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EXTREMAL CONFIGURATIONS OF ROBOT ARMS IN THREE

DIMENSIONS

DIRK SIERSMA

Abstract. We define a volume function for a robot arm in R3 and give geometric conditions
for its critical points.

1. Introduction

Linkages are flexible 1-dimensional structures, where edges are straight intervals of a fixed
length, where flexes are allowed at vertices. For general properties of linkages we refer to [1],[2]
and [3].

Recently G. Khimshiashvili, G. Panina, their co-workers and the author investigated various
extremal problems on the moduli spaces of linkages. An important part of that studies considers
cyclic configurations of planar polygonal linkages and open robot arms as critical points of the
oriented area function [4], [5] , [7], [8] and [12].

The aim of the current paper is to generalize these statements to the 3-dimensional case. We
will give a geometric description of the critical configurations in the case of oriented volume in
3D. The extremal arms consist of planar circular contributions combined with zigzags (theorem
4.5). For computational reasons we consider the signed volume function on a parameter space
and not on the moduli space. The isotropy groups of oriented isometries acting on this parameter
space are not constant. We study this effect for the 3-arm and show in that case:

The oriented moduli space of 3-arms in R3 is a 3-sphere. The Volume function is an exact
topological Morse function on this space with precisely two Morse critical points.

This research was supported through the programme “Research in Pair” by the Mathematis-
ches Forschungsinstitut Oberwolfach (MFO) in 2010. It’s our special pleasure to acknowledge
the excellent working conditions and warm hospitality of the whole staff of the institute during
our visit in November 2010. The outcome of the project was published in a Oberwolfach preprint
[6]. Sections 6-9 are the source of the current paper. Later G. Panina [10] and [11] obtained
results for the volume function on closed polygons, including information about Morse indices.

I thank G. Khimshiashvili, G. Panina and A. Zhukova for useful discussions their contributions
to this paper.

2. Preliminaries and notation

An n-linkage is a sequence of positive numbers l1, . . . , ln. It should be interpreted as a
collection of rigid bars of lengths li joined consecutively by revolving joints in a chain, either
open or closed. Open linkages are sometimes called robot arms. We study the flexes of the both
types of chain with allowed self-intersections. This is formalized in the following definitions.

Key words and phrases. Mechanical linkage, polygonal linkage, robot arm, configuration space, moduli space,
oriented area,oriented volume.
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Definition 2.1. For an open linkage L, a configuration in the Euclidean space Rd is a sequence
of points R = (p1, . . . , pn+1), pi ∈ Rd with li = |pi, pi+1| modulo the action of orientation
preserving isometries. We also call R an open chain.

The set M◦d (L) of all such configurations is the moduli space, or the configuration space of the
robot arm L.

For a closed polygonal linkage, we claim in addition that the last point coincides with the
first point: a configuration of the linkage L in the Euclidean space Rd is a sequence of points
P = (p1, . . . , pn), pi ∈ Rd with li = |pi, pi+1| for i = 1, .., n− 1 and ln = |pn, p1|. As above, the
action of orientation preserving isometries is factored out. We also call P a closed chain or a
polygon.

The set Md(L) of all such configurations is the moduli space, or the configuration space of the
polygonal linkage L.

In [5] and [8] the 2-dimensional case was treated with the signed area function on the config-
uration space. We recall some definitions and results.

Definition 2.2. The signed area of a polygon P with the vertices
pi = (xi, yi) is defined by

2A(P ) = (x1y2 − x2y1) + . . .+ (xny1 − x1yn).

The signed area of an open chain with the vertices pi = (xi, yi) is defined by

2A(P ) = (x1y2 − x2y1) + . . .+ (xnyn+1 − xn+1yn) + (xn+1y1 − x1yn+1).

In other words, we add one more edge that turns an open chain to a closed polygon and take
the signed area of the polygon.

Definition 2.3. A polygon P is called cyclic if all its vertices pi lie on a circle.
A robot arm R is called diacyclic if all its vertices pi lie on a circle, and p1pn+1 is the diameter

of the circle.

Cyclic polygons and cyclic open chains arise as critical points of the signed area:

Theorem 2.4. ([5], [8])
Generically, a polygon P is a critical point of the signed area function A iff P is a cyclic

configuration.
Generically, an open robot arm R is a critical point of the signed area function A iff R is a

diacyclic configuration. �

3. About 3-arm in R3

Before we treat in the next section open linkages with n arms in R3, we study here 3-arms in
R3.
Let us fix some notation. The arm vectors are: a = (1, 0, 0), b and c of length |a|, |b|, |c|.
A spatial arm is constructed as follows: we take the segments from O to the end points A, B, C
of a, a+ b, a+ b+ c. This yields a tetrahedron OABC.

