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SOME OPEN PROBLEMS IN THE THEORY OF SINGULARITIES OF

MAPPINGS

DAVID MOND

Abstract. This paper surveys some open problems in the theory of singularities of mappings.
It does not claim to be comprehensive or fair. The problems are those whose answers I would

most like to see.

1. Vanishing homology of parameterisations of hypersurfaces

1.1. µ versus τ . Germs of mappings from n-space to n+1-space show some of the same features
as isolated complete intersection singularities. I’m thinking in particular of the relation between
the rank of the vanishing homology (“µ”) and the Ae–codimension (“τ”). This relation, which I
will describe in detail in a moment, can be seen already in the three Reidemeister moves of knot
theory. The three moves are those unavoidably present when we deform one plane knot diagram
to another.

Figure 1: Deforming a planar projection of a trefoil, passing through moves I, III and II

Figure 2: Reidemeister moves I, II and III, isolated in their Milnor balls

http://dx.doi.org/10.5427/jsing.2015.12j
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Of course, all three moves are really equivalence classes of germs of mappings: we allow arbitrary
diffeomorphisms in the source and target. This equivalence relation is known as A-equivalence.

I begin with the codimension. Let f : (Cn, S) → (Cp, 0) be a multi-germ (with S a finite set).
We define the Ae-codimension of f as the dimension of the quotient

(1.1)
{ ddtft|t=0 : f0 = f}

{ ddt (ψt ◦ f ◦ ϕt) |ψ0 = idCp , ϕ0 = idCn}

Both numerator and denominator here can be expressed more explicitly.
Clearly, for each x ∈ (Cn, S),

d

dt
ft(x)|t=0 ∈ Tf(x)Cp.

Thus x 7→ d
dtft(x)|t=0 is a map from (Cn, S) → TCp over f : it gives the diagonal arrow in a

commutative diagram

(1.2) TCn

��

df // TCp

��
Cn

;;wwwwwwwww

f
// Cp

in which the vertical maps are bundle projections. If f̂ is any diagonal map fitting in the diagram,
then

ft(x) = f(x) + tf̂(x)

is a 1-parameter deformation whose derivative is f̂ . Thus the numerator in (1.1) is the free
OCn,S module on generators ∂

∂y1
, . . ., ∂

∂yp
. We denote it by θ(f).

In particular, the expressions ∂ϕt

∂t |t=0 and ∂ψt

∂t |t=0, in the denominator of (1.1), define germs
of vector fields on (Cn, S) and (Cp, 0) respectively. Denoting these by ξ and η we have

d(ψt ◦ f ◦ ψt)
dt

|t=0 = df ◦ ξ + η ◦ f.

Once again, every germ of vector field ξ and η can appear in this way, so the denominator in
(1.1) is equal to

{df ◦ ξ : ξ ∈ θCn,S}+ {η ◦ f : η ∈ θCp,0}
We write the operators ξ 7→ df ◦ ξ and η 7→ η ◦ f as tf and ωf respectively, so finally the
denominator in (1.1) takes the form

tf(θCn,S) + ωf(θCp,0).

We call it the extended tangent space to the orbit of f , and denote it by TAef .
The Ae-codimension of f is the complex vector space dimension of the quotient (1.1). If

this dimension is 0 then f is “infinitesimally stable”; in fact from this it follows, by Martinet’s
versality theorem (1.2 below) that f is stable: every parametrised deformation is trivial.

Example 1.1.

(1) The germ in the centre of the first Reidemeister move can be parametrised by f(x) =
(x2, x3). Every power of x, except for x1, can be written as a monomial in x2 and x3,
so

ωf(θC2,0) + SpC

{(
x
0

)
,

(
0
x

)}
= θ(f).
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Now

(
0
x

)
is not in TAef , since the order of the coefficient of ∂/∂y2 in every member

of TAef is at least 2. On the other hand,

tf

(
∂

∂x

)
=

(
2x
3x2

)
and it follows that

(1.3) TAef + SpC

{(
0
x

)}
= θ(f)

and f has Ae-codimension 1.

