F ◦ γ(t) satisfies

g(t0) = g′(t0) = · · · = g(k−1)(t0) = 0.

We now consider the following conditions:
(A1) The number of points p of γ(s) where the S2

1(v0) at p having five-point contact with the
curve γ is finite.

(A2) There is no point p of γ(s) where the S2
1(v0) at p having greater than or equal to

six-point contact with the curve γ.
Our main results is as follows.

Theorem 2.1. Let γ : I → S3
1 be a unit regular timelike curve with 〈t′(s), t′(s)〉 6= 1, τg(s) 6= 0,

v0 = NHS(s0, u0, w0) and S2
1(v0) = {u ∈ S3

1 | 〈u,v0〉 − 1 = 0}, we can state the following
facts.

(1) S2
1(v0) and γ have at least 2-point contact at s0.

(2) S2
1(v0) and γ have 3-point contact at s0 if and only if

v0 = γ(s0)− (1/κg(s0))n(s0) + u0e(s0)

and u0 6= −κ′g(s0)/κ2g(s0)τg(s0), under this condition the germ of image NHS at NHS(s0, u0, w0)

is diffeomorphic to the cuspidal edge C × R2.
(3) S2

1(v0) and γ have 4-point contact at s0 if and only if

v0 = γ(s0)− (1/κg(s0))n(s0)−
(
κ′g(s0)/κ2g(s0)τg(s0)

)
e(s0) and σ(s0) 6= 0,

under this condition the germ of image NHS at NHS(s0, u0, w0) is diffeomorphic to the swal-
lowtail SW × R.

(4) S2
1(v0) and γ have 5-point contact at s0 if and only if

v0 = γ(s0)− (1/κg(s0))n(s0)−
(
κ′g(s0)/κ2g(s0)τg(s0)

)
e(s0), σ(s0) = 0 and σ′(s0) 6= 0,
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under this condition the germ of image NHS at NHS(s0, u0, w0) is diffeomorphic to the BF .

Here, SW ×R = {(x1, x2, x3) | x1 = 3u4 +u2v, x2 = 4u3 +2uv, x3 = v}×R is the swallowtail,
BF = {(x1, x2, x3, x4) | x1 = 4u5 + 2u3v+ u2w, x2 = −5u4− 3u2v− 2uw, x3 = v, x4 = w} is the
butterfly and C × R2 = {(x1, x2) | x21 = x32} × R2 is the cuspidal edge.

We will give the proof of Theorem 2.1 in §4.

3. Timelike height functions and the singularities of normal hypersurfaces

In this section we discuss a kind of Lorentzian invariant function on a timelike curve in R4
1.

It is useful to study the normal hypersurface of the timelike curve. Let γ : I → S3
1 be a unit

timilike curve and 〈t′(s), t′(s)〉 6= 1. We now define a function

H : I × R4
1 → R

by H(s,v) = 〈γ(s),v〉 − 1, we call H a timelike height function on the timelike curve γ. We
denote that hv(s) = H(s,v), for any fixed v ∈ R4

1. Then, we have the following Proposition.

Proposition 3.1. Let γ : I → S3
1 be a unit timelike curve with 〈t′(s), t′(s)〉 6= 1 and τ(s) 6= 0,

then we have the following.
(1) hv(s) = 0 if and only if there exist b, c, d ∈ R such that v = γ(s) + bt(s) + cn(s) + de(s).
(2) hv(s) = h′v(s) = 0 if and only if there exist c, d ∈ R such that v = γ(s) + cn(s) + de(s).
(3) hv(s) = h′v(s) = h′′v(s) = 0 if and only if there exists d ∈ R such that

v = γ(s)− (1/κg(s))n(s) + de(s).

(4) hv(s) = h′v(s) = h′′v(s) = h′′′v (s) = 0 if and only if

v = γ(s)− (1/κg(s))n(s)−
(
κ′g(s)/κ2g(s)τg(s)

)
e(s).

(5) hv(s) = h′v(s) = h′′v(s) = h′′′v (s) = h
(4)
v (s) = 0 if and only if

v = γ(s)− (1/κg(s))n(s)−
(
κ′g(s)/κ2g(s)τg(s)

)
e(s) and σ(s) = 0.

Proof. (1) Since v ∈ R4
1, we can find a, b, c, d ∈ R such that v = aγ(s) + bt(s) + cn(s) +de(s).

Because hv(s) = 〈γ(s),v〉 − 1 = 0, we can get a = 1, then v = γ(s) + bt(s) + cn(s) + de(s), the
converse direction also holds.

(2) By (1), an easy computation shows that 〈t(s),v〉 − 1 = 0, we get b = 0, therefore

v = γ(s) + cn(s) + de(s).

(3) Under the assumption that hv(s) = h′v(s) = 0,

h′′v(s) = 〈γ(s) + κg(s)n(s),γ(s) + cn(s) + de(s)〉,
we can get κg(s)c+1 = 0, it is that c = −1/κg(s), then we have v = γ(s)−(1/κg(s))n(s)+de(s).