Definition 3.1. We define the signed volume V of the 3-arm as the triple vector product:

V = [a, a+ b, a+ b+ c] = [a, b, c].

We intend to study V on several parameter spaces:

• On S2 × S2,
• On S1 × S2, where we fix the vector b to lie in the xy plane,
• On the moduli space Mo

3 (mod the SO(3) action).
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In each of these cases critical points may be different. We intend to compare the critical points
and the Morse theory for the three cases.

3.1. On S2 × S2. Before starting we define some special positions of the 3-arm:

• Tri-orthogonal : The vectors a, b, c are tri-orthogonal; equivalently: the sphere with
diameter OC contains also the points A and B,

• Degenerate: The arm lies in a two-dimensional subspace,
• Aligned : The arm is contained in a line.

Proposition 3.2. The signed area V : S2 × S2 → R has the following critical points:

• Tri-orthogonal arms (maximum, resp minimum). These are Bott-Morse critical points
with transversal index 3 and critical value ±|a||b||c|.

• Isolated points, corresponding to the aligned configurations. Here V has Morse index 2
and the critical value 0.

Proof. We use coordinate systems on the spheres; we take partial derivatives with respect to
all coordinates. We denote the partial derivatives of b by δ1b and δ2b. Both are non-zero
and orthogonal to b. We take partial derivatives of V = [a, b, c] in the (δ1b, δ2b) directions:
[a, δ1b, c] = 0 and [a, δ2b, c] = 0.

We will shorten this to [a, ḃ, c] = 0 meaning that the equation holds for all vectors in the
tangent space of b (which is orthogonal to b and spanned by δ1b and δ2b). In this way we get:

[a, ḃ, c] = 0, [a, b, ċ] = 0.

For both equations we will consider two cases:

equation ortho condition parallel condition
a× c 6= o a× c = o

[a, ḃ, c] = 0 equivalent to equivalent to
b ⊥ a and b ⊥ c a ‖ c
a× b 6= o a× b = o

[a, b, ċ] = 0 equivalent to equivalent to
c ⊥ a and c ⊥ b a ‖ b

The combination of the two ortho conditions gives the tri-orthogonal case of the proposition;
combining the two parallel conditions is the aligned case. Combining one ortho condition with
the other parallel condition gives a contradiction. �

Next we describe the type of the critical points. For the positively oriented tri-orthogonal
case we get a maximum. Due to the remaining SO-action the singular set is an S1, and its
transversal Morse index is 3. The other orientation gives a minimum on S1 with the transversal
Morse index 0. The aligned configurations (4 cases) occur in isolated points. In all these cases
we have index 2. We check the Bott-Morse formula:∑

tλ(C)P (C)− P (M) = (1 + t)R(t)

where R(t) must have non-negative coefficients. In our case we have

t3(1 + t) + (1 + t) + (1 + t) + 4t2 − (t4 + 2t2 + 1) = t3 + 2t2 + t = (1 + t)(t2 + t),

so this is OK. �
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3.2. On S1×S2. After a rotation we can always assume that b lies in the xy-plane. We consider
SO-action, that fixes this plane.

Proposition 3.3. The signed volume V : S1 × S2 → R has the following critical points:

• 4 points, corresponding to tri-orthogonal arms (2 maxima, respectively 2 minima).
At these points V has critical value 0.

• Two circles corresponding to degenerate configurations. where a and b are aligned and
c is free to move in the xy-plane. At these points V has Bott-Morse critical points with
transversal index 1.

The proof is a straight forward computation [6].
We check the result with Bott-Morse formula:

2t3 + 2 + 2t(1 + t)− (t3 + t2 + t+ 1) = t3 + t2 + t+ 1 = (t+ 1)(t2 + 1) .

Note the difference between the situation on S2 × S2 and on S1 × S2.

3.3. On the moduli space Mo
3 . This moduli space is homeomorphic to S3. This is shown

in [9]. We return to this later in this paper. An outline is as follows: First construct the non
oriented moduli space and show that this is a topological 3-ball. The sphere S3 appears as a
gluing of two such balls along their common boundary. This boundary consists of degenerate
arms (those who are not the maximal dimension).

The function V will be studied separately on the two hemispheres, each of whom has exactly
one Morse point. Near the common boundary one can show that V glues to a topologically
regular function. In Section 6 we give details and prove the following:

Theorem 3.4. The oriented moduli space of 3-arms in R3 is a 3-sphere. V is an exact topological
Morse function on this space with precisely two Morse critical points. �

Note that the critical points with V = 0, which we got before in the cases with parametrization
S2 × S2 or S1 × S2, are no longer (topological) critical on the moduli space.