(2) For a multi-germ f : (Cn, S) → (Cp, 0) with S = {s1, . . ., sk}, we denote by fj, for
j = 1, . . ., k, the associated mono-germs (Cn, sj) → (Cp, 0). Elements of θ(f) can be
represented by p × k matrices, with the j’th column representing the elements of θ(fj).
For example, consider the bi-germ

g :

{
s 7→ (s, 0)
t 7→ (0, t)

parameterising a transverse crossing of two immersed branches. It is infinitesimally
stable. To see this, observe that if a, b, c and d all vanish at 0 then the element

(1.4)

(
a(s) c(t)
b(s) d(t)

)
of θ(g) is equal to

ωg

(
a(y1) + c(y2)
b(y1) + d(y2)

)
,

while if a0, b0, c0, d0 are arbitrary constants then

tg(a0 − c0, d0 − b0) + ωg

(
c0
b0

)
=

(
a0 c0
b0 d0

)
.

This completes the proof of infinitesimal stability.

(3) Consider the perturbation ft : x 7→ (x2, x3 − tx) of the germ f in Example (1) above; it
is an immersion, and for real t > 0, or any complex t 6= 0, it has one double point – the
points ±

√
t have the same image, (t, 0). The two branches of the image meet transversely

at (t, 0), and otherwise ft is an embedding. Thus it is a stable perturbation of f . The
image has the homotopy type of a circle, as you can see in Figure 2.

Similar slightly more complicated calculations show that the codimension of Reidemeister
moves II and III is also 1, again equal to the rank of their vanishing homology. Other elementary
calculations with plane curve singularities register the same coincidence. The curve germ

x 7→ (x2, x2k+1)

has Ae-codimension k (this is an easy exercise, mimicking the procedure in Example 1.1). On
the other hand one can perturb it 1 to a curve whose only singularities are k transverse crossings

1One has to be careful what one means by a “perturbation” of an unstable map-germ. Its singularities must

somehow emerge from the unstable point(s) of the original germ, rather than migrating in from somewhere
distant. A proper definition requires the selection of a “conical” representative of f ([Fuk82]) – the equivalent for
mappings of the well known notion of a conical neighbourhood of a point in an analytic variety. A perturbation

is then a map f̃t obtained from a conical representative f̃ : U → Cp of f , by a parameterised deformation small

enough so that during the passage from f̃ to f̃t, the restriction to a neighbourhood of ∂U remains unchanged,
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– indeed, this can even be done in a real perturbation. A disc (real or complex) with k pairs of
points identified, is homotopy equivalent to a wedge of k circles, and has first homology Zk. So
the topological complexity of the image of a stable perturbation, as measured by the rank of its
first homology, is equal to the Ae-codimension. One of the main unanswered questions is how
far does this coincidence extend.

Before going on, I point out that the Ae-tangent space of a map-germ f serves for more
than the definition of the Ae-codimension of f . The following versality theorem was proved for
A-equivalence by Jean Martinet in [Mar77] (and more accessibly published in [Mar82]).

Theorem 1.2. An unfolding F : (Kn×Kd, S×{0}) → (Kp×Kd, (0, 0)) of f : (Kn, S) → (Kp, 0),
(K = R or C), F (x, t1, . . ., td) = (ft(x), u), is Ae-versal if and only if the images in θ(f)/TAef
of the initial velocities ∂ft/∂ti|t=0, i = 1, . . ., d, span it as a K-vector space.

Versality of F means that every unfolding G(x, u) of f is parameterised-equivalent, to an
unfolding induced from F by a map of parameters u 7→ t(u). It follows that every perturbation
of f is equivalent to ft for some t.

Note that from the versality theorem it follows that if f is infinitesimally stable then it
is stable. This makes it possible to clarify the notion of stable perturbation. It is simply a
perturbation for which every germ is infinitesimally stable.

A versal unfolding contains every possible perturbation of f , up to equivalence; if f has a
stable perturbation at all, then for a dense set of parameter values t, ft, (defined on a suitably
small domain) is a stable perturbation of f . The complement of this set of parameter values is
an analytic subset of the base space (Rd or Cd) of the unfolding F , and therefore in the complex
case does not separate it. For this reason any two good parameter values t and t′ can be joined by
a path in the set of good parameter values. From this it follows that ft and ft′ are topologically
equivalent, thus proving the (topological) uniqueness of the stable perturbation over C.

We look at some more examples in two dimensions. It turns out that there are five “Rei-
demeister moves” for mappings from 2-space to 3-space. They were first described by Victor
Goryunov in [Gor91]. I list them here, and in each case describe a 1-parameter versal unfolding,
which the reader can check by finding a basis for θ(f)/TAef and applying Theorem 1.2. They
are

(1) The S1 singularity (birth of two Whitney umbrellas), parameterised by

(x, y) 7→ (x, y2, y3 ± x2y).