(4) Based on the assumption that hv(s) = h′v(s) = h′′v(s) = 0, the relation

h′′′v (s) = 〈(1 + κ2g(s))t(s) + κ′g(s)n(s)− κg(s)τg(s)e(s),v〉,
it follows that h′′′v (s) = 0 is equivalent to (−κ′g(s)/κg(s))− κg(s)τg(s)d = 0, so

d = −κ′g(s)/κ2g(s)τg(s).

This proves assertion (4).
(5) When hv(s) = h′v(s) = h′′v(s) = h′′′v (s) = 0, the fourth derivative

h(4)v (s) =〈(1 + κ2g(s))γ(s) + (κg(s) + κ3g(s) + κ′′g (s)κ′g(s)− κg(s)τ2g (s))n(s)

− (2κ′g(s)τ(s) + κg(s)τ ′g(s))e(s) + 3κg(s)κ′g(s)t(s),v〉,
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by directly calculating we have σ(s)/κ2g(s)τg(s) = 0, where

σ(s) = κ2g(s)τ3g (s)− κg(s)κ′′g (s)τg(s) + 2(κ′g(s))2τg(s) + κg(s)κ′g(s)τ ′g(s),

therefore σ(s) = 0.
Now, we research some properties of the normal hypersurface of the timelike curve in R4

1. As
we can know the functions κg(s), τg(s) and σ(s) have particular meanings. Here, we consider the
case when the normal hypersurface has the most degenerate singularities. We have the following
proposition.

Proposition 3.2. Let γ : I → S3
1 be a unit timelike curve with 〈t′(s), t′(s)〉 6= 1 and τg(s) 6= 0,

then we have the following.
(1) The set {(s, u, w) | u = −1/κg(s), s ∈ I} is the singularities of normal hypersurface

NHS.
(2) If v0 = NHS(s,−1/κg(s),−κ′g(s)/κ2g(s)τg(s)) is s constant vector, we have γ(s) ∈ S2

1(v0)
for any s ∈ I at the same time σ(s) = 0.

P roof . By calculations we have

∂NHS

∂u
=n(s),

∂NHS

∂w
=e(s),

∂NHS

∂s
=(1 + uκg(s))t(s)− uτg(s)e(s) + wτg(s)n(s).

(1) If the above three vectors are linearly dependent, we can get the singularities of NHS if
and only if 1 + uκg(s) = 0, u = −1/κg(s).

(2) If f(s) = γ(s) + u(s)n(s) + w(s)e(s) is a constant, then

df

ds
= (1 + u(s)κg(s))t(s) + (u′(s) + w(s)τg(s))n(s) + (w′(s)− u(s)τg(s))e(s) = 0.

Since

u(s) = − 1

κg(s)
, w(s) = −

κ′g(s)

κ2g(s)τg(s)
,

then

w′(s)− u(s)τg(s) = 0.

We have

2(κ′g(s))2τg(s) + κg(s)κ′g(s)τ ′g(s)− κ′′g (s)κg(s)τg(s)

κ3g(s)τ2g (s)
= − τg(s)

κg(s)
,

σ(s) = 0,

therefore

〈
γ(s),γ(s)− 1

κg(s)
n(s)−

κ′g(s)

κ2g(s)τg(s)
e(s)

〉
− 1 = 0.

This completes the proof.
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4. Unfoldings of height function

In this section we classify singularities of the normal hypersurface along γ as an applica-
tion of the unfolding theory of functions. Let F : (R × Rr, (s0,x0)) → R be a function germ,
f(s) = Fx0(s,x0). We call F an r-parameter unfolding of f . If f (p)(s0) = 0 for all 1 ≤ p ≤ k
and f (k+1)(s0) 6= 0, we say f has Ak-singularity at s0. We also say f has A≥ k-singularity at s0
if f (p)(s0) = 0 for all 1 ≤ p ≤ k. Let F be a r-parameter unfolding of f and f has Ak-singularity
(k ≥ 1) at s0, we define the (k − 1)-jet of the partial derivative ∂F/∂xi at s0 as

j(k−1)
( ∂F
∂xi

(s,x0)
)

(s0)=
k+1∑
j=1

αji(s− s0)j , (i = 1, . . . , r).

If the rank of k × r matrix (α0i, αji) is k (k ≤ r), then F is called a versal unfolding of f ,
where α0i = ∂F/∂xi(s0,x0). The discriminant set of F is defined by

DF = {x ∈ Rr | ∃ s ∈ R, F (s,x) =
∂F

∂s
(s,x) = 0}.

There have been the following famous result (Theorem 6.14 on page 150 in [1]).

Theorem 4.1. [1] Let F : (R×Rr, (s0,x0))→ R be an r-parameter unfolding of f(s) which has
Ak-singularity at s0, suppose F is a versal unfolding of f , then we have the following.

(a) If k = 1, then DF is locally diffeomorphic to {0} × Rr−1.
(b) If k = 2, then DF is locally diffeomorphic to C × Rr−2.
(c) If k = 3, then DF is locally diffeomorphic to SW × Rr−3.
(d) If k = 4, then DF is locally diffeomorphic to BF × Rr−4.