4. About n-arms in R3

There is no unique way to attach a volume to a polygonal chain. We take one special situation
as starting point for our definition of (signed) volume in case of a n-arm in R3. The following
picture where all simplices contain a = b1 illustrates this definition.

The relation with the volume of the convex hull can be lost, especially when the combinatorics
of the convex hull changes.
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Definition 4.1. Let an n-arm be given by the vectors b1, · · · , bn. The vertices are O,B1, · · · , Bn.

We fix b1 = a (as before). We denote ck =
∑k
i=1 bi (the endpoint of this vector is Bk). The

signed volume function is defined as

V =

n−1∑
k=1

[b1, ck, ck+1],

which can be rewritten as:

V = [b1, b2, b3] + [b1, b2 + b3, b4] + [b1, b2 + b3 + b4, b5] + · · · [b1, b2 + · · · bn−1, bn].

N.B. Note that this signed volume is essentially the signed area of the projection onto the
plane orthogonal to b1.

Lemma 4.2. (Mirror lemma) Let two arms differ on a permutation of the arms 2, . . . , n. Then
there exists a bijection (by ’mirror-symmetry’) between their ”moduli spaces” which preserves
the signed volume function. Consequently this bijection preserves critical points and their local
(Morse) types.

Proof. As in the planar case [7]. �

The conditions for critical points are:

∀ḃ2 ⊥ b2 : [b1, ḃ2, b3] + [b1, ḃ2, b4] + · · ·+ [b1, ḃ2, bn] = [b1, ḃ2, b3 + · · ·+ bn] = 0,

∀ḃ3 ⊥ b3 : [b1, b2, ḃ3] + [b1, ḃ3, b4] + · · · [b1, ḃ3, bn] = [b1, b2 − (b4 + · · ·+ bn), ḃ3] = 0.

The rth -derivative gives the following:

∀ḃr ⊥ br : [b1, b2 + · · ·+ br−1, ḃr] + [b1, ḃr, br+1] + · · ·+ [b1, ḃr, bn] =

= [b1, b2 + · · ·+ br−1 − (br+1 + · · ·+ bn), ḃr] = 0.

There are two cases for any 2 ≤ r ≤ n (which we call ortho and parallel):

• case Or:

b1 × ((b2 + · · ·+ br−1)− (br+1 + · · ·+ bn)) 6= 0.

Hence we have the following orthogonalities

br ⊥ b1 ∧ br ⊥ (b2 + · · ·+ br−1)− (br+1 + · · ·+ bn).

• case Pr:

b1 × ((b2 + · · ·+ br−1)− (br+1 + · · ·+ bn)) = 0,

which means that (b2 + · · ·+ br−1)− (br+1 + · · ·+ bn) ∈ Rb1.
Next we decompose vectors into their Rb1-component and its orthogonal complement:

br = b′r + b⊥r

Lemma 4.3. For all r = 2, · · · , n:

b⊥r ⊥ (b⊥2 + · · ·+ b⊥r−1)− (b⊥r+1 + · · ·+ b⊥n )

and also

(b⊥2 + · · ·+ b⊥r−1) ⊥ (b⊥r + · · · b⊥n ) (∗)

For any critical point of the signed volume function on n-arms in R3 one can consider the
projection of the arm onto the hyperplane orthogonal to b1.
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Proposition 4.4. The vertices of this planar (n − 1)-arm b⊥2 , . . . , b
⊥
n lie on a circle with di-

ameter the interval B1B
⊥
n from the start point to the end point of this arm. This configuration

corresponds to a critical point of such arms (but with fixed lengths) under the signed area func-
tion. �

Note that in general we don’t have fixed lengths of the projections and that projections can
be ”degenerate”.

We next treat several cases of the spatial situations and after that state the general result in
Theorem 4.5.

4.1. Full ortho case: Or for all r = 2, . . . , n.
Now br = b⊥r . So we have:

Statement 1. The critical points of the signed volume function on n-arms in R3 are exactly
those configurations, where all vertices (including the first O and the last Br) are on a sphere
with diameter OBr; the first arm is perpendicular to the all other arms. Delete the first arm: the
vertices of this planar (n− 1)-arm lie on a circle with B1Br as the diameter. This configuration
corresponds precisely to a critical point of such arms under the signed area function. Moreover,

V = |b1| · sA.

4.2. Full parallel case: Pr for all r = 2, . . . , n.

If n is odd we find br ∈ Rb1 (r = 2, . . . , n).
If n is even we find br + br+1 ∈ Rb1 (r = 2, . . . , n− 1).