Here, as in (2), the two forms, distinguished by ± in the third component, are in-
equivalent over R but equivalent over C. The unfolding F (x, y, t) = (ft(x, y), t),, with
ft(x, y) = (x, y2, y3 ± x2y + ty), is Ae- versal.

(2) The Morse tangency (the surface equivalent of the tacnode RMII), a bi-germ parame-
terised by {

(x1, y1) 7→ (x1, y1, 0)
(x2, y2) 7→ (x2, y2, x

2
2 ± y2

2)

A versal unfolding on parameter u is obtained by adding the unfolding parameter t to
the third component of f1 (or of f2).

up to diffeomorphism. In the study of singularities of mappings, the notion of stable perturbation plays a role
closely analogous to the role of the Milnor fibre in the theory of singular points of analytic varieties.
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(3) The degenerate triple point, parameterised by (x1, y1) 7→ (x1, y1, 0)
(x2, y2) 7→ (0, x2, y2)
(x3, y3) 7→ (x3 − y2

3 , y3,−x3 − y2
3)

Here three immersed surfaces meet two-by-two transversely, with each tangent to the
curve of intersection of the other two. The unfolding in which f3 is modified to

f3,t(x3, y3) = (x3 − y2
3 + t, y3,−x3 − y2

3 + t)

is Ae-versal.

(4) The umbrella with an immersed plane passing through it, parameterised by{
(x1, y1) 7→ (x1, y

2
1 , x1y1)

(x2, y2) 7→ (x2,−x2, y2)

A versal unfolding is obtained by adding t to the second component of f2.

(5) The quadruple point, in which four immersed planes meet, with each three in general
position. The three coordinate planes and a fourth plane with equation u + v + w = 0
can be parameterised by

(x1, y1) 7→ (0, x1, y1)
(x2, y2) 7→ (x2, 0, y2)
(x3, y3) 7→ (x3, y3, 0)
(x4, y4) 7→ (x4, y4,−x4 − y4)

This is versally unfolded by adding (t, t, t) to f4.

Remarkably, as Goryunov’s drawings show, each one (taking the positive variant in the first and
second case, where there is a choice of sign) can be perturbed to a mapping whose image is
homotopy-equivalent to a 2-sphere.

Figure 3: Images of stable perturbations of codimension 1 maps from 2-space to 3-space

The first three can be obtained from the three classical Reidemeister moves, by a procedure
known as augmentation, introduced by Tom Cooper in his Warwick thesis in 1994 (see also
[CMWA02] for a published account). In this, one takes a 1-parameter versal deformation
F (x, t) = (ft(x), t) of a germ of map from Cn to Cn+1 and defines the augmentation Af of
f , a germ from Cn+1 to Cn+2, by Af(t, x) = (ft2(x), t). Cooper introduced two further oper-
ations by which one constructs new codimension 1 map-germs from codimension 1 map-germs
one dimension lower down: they are known as monic and binary concatenation (see [CMWA02]).
The effect of monic concatenation is to add the space {t = 0} to the image of a versal unfolding
F on parameter t. Augmentation and monic concatenation are shown as arrows in Figure 4. It
is interesting to note that contained in the image Zt of a stable perturbation of a monic con-
catenation of a germ f , one can see the image of a stable perturbation of f , as the intersection
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of Zt with the hyperplane {t = 0}. Similarly, inside the image of a stable perturbation Yt of
an augmentation Af , one can see the image of a stable perturbation of f . Both sub-images are
shown, drawn with double thickness, in the bottom row of Figure 4. Note that the middle row
of Figure 4 shows the images of the germs rather than of their stable perturbations.

= Concatenation

3

K         K 1 2

2

K         K
0 1

K         K 

= Augmentation

Figure 4: Augmentation and Concatenation generate new codimension 1 germs from old.

The coincidence of Ae-codimension and the rank of the middle homology of the image of a stable
perturbation continues to hold here. Indeed it was proved by several authors, beginning with
de Jong and Pellikaan (unpublished) and then de Jong and van Straten [dJvS91], later Mond
[Mon91b], that the standard relationship between µ and τ(where τ means codimension and µ
means the rank of the vanishing homology) holds for germs of maps from surfaces to 3-space.
Before stating it we need

Lemma 1.3. ( [Sie91]) Let f : (Cn, S) → (Cn+1, 0) be a map-germ of finite Ae-codimension.
Then the image of a stable perturbation of f has the homotopy type of a wedge of n-spheres.

