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COMPLETE TRANSVERSALS OF SYMMETRIC VECTOR FIELDS

MIRIAM MANOEL AND IRIS DE OLIVEIRA ZELI

Abstract. We use group representation theory to obtain complete transversals of singular-

ities of vector fields in nonsymmetric as well as reversible and equivariant contexts. The
method is an algebraic alternative to compute complete transversals, producing normal forms

to be applied systematically in the local analysis of symmetric dynamics.

1. Introduction

In singularity theory there are many results concerned with determining normal forms of map
germs defined on different domains under different equivalence relations. Among a great number
of papers in this direction, we cite for example the classical works by Bruce et al. [7], Gaffney
and du Plessis [14], Gaffney [13] and Wall [23, 24]. On the classification of singularities applied
to bifurcation theory we mention Golubitsky et al. [15, 16] and Melbourne [20, 21], these in
the contexts with and without symmetries. In [8] the authors present the complete transversal
method, an algebraic tool for the classification of finitely determined map germs. In [17] Kirk
presents the programme Transversal, that implements this method.

In dynamical systems, normal forms of vector fields are obtained up to conjugacy and are
extensively used in the study of local dynamics around a singularity. Some classical works are
due to Poincaré [22], Birkhoff [6], Dulac [11], Belitskii [5] and Elphick et al. [12]. The method
developed by Belitskii [5] consists of calculating the kernel of the homological operator associated
with the adjoint Lt of the linearization L of the original vector field. This calculation in turn is
associated with finding polynomial solutions of a PDE. Elphick et al. in [12] give an algebraic
method for obtaining the normal form introducing an action of a group of symmetries S, namely

(1) S = {esLt , s ∈ R},
so that the polynomial nonlinear terms are equivariant under this action. In [4] we treat formal
normal forms of smooth vector fields in the simultaneous presence of symmetric and reversing
symmetric transformations. The algebraic treatment shows advantage at once, since the set Γ
formed by such transformations has a group structure. As a consequence, the vector field, called
Γ-reversible-equivariant, has a well-determined general form that can be given explicitly in an
algorithmic way (see [1] and [2]). Purely reversible systems have been studied for a long time,
and in more recent years, reversible and equivariant systems have also become an object of great
interest; for surveys see [10] and [18]. In particular, in [3] a relationship between purely equi-
variant systems (without reversing symmetries) and a class of reversible equivariant systems is
established. The normal form of a Γ-reversible-equivariant system inherits the symmetries and
reversing symmetries if the changes of coordinates are equivariant under the group Γ. Belitskii
normal form has been used by many authors in different aspects; for example, in the analysis
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of occurrence of limit cycles or families of periodic orbits either in purely reversible vector fields
or in reversible equivariant ones (see [19] and references therein). Motivated by these works,
in [4] we have established an algebraic result related to those by Belitskii [5] and Elphick [12]
in the reversible equivariant context using tools from invariant theory. In this process we have
proved that the normal form comes from the description of the reversible equivariant theory of
the semidirect product SoΓ. After that recognition, we use results of [1, 2] to produce a formal
normal form of a reversible equivariant vector field by means of an alternative algebraic method,
without passing through a search for solutions of a PDE, which is the basis of Belitskii’s method.

In the present work we put together the approaches from singularities and dynamical systems
in the study of normal forms. We show how the complete transversal method is closely related
to the normal form method developed in [4]. Let us stress that our intention here is not to apply
the method for specific classifications. The goal is, instead, to explore this relation to recognize
an algebraic alternative to compute complete transversals of singularities. Clearly the result is
also valid without symmetries. The idea is to introduce Lie groups of changes of coordinates
in both contexts. In the nonsymmetric case we recognize the complete transversal as being
the space of polynomial map germs that commute with the group S; in the reversible equivari-
ant case, the space of polynomial map germs are reversible equivariant under the action of SoΓ.

We have organized this paper as follows. In Section 2 we briefly present notation and collect
basic concepts from reversible equivariant mappings and from normal form theory. In Section 3
we present the algebraic way to compute complete transversals. According to the action of the
group of equivalences, we characterize the tangent space to the orbit of a map germ (Proposi-
tion 3.2), and recognize the complete transversal (Theorem 3.3). In Subection 3.2 we give the
reversible equivariant versions, Proposition 3.5 and Theorem 3.4.