Statement 2. Critical points of V are aligned configurations if n is odd and 1-parameter families
of zigzags if n is even. Zigzags are arms, which project all to the same interval (see Fig. 1, right).

Zigzags also contain the aligned configuration. In a zigzag the lengths of the projections can
vary the from 0 to the minimum lengths of b2, . . . , br.
Both full cases (see Fig. 1) have the property that solutions exists for all length vectors.

Full ortho Alligned                             Zigzag
(n is even)                         (n is odd)

Full parallel

Figure 1.
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4.3. General case: n−k parallel conditions, and k−1 ortho conditions. We can assume
(due to the mirror lemma) that the last n− k conditions are parallel. That is, we have

b2 + · · ·+ bk + b⊥k+1 + · · ·+ b⊥n−1 = 0

together with

bk+1 + bk+2 ∈ Rb1, · · · , bn−1 + bn ∈ Rb1.

So

b⊥k+1 + b⊥k+2 = 0, · · · , b⊥n−1 + b⊥n = 0.

This has the following consequences:

• The b⊥k+1, · · · , b⊥n are diameters of the critical circle,

• If n− k is even, then b2 + · · ·+ bk + b⊥k+1 = 0.
The (k − 1)-arm b2, · · · , bk is an open planar diacyclic chain (diameter condition).

• If n− k is odd, then b2 + · · ·+ bk = 0. The (k− 1)-arm b2, · · · , bn−k−1 is a closed planar
cyclic polygon (closing condition).

In both cases (odd and even) the projections of the vertices lie on a circle (see Fig. 2). There
are only finite number of these circles possible. For a realization it is necessary that |bi| ≥ R
(radius of circle) if k + 1 ≤ i ≤ n.
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Figure 2. Projected vertices are on a circle.

The above discussion shows the following:

Theorem 4.5. The critical points of V up to ”mirror-symmetry” are as follows (see Fig. 3):
There exists a division of the n-arm into a sub-arm b1, a sub-arm b2, . . . , bk and a sub-arm
bk+1, . . . , bn such that:

• b1 is orthogonal to each of b2, . . . , bk (which lie in a plane Rb⊥1 ).
• The vertices of the arm b2, . . . , bk lie on a circle, satisfying

– the closing condition if n− k = odd,
– the diameter condition if n− k = even.

• The arm bk+1, . . . , bn is a zigzag, which projects orthogonally to the diameter of the
circle. �
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Figure 3. Solutions in the general case.

5. About n-arms in R3; projection on planes

As mentioned befor the signed volume is essentially the signed area of the projection onto
the plane orthogonal to b1. The same reasoning can be applied to more general projections. We
consider in R3 a vector p, which is the direction of the orthogonal projection on a plane Rp⊥.

Let the n-arm be given by the vectors b1, · · · , bn. The vertices are O,B1, · · · , Bn.
Define the signed Projected Area function as follows:

PA = [p, b1, b2] + [p, b1 + b2, b3] + [p, b1 + b2 + b3, b4]+

[p, b1 + b2 + b3 + b4, b5] + · · ·+ [p, b1 + · · ·+ bn−1, bn].

We fix first both the positions of p and b1!.
We assume that p× b1 6= 0.

Theorem 5.1. (Projection with fixed p and b1) The critical points of PA up to ”mirror-
symmetry” are as follows:
There exists a division of the n-arm into two sub-arms b1, . . . , bk and bk+1, . . . , bn, such that:

• The vertices of the arm b⊥1 , b2, . . . , bk lie on a circle in the projection plane, satisfying
– the closing condition if n− k = odd,
– the diameter condition if n− k = even.

• The arm bk+1, . . . , bn is a zigzag, which projects orthogonally to the diameter of the
circle.

Proof. As in the signed volume case, see Theorem 4.5. �

Remark 1. The special case that p is orthogonal to b1 is included. In this case we obviously
have b⊥1 = b1.
If p is parallel to b1 we are in the case of signed volume studied before.
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Remark 2. If we fix only p and not b1 the study of the signed projected area of the n-arm
b1, . . . , bn is equivalent to that of the signed volume of the (n + 1)-arm p, b1, . . . , bn. We state
this:

Theorem 5.2. (General projection on plane) The critical points of PA up to ”mirror-
symmetry” are as follows:
There exists a division of the n-arm into two sub-arms b1, . . . , bk and bk+1, . . . , bn, such that:

• The vertices of the arm b1, b2, . . . , bk lie on a circle in the projection plane, satisfying
– the closing condition if n− k = odd,
– the diameter condition if n− k = even.