The number of n -spheres in the wedge is called the image Milnor number of f , and denoted
by µI . Warning: µI is not the same as the Milnor number of the image; if n > 1 and f is not
the germ of an immersion, its image always has non-isolated singularity, so its Milnor number is
∞.

Theorem 1.4. Let f : (C2, S) → (C3, 0) be a map germ of finite Ae–codimension. Then

(1.5) µI ≥ Ae − codim(f), with equality if and only if f is quasihomogeneous.

An identical result for germs of maps from C to C2 was proved in [Mon95]. Abundant evidence
supports
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Conjecture 1.5. (1.5) holds for all values of n for which (n, n+ 1) are in Mather’s nice dimen-
sions (cf [Mat71])2 .

However, it remains unproved. I summarise the evidence:

(1) There is a comparable result for map germs (Cn, S) → (Cp, 0) where n ≥ p and (n, p)
are in Mather’s nice dimensions: here it is the discriminant of a stable perturbation that
carries the vanishing homology. Denoting the rank of its middle homology by µ∆, we
have

Theorem 1.6. (([DM91])

µ∆ ≥ Ae − codimension,

with equality if f is weighted homogeneous.

In fact, as we will see, the proof of Theorem 1.6 very nearly proves Conjecture 1.5,
with just one crucial gap.

(2) Kevin Houston ([Hou98]) found a beautiful argument to prove (1.5) for germs of mul-
tiplicity (=dimension of the local algebra of the germ) 2: using a normal form for such
map-germs, he was able to calculate both the Ae codimension and the image Milnor
number, and show explicitly that they are equal.

(3) Examples of corank 1 germs of maps (C3, 0) → (C4, 0) were described and classified by
Houston and Kirk in [HK99]; all satisfied (1.5).

(4) In [Hou02], Kevin Houston generalised Cooper’s construction of the augmentation of a
germ of codimension 1; in place of the formula Af(x, t) = (ft2(x), t) used by Cooper,
he considers the germ Ahf(x, t) = (fh(t), t), where h : (Ck, 0) → (C, 0) defines an iso-
lated hypersurface singularity and F (x, t) = (ft(x), t) is a 1-parameter stable unfolding
of a finite codimension map-germ f : (Cn, 0) → (Cn+1, 0), which need not have Ae-
codimension 1. He shows that when both f and h are weighted homogeneous then Ahf
has both Ae-codimension and µI equal to the product µI(f)µ(h).

(5) It was shown in [CMWA02], using the classification of corank 1 stable mono-germs and
Cooper’s operations of augmentation and concatenation, that all codimension 1 multi-
germs for which all constituent mono-germs are of corank ≤ 1 have µI = 1 also (and
all are quasihomogeneous, and all (modulo choice of real form) have stable pertubations
exhibiting the vanishing homology over R).

(6) Ayse Altintas, in [Alt12], gives examples of weighted homogeneous map-germs
(Cn, 0) → (Cn+1, 0) of finite codimension for n = 3 and 4, and verifies (1.5) for all
of them for which it it possible to calculate µI . This includes several infinite series
and a sporadic example where Ae-codimension=µI = 3825. I return in a moment to a
description of her method.

(7) Toru Ohmoto in [Ohm15] has recently developed Thom polynomial techniques which
make possible the calculation of µI for weighted homogeneous germs (Cn, 0) → (Cn+1, 0)
in terms of weights and degrees. He gives formulae for the cases n = 2 (already found

2The restriction to Mather’s nice dimensions is for a curious reason, explained below in the sketch of the proof
of Theorem 1.6.
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by a different method in [Mon91a]) and n = 3 (which is new):

(1.6) µI =
(w0 − d1)(w0 − d2)

24w4
0w1w2


d2

1(d2
2 + 3d2w0 + 2w2

0)
+d1w0(3d2

2 − d2(19w0 + 4(w1 + w2))
+2w0(w0 − 2(w1 + w2)))
+2w2

0(d2
2 + d2(w0 − 2(w1 + w2))

+2(5w0(w1 + w2) + 3w1w2))


Here f is assumed to be in linearly adapted form

f(x0, x1, x2) → (x1, x2, f3(x), f4(x))

with weights and degrees

(w0, w1, w2) → (w1, w2, d1, d2).