By Proposition 3.1, the discriminant set of the timelike height function H(s,v) is given by

DH = {γ(s) + cn(s) + de(s) | s ∈ I, c, d ∈ R}.

Proposition 4.2. If hv has Ak-singularity at s (k = 1, 2, 3, 4), then H is a versal unfolding
of hv.

Proof . We notice that γ(s) ∈ R4
1.

Let γ(s) = (x1(s), x2(s), x3(s), x4(s)), v = (v1, v2, v3, v4),

we have

H(s,v) = −x1v1 + x2v2 + x3v3 + x4v4 − 1,

∂H(s,v)

∂v1
= −x1(s),

∂

∂s

∂H(s,v)

∂v1
= −x′1(s),

∂2

∂s2
∂H(s,v)

∂v1
= −x′′1(s),

∂3

∂s3
∂H(s,v)

∂v1
= −x′′′1 (s).

We also have

∂H(s,v)

∂vi
= xi(s),

∂

∂s

∂H(s,v)

∂vi
= x′i(s),

∂2

∂s2
∂H(s,v)

∂vi
= x′′i (s),

∂3

∂s3
∂H(s,v)

∂vi
= x′′′i (s), (i = 2, 3, 4).
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The 3-jet of
∂H(s,v)

∂vi
, (i = 1, 2, 3, 4) at s0 is given by

∂H(s,v)

∂vi
=

∂H(s0,v)

∂vi
+

∂

∂s

∂H(s0,v)

∂vi
(s− s0) +

1

2

∂2

∂s2
∂H(s0,v)

∂vi
(s− s0)2 +

1

6

∂3

∂s3
∂H(s0,v)

∂vi
(s− s0)3 =

α0,i + α1,i(s− s0) +
1

2
(s− s0)2 +

1

6
α3,i(s− s0)3.

By Proposition 3.1, h has the A≥1-singularity at s0 if and only if v = γ(s) + cn(s) + de(s).
Since the curve γ(s) is regular, the rank of (−x1(s) x2(s) x3(s) x4(s)) is 1. We can get that h
has the A≥2-singularity at s0 if and only if v = γ(s)− (1/κg(s))n(s) + de(s). When h has the
A≥2-singularity at s0, we require the 2× 4 matrix(

−x1(s) x2(s) x3(s) x4(s)
−x′1(s) x′2(s) x′3(s) x′4(s)

)
to have rank 2, which it always does since γ(s) in de Sitter 3-space.

It also follows from Proposition 3.1 that h has the A≥3-singularity at s0 if and only if

v = γ(s)− (1/κg(s))n(s)−
(
κ′g(s)/κ2g(s)τg(s)

)
e(s).

We require the 3× 4 matrix  −x1(s) x2(s) x3(s) x4(s)
−x′1(s) x′2(s) x′3(s) x′4(s)
−x′′1(s) x′′2(s) x′′3(s) x′′4(s)


to have rank 3, which follows from the proof of the next case.

By Proposition 3.1, h has the A≥4-singularity at s0 if and only if

v = γ(s)− (1/κg(s))n(s)−
(
κ′g(s)/κ2g(s)τg(s)

)
e(s) and σ(s) = 0.

We require 4× 4 matrix 
−x1(s) x2(s) x3(s) x4(s)
−x′1(s) x′2(s) x′3(s) x′4(s)
−x′′1(s) x′′2(s) x′′3(s) x′′4(s)
−x′′′1 (s) x′′′2 (s) x′′′3 (s) x′′′4 (s)


to have rank 4. In fact ∣∣∣∣∣∣∣∣

−x1(s) x2(s) x3(s) x4(s)
−x′1(s) x′2(s) x′3(s) x′4(s)
−x′′1(s) x′′2(s) x′′3(s) x′′4(s)
−x′′′1 (s) x′′′2 (s) x′′′3 (s) x′′′4 (s)

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
x1(s) x2(s) x3(s) x4(s)
x′1(s) x′2(s) x′3(s) x′4(s)
x′′1(s) x′′2(s) x′′3(s) x′′4(s)
x′′′1 (s) x′′′2 (s) x′′′3 (s) x′′′4 (s)

∣∣∣∣∣∣∣∣
= −〈γ,γ′(s) ∧ γ′′(s) ∧ γ′′′(s)〉
= κ2g(s)τg(s) 6= 0.

In summary, H is a versal unfolding of hv, this completes the proof.
The proof of Theorem 2.1. Let γ : I → S3

1 be a timelike regular curve and 〈t′(s), t′(s)〉 6= 1
and τg(s) 6= 0. As v0 = NHS(s0, u0, w0), we give a function H : S3

1 → R, by H(u) = 〈u, v0〉 − 1,
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then we assume that hv0
(s) = H(γ(s)). Because H−1(0) = S2

1(v0) and 0 is a regular value of
H, γ and S2

1(v0) have (k + 1)-point contact for s0 if and only if hv0
(s) has the Ak-singularity

at s0. By Proposition 3.1, Theorem 4.1, and Proposition 4.2 the proven of Theorem 2.1 is obvious.
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