• The arm bk+1, . . . , bn is a zigzag, which projects orthogonally to the diameter of the
circle. �

6. Gram matrices and moduli space

One way to study the moduli space of n-arms in Rn is to use the Gram matrix. This has an
advantage that there is a direct relation with the volume.

Given a set of vectors, the Gram matrix G is the matrix of all possible inner products. Let B
be the matrix whose columns are the arm vectors b1, . . . , bn. Then the Gram matrix is G = BtB.
Its determinant is the square of the volume of the simplex spanned by these vectors:

detG = (V )2.

The Gram matrix is always a positive semi definite symmetric matrix and any positive semi
definite symmetric matrix is the Gram matrix of some B . If G is positive definite it determines
B up to isometry.

In our case of n-arm in Rn the inner products (bi.bi) are the fixed numbers b2i . The other
entries of the Gram matrix we consider as variables xij . Its determinant is:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b21 x12 x13 x1n
x12 b22 x23 x2n
x13 x23 b23 x3n

xij
xij

x1n b2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
For a given n-arm, Gram matrix is contained in a subspace of dimension n(n−1)

2 .

Remark. Note that the equivalence is only up to isometry and not with respect to orientation.
On the set GRAM of all Gram matrices we will consider |V |. In order to treat the oriented version
we have to take two copies of GRAM and to glue it on the common boundary. The set GRAM

is contained in the product of intervals −bibj ≤ xij ≤ bibj .
In [9] diagonals are used as coordinates of the moduli space. GRAM is related to that descrip-

tion by the cosine rule:

dij = b2i + b2j − 2xij .

Note that G is differentiable on the entire space Rn(n−1)/2. In turn, |V | is defined on GRAM,
but is only differentiable on the interior {|V | > 0}. What happens on the boundary?
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We consider next the 3 dimensional case and use the notations from section 3.

detG =

∣∣∣∣∣∣
a2 z y
z b2 x
y x c2

∣∣∣∣∣∣ = 2xyz − a2x2 − b2y2 − c2z2 + a2b2c2 = 0

In Figure 4 this equation is visualized. Note that GRAM is equal to the intersection {detG ≥ 0}
with the box defined by {|x| < bc, |y| < ac, |z| < ab}. The boundary of the box intersects
detG = 0 only in four points.

The critical points of detG are given by the conditions
∂ detG/∂x = 2(yz − a2x) = 0 ,
∂ detG/∂y = 2(xz − b2y) = 0 ,
∂ detG/∂z = 2(xy − c2z) = 0.

We find the following critical points of detG:

• (x, y, z) = (0, 0, 0) : maximum a2b2c2 (index 3)
• (x, y, z) = (bc, ac, ab), (−bc, ac,−ab), (−bc,−ac, ab) or (bc,−ac,−ab) (just the four inter-

section points mentioned above).
The critical value is equal to 0. What are the types of these 4 critical points? We

compute the Hessian matrix and its determinant:

detH =

∣∣∣∣∣∣
−a2 z y
z −b2 x
y x −c2

∣∣∣∣∣∣
Note that detH(x, y, z) = −detG(−x,−y,−z).

Each of our 4 critical points is non-degenerate; since detH 6= 0. The Morse index is 2.
Note also that they are related to aligned situations.

Figure 4. Zero locus of the determinant of G. The compact region corresponds
to the set of Gram matrices. (The figure is produced by SINGULAR software.)

The local behavior of the level surfaces near the critical level can be studied with the local
formula:

detG = −ζ21 − ζ22 + ζ23 .
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Its zero level is a quadratic cone. We restrict ourselves by points inside the box. Near the
singular points we have a homeomorphism:

(detG)−1[0, ε] = (detG)−1[ε]× [0, ε]

For the non-critical points this is is guaranteed by the regular interval theorem; so the product
structure is global. We have shown the following:

Proposition 6.1. (Fig. 4) The closure of the component of G−1(0, a2b2c2), which contains
(0, 0, 0) is a topological 3-ball. Its boundary is a topological 2-sphere (differentiable outside 4
critical points). �

This component is exactly the set GRAM. Moreover, in this 3-dimensional case GRAM is
equivalent (up to isometry) to the set of triples of arm vectors.

Since we have detG = |V |2, the both functions have the same level curves on the domain of
common definition. So the above proposition tell us that the (unoriented) moduli space of 3-arm
is a topological disc. By gluing two copies of GRAM along the common boundary we get:

Theorem 6.2. The oriented moduli space of 3-arms in R3 is a 3-sphere. V is an exact topological
Morse function on this space with precisely two Morse critical points. �
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