Ohmoto has checked this against the calculations of Ayse Altintas in [Alt12], with
which it agrees. Ohmoto’s formula should be compared with formulas derived by Victor
Goryunov in [GM93, Section 4]. These are based on a calculation of the homology of
the image Xt of a stable perturbation of a corank 1 map-germ : (Cn, 0) → (Cn+1, 0) in
terms of the homology of the multiple point spaces Dk(ft):

(1.7) Hn(Xt : Q) '
n+1⊕
k=2

HAlt
n−k+1(Dk(ft);Q)

(to which I will return) so in the case n = 3 contain 3 summands.
HereHAlt

n−k+1(Dk(ft);Q) is the isotypal summand of the representation of the symmet-

ric group Sk on Hn−k+1(Dk(ft);Q) corresponding to the sign representation. In [GM93]
there are formulae for the ranks of these modules in terms of weights and degrees, in the
case of corank 1 mappings.

In view of Ohmoto’s formulae, to verify 1.5 for weighted homogeneous map-germs it
would be enough to have a formula for the Ae-codimension of f in terms of weights and
degrees. This brings us back to the question of how Altintas checks 1.5 in her examples.
Note that the definition of Ae-codimension as the dimension of

(1.8)
θ(f)

tf(θCn,0) + ωf(θCp,0)

is not very helpful: tf : θCn,S → θ(f) is a graded inclusion (when n < p), but the
morphism induced by ωf ,

θCp,0 →
θ(f)

tf(θCn,0)

(whose cokernel is θ(f)/TAef) has kernel of projective dimension p− 1 with no known
standard projective resolution.

1.2. Damon’s method. Jim Damon showed in [Dam91] how to calculate Ae-codimension by
a completely different method. If f : (Cn, S) → (Cp, 0) has stable unfolding

F : (Cn × Cd, S × {0}) → (Cp × Cd, (0, 0))

then there is a commutative diagram (from which I omit the base-points)

Cn × Cd F // Cp × Cd

Cn
j

OO

f
// Cp

i

OO
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in which the vertical arrows are just inclusions x 7→ (x, 0) and y 7→ (y, 0). This is in fact a fibre
square: the Cn in the bottom left is the fibre product of the Cp and Cn×Cd in the bottom right
and top left over the Cp × Cd in the top right, and the arrows

(1.9)

f
//

j

OO

are determined by the arrows

(1.10)
F //

i

OO

We denote by i∗(F ) the germ f in (1.9) resulting from the diagram (1.10). Everything about
i∗(F ) should be calculable from information about arrows (1.10). It is not hard to check that
the quotient (1.8) is isomorphic as OCp -module to the quotient

(1.11)
θ(i)

ti(θCp,0) + i∗(Der(− logD))

Here Der(− logD) is the OCp×Cd -submodule of θCp×Cd consisting of germs of vector fields which
are tangent to the discriminant (= image when n < p) D of F . Damon showed in [Dam91] that
this quotient is isomorphic to (1.8) for any germ f obtained by transverse fibre product of i and
F with F stable. The argument in [Mon15] is just linear algebra together with the non-trivial
but unsurprising fact that Der(− logD) is the kernel of the morphism

θCp×Cd → θ(F )

tF (θCn×Cd)
.

The module (1.11) measures the failure of transversality of the mapping i to the distribution
Der(− logD); reduced modulo mCp,0 (i.e. evaluating everything at 0 ∈ Cp) it simply becomes

T(0,0)Cp × Cd

d0i(T0Cp) + Der(− logD)((0, 0))
.

Stability of f is equivalent to the transversality of i to the distribution Der(− logD). To obtain
a stable perturbation of f , we perturb i so that it becomes transverse to Der(− logD).

The module (1.11) has the advantage over (1.8) that the numerator is a free module over
OCp,0 and both modules in the denominator are finitely generated submodules. However its
main virtue is that one can extract information about the image Milnor number from the closely
related module

(1.12)
θ(i)

ti(θCp,0) + i∗(Der(− log h)),

where h is an equation for D and Der(− log h) means the submodule of Der(− logD) consisting
of germs of vector fields tangent to all the level sets of h (rather than just D = {h = 0}). Before
proceeding, we note that in general the module in (1.11) is a quotient of the module in (1.12),
since Der(− log h) ⊂ Der(− logD), and if D and i are weighted homogeneous with respect to the
same weights, then (1.12) and (1.11) are the same: Der(− logD) is a direct sum of Der(− log h)
and the OCp,0-module generated by the Euler vector field χe, and χe◦i ∈ ti(θCp,0). By a standard
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argument involving coherence, one can show that if I(y, t) = it(y) is any deformation of i = i0,
then

(1.13) dimC
θ(i)

ti(θCp,0) + i∗(Der(− log h))
≥
∑
y

dimC
θ(it)y

tit(θCp,y) + i∗t (Der(− log h))y
.