2. Preliminaries

Throughout we use the language of germs from singularity theory for the local study of C∞

applications around a singularity, which we assume to be the origin.

2.1. Reversible equivariant map germs. Let Γ be a compact Lie group with a linear action
on a finite-dimensional real vector space V : Γ× V → V, (γ, x) 7→ γx.

Consider a group homomorphism

(2) σ : Γ→ Z2 = {±1},
defining elements of Γ as follows: if σ(γ) = 1 then γ is a symmetry, if σ(γ) = −1, then γ is a
reversing symmetry. We denote by Γ+ the subgroup of symmetries of Γ. If Γ+ is nontrivial,
then Γ+ = kerσ is a proper normal subgroup of Γ of index 2.

We recall that to a linear action of Γ on V there corresponds a representation ρ of the group Γ
on V . In other words, there is a linear group homomorphism ρ : Γ→ GL(V ), ρ(γ)x = γx, where
GL(V ) is the vector space of invertible linear maps V 7→ V . The representation ρσ : Γ→ GL(V ),
ρσ(γ) = σ(γ)ρ(γ) is called the dual of ρ.

Let us denote by EV the ring of smooth function germs f : V, 0 → R, by ~EV the module of

smooth map germs g : V, 0→ V and by ~PV the submodule of ~EV of polynomial map germs. A
germ f ∈ EV is called Γ−invariant if

(3) f(ρ(γ)x) = f(x), ∀γ ∈ Γ, x ∈ V, 0.
We denote by PV (Γ) the ring of Γ−invariant polynomial function germs and by EV (Γ) the

ring of Γ−invariant smooth function germs.
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A map germ g ∈ ~EV is called (purely) Γ−equivariant if

(4) g(ρ(γ)x) = ρ(γ)g(x), ∀γ ∈ Γ, x ∈ V, 0.

We denote by ~PV (Γ) the module of Γ−equivariant polynomial map germs and by ~EV (Γ) the
module of Γ−equivariant smooth map germs.

A smooth map germ g : V, 0→ V is called Γ-reversible-equivariant if

(5) g(ρ(γ)x) = ρσ(γ)g(x), ∀γ ∈ Γ, x ∈ V, 0.

We denote by ~QV (Γ) the module of Γ-reversible-equivariant polynomial map germs and by
~FV (Γ) the module of Γ-reversible-equivariant smooth map germs.

Since Γ is compact, ~PV (Γ) and ~QV (Γ) are finitely generated modules over PV (Γ), which in

turn is a finitely generated ring (see [16]). If σ is trivial, then ~PV (Γ) and ~QV (Γ) coincide. In

[1], the authors present an algorithm that produces a generating set of ~QV (Γ) over PV (Γ). A
result in [2] provides a simple way to compute a set of generators of PV (Γ) from the knowledge
of generators of PV (Γ+).

Notice that ~PV (Γ) and ~QV (Γ) are graded modules,

(6) ~PV (Γ) =
⊕
k≥0

~P
k

V (Γ) and ~QV (Γ) =
⊕
k≥0

~Q
k

V (Γ),

for ~P
k

V (Γ) = ~PV (Γ) ∩ ~P
k

V and ~Q
k

V (Γ) = ~QV (Γ) ∩ ~P
k

V , where ~P
k

V is the subset of ~PV of
homogeneous polynomial germs of degree k defined on V , k ≥ 0.

2.2. Belitskii-Elphick method. For h ∈ ~EV , consider the ODE

(7) ẋ = h(x), x ∈ V, 0.
The interest of the theory is local, around a singular point which we assume to be the origin,

so h(0) = 0. The normal form method consists of successive changes of coordinates in the domain

that are perturbations of the identity, x = ξ(y) = y + ξk(y), for ξk ∈ ~P
k

V , k ≥ 2. In the new
variables, the system is

ẏ = g(y), y ∈ V, 0.
where

(8) g(y) = (dξ)−1x h(ξ(y)),

For each x we have

(9) (dξ)−1x = (I + (dξk)x)−1 = I − (dξk)x + ϕ ((dξk)x) , k ≥ 2,

where ϕ((dξk)x) contains no terms of degree strictly less than 2(k − 1).
The aim is to annihilate as many terms of degree k as possible in the original vector field,

obtaining a