Proposition 1.7. Provided (n, p) are nice dimensions, the right hand side in (1.13) is the image
Milnor number when p = n+ 1, and the discriminant Milnor number when p ≤ n.

The proof involves three steps:

(1) For each point y /∈ D(ft), differentiation of a defining equation by vector fields gives rise
to an isomorphism

θ(it)y
tit(θCp,y) + i∗t (Der(− log h))y

' OCp,y

Jh◦it

and thus

(1.14)
∑

y/∈D(ft)

dimC
θ(it)y

tit(θCp,y) + i∗t (Der(− log h))y
=

∑
y/∈D(ft)

dimC
OCp,y

Jh◦it

(2) the right hand side in (1.14) is the rank of the middle homology of D(ft). This is shown
by Siersma in [Sie91].

(3) At all points y ∈ D(ft),

θ(it)y
tit(θCp,y) + i∗t (Der(− logD))y

= 0

by the isomorphism of (1.11) and (1.8), for we are assuming ft is stable. In the nice
dimensions, all stable germs are quasihomogeneous, and so

θ(it)y
tit(θCp,y) + i∗t (Der(− log h))y

=
θ(it)y

tit(θCp,y) + i∗t (Der(− logD))y
= 0.

Thus, ∑
y

=
∑

y/∈D(ft)

+
∑

y∈D(ft)

=
∑

y/∈D(ft)

= µ∆

From 1.7 it follows that for a weighted homogeneous germ, µI = Ae-codimension if and only
if the inequality in (1.13) is an equality. So the conjecture is equivalent to conservation of
multiplicity of the module (1.12). When n ≥ p, we do have conservation of multiplicity, and this
is how Theorem 1.6 is proved. The argument uses a classical theorem of Buchsbaum and Rim,
together with the fact that the discriminant of a stable map-germ F : (Cn, S) → (Cp, 0), with
n ≥ p is a free divisor. Here is a summary:

We obtain f from F by the following fibre square:

(1.15) CN F // CP

Cn
f
//

OO

Cp
i

OO

in which itF and P −N = p−n. Let I(y, t) = it(y) be a deformation of i. The relative version
of the module (1.12),

T 1
rel :=

θ(I)

tI(θCp×Cd/Cd) + I∗(Der(− logD))
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has presentation

(1.16) θCp×Cd/Cd ⊕ I∗(Der(− logD)) → θ(I).

Now θCp×Cd/Cd is free of rank p, and because Der(− logD) is free of rank P , I∗(Der(− log h)) is
free of rank P − 1; thus 1.16 can be written in the form

(1.17) Op⊕OP−1 → OP ,
where O = OCp×Cd,0. The theorem of Buchsbaum and Rim states that the codimension of the

support of the cokernel T 1
rel is ≤ p, and that if equality holds then T 1

rel is Cohen Macaulay as
O-module. From this it follows that its push-forward π∗(T

1
rel) to the base space Cd is free, with

rank equal to the dimension of the module (1.12); this implies conservation of multiplicity.
Now for a weighted homogeneous germ, µI = Ae-codimension if and only if π∗(T

1
rel) is free,

and its freeness is equivalent to T 1
rel being Cohen Macaulay of grade p; thus conjecture 1.5 is

equivalent to the statement that T 1
rel is Cohen Macaulay of grade p. When p = n + 1 then,

unlike the case n ≥ p, no general theorem I know of shows this. It is possible to check Cohen-
Macaulayness in examples by using computer algebra packages like Macaulay or Singular, and
this is what Altintas does in her examples. But why should this hold in general?

2. Multiple Point Spaces

The rank, µI or µ∆, of the vanishing homology of image or discriminant is its crudest topolog-
ical invariant. There are more subtle topological descriptors. All of the images Yt of the stable
perturbations in Figure 2 have H2(Yt) ' Z, but the vanishing cycles spring from very different
geometrical origins. These can be easily appreciated in the case of two dimensional images, espe-
cially when there are good real pictures, in which the real image carries the vanishing homology
of the complex image. In higher dimensions they are less evident. The image-computing spectral
sequence introduced in [GM93] and [Gor95] computes the homology of the image of a map from
the homology of its multiple-point spaces, and reflects these different origins. For mono-germs,
the following theorem is proved in [Hou97], generalising an earlier statement in [GM93] (where
it is proved for stable perturbations of corank 1 map-germs of finite Ae-codimension).

Theorem 2.1. Let ft : U → Cn+1 be a stable perturbation of a map-germ f : (Cn, 0) → (Cn+1, 0)
of finite A-codimension. There is a natural increasing filtration

0 = F1 ⊆ F2 ⊆ . . . ⊆ Fn+1 = Hn(Yt;Z)

with

(2.1) Fk/Fk−1 ' HAlt
n−k+1(Dk(ft)).

HereHAlt
n−k+1(Dk(ft)) is the homology of the alternating chain complex, introduced by Goryunov

in [Gor95]. This is the subcomplex of the singular chain complex consisting of chains on which
the symmetric group Sk acts by its sign representation. When integer homology is replaced
by rational homology, HAlt

n−k+1(Dk(ft)) is simply the isotypal summand of Hn−k+1(Dk(ft);Q)
corresponding to the sign representation, as in the earlier version of the spectral sequence in
[GM93].

There is a version of Theorem 2.1 also for the parametrisation of the discriminant of a stable
perturbation ft of a map-germ f : (Cn, S) → (Cp, 0) with n ≥ p, given by restricting ft to its
critical set. In this case the filtration begins with 0 = F0 ⊆ F1 ⊆ · · · since the critical set of ft
may itself have vanishing cycles.

To highlight the information these descriptions give, consider the case of mono-germs for
which µI or µ∆ are equal to 1. According to Conjecture 1.5 and Theorem 1.6, these are the
germs of Ae-codimension 1. By 2.1 and its version for discriminants, just one of the multiple
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point spaces of ft or ft|Σft has an alternating vanishing cycle, which gives rise to the vanishing
cycle in the image or discriminant of ft.

Question 2.2. (i) In the case of a stable perturbation of a Ae-codimension 1 mono-germ, how
to determine which multiple-point space carries the vanishing alternating cycle?

(ii) For those stable map-germs (Cn, 0) → (Cp, 0) whose restriction to a generic hyperplane in
(Cp, 0) 3 has Ae-codimension 1, the answer to (i) is determined by the local algebra of the germ,
since stable germs are classified by their local algebra. What is this invariant of the algebra?

For example, for the minimal (i.e. not an augmentation of a germ in lower dimensions)
codimension 1 map-germ f : (C2m−1, 0) → (C2m, 0) of corank 1, the vanishing homology in the
image of a stable perturbation ft comes from an alternating vanishing cycle in Hm(Dm+1(ft))
(see [CMWA02, Section 4]).

Question 2.3. What is the relation between the cohomological version of the filtration in 2.1
and the weight or Hodge filtrations in the mixed Hodge structure on the vanishing cohomology of
images and discriminants?

Question 2.4. How to calculate the alternating homology of the multiple point spaces of a stable
perturbation for map-germs of corank > 1?

The examples of corank 2 germs of maps from surfaces to 3-space described in [MNB08] may
well provide a useful starting point.

Note that if f has corank > 1, we do not even have explicit generators for the defining ideals
of the multiple points spaces Dk(f) for k > 2.

3. Fitting ideals

If M is a module over a ring R with presentation Rq
Λ−→ Rp → M → 0, the k’th Fitting

ideal of M , FRk (M), is the ideal in R generated by the minors of size p − k of the matrix Λ

provided q ≥ p − k > 0; FRk (M) is defined to be 0 if q < p − k, and R if p − k ≤ 0. It is not
hard to show that this defintion is independent of the choice of presentation. To interpret it,
we define µR(M) to be the minimal cardinality of a set of generators for M over R. Then it is
easily shown that V (Fk(M)) = {p ∈ Spec R : µRp

(Mp) > k}. In analytic geometry, if M is an
OX -module then the Fitting ideal sheaf Fk(M) is is a sheaf of ideals of OX defined analogously,
so that its stalk at x is the k’th Fitting ideal of Mx over OX,x.

If f : X → Y is a finite analytic map then it follows that FOY

k (f∗(OX)) defines the set
Mk+1(f) of points in Y with k + 1 or more preimages, counting multiplicity. When X is
Cohen-Macaulay of dimension n and Y is a complex manifold of dimension n + 1 respectively,
then a minimal presentation of f∗(OX) as OY -module is a square matrix. In particular, its

determinant generates FOY
0 ((f∗(OX)) and so defines the image of f . We continue to denote

the size of this (square) matrix by p. This application of Fitting ideals has been studied by
Gruson and Peskine in [GP82], by Mond and Pellikaan in [MP89] and by Kleiman, Lipman and
Ulrich in [KLU92], [KLU96] and [KU97], and by Altintas and Mond in [AM13]. When k > 0,
the expected codimension of Mk(f) in Cn+1, k, is different from the codimension of the variety
of zeros of the ideal of (p − k + 1) minors of a generic p × p matrix, and so standard structure
theorems on generic determinantal varieties give no information on the spaces Mk(f).

Nevertheless, a series of refinements of the description of the ideals Fk(f∗(OX)), based on
the fact that f∗(OX) is an OY -algebra, shows that for k = 0, 1 and 2, OY /Fk(f∗(OX)) is

3That is, the germ i∗(F ) resulting from the diagram (1.10) where i parametrises a generic hyperplane.
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Cohen Macaulay provided it has the expected dimension. In particular, OX has a distinguished
generator 1 and therefore there is a distinguished row in the matrix Λ of any presentation.
The (p − 1) minors of the matrix obtained by deleting the distinguished row of Λ were shown
in [MP89] to generate F1(f∗(OX)); it follows that as a codimension 2 variety defined by the
maximal minors of a (p−1)×p matrix, V (F1) is Cohen-Macaulay. When X is Gorenstein, then
OX is presented by a symmetric matrix Λ over OY ([MP89]), and [MP89] goes on to show that
F2(OX) is generated by the (p− 2) minors of the matrix obtained by deleting the distinguished
row and column of Λ. Again, Cohen-Macaulayness of OY /F2 follows, this time by a theorem
on the minors of a generic symmetric matrix due to Józefiak in [Józ78] .

In a similar vein, Gruson and Peskine showed in [GP82] that if f is a map of corank 1 (a
“curvilinear map” in the language of Kleiman et al), then for each k, if V (Fk) has codimension
k+1 in Y , then Fk(f∗OX) defines a Cohen-Macaulay space. The result was reproved in [MP89].
Here the fact that OX is cyclic as OY -algebra – generated over OY by powers of a primitive
element – provides a nested family of (p− k)× p submatrices of the matrix Λ of a presentation
of OX as OY -module with respect to these powers. It turns out that Fk is generated by the
maximal minors of the (p−k)×p submatrix; this makes it dimensionally correct, and now Cohen
Macaulayness follows from the theorem of Buchsbaum and Rim for generic matrices.

In all of these cases, progress is made by using the fact that OX is an OY algebra of a certain
type (Cohen Macaulay, Gorenstein, cyclic, . . . ) to show that the relevant Fitting ideal is in fact
generated by the minors of a suitable submatrix Λ′ of Λ. Whereas the codimension of V (Fk) is
different from the codimension of the variety of zeros of the ideal of (p− k)× (p− k) minors of
a generic p × p matrix, in each case the Cohen-Macaulayness of OY /Fk is proved by showing
that this codimension is the right one for the minors of a generic matrix of the size of Λ′.

Let us refer to this as the submatrix method.
Work on proving Cohen-Macaulayness for these target multiple point spaces defined by Fit-

ting ideals seems to have come largely to a stop after the 1997 paper of Kleiman and Ulrich.
The submatrix method had exhausted its potential. It seems that an approach is needed which
engages with the OY -algebra stucture of OX more deeply. The recent development of com-
puter algebraic geometry packages such as Macaulay and Singular, together with increases in
computational power, have brought the calculation of more Fitting ideal multiple-point spaces
within reach. Calculations now suggest that there is more to be proved. Here are two rather
tendentious conjectures, which are supported by all the calculations I have been able to do.

Conjecture 3.1. Let f : (Cn, 0) → (Cn+1, 0) be finite and generically 1-1, and suppose that
dimMj(f) = n+ 1− j for 0 ≤ j ≤ k. Then OY,0 /Fk(f∗OX)) is Cohen Macaulay.

Conjecture 3.2. With f as in Conjecture 3.1, let Λ be a symmetric presentation matrix for
f∗(OX) over OY , with respect to generators f1 = 1, g2, . . ., gp. Let Λ′ be the (p − 1) × (p − 1)
matrix obtained from Λ by deleting its first row and column. Then Fk(f∗(OX)) is generated by
the (p− k) minors of Λ′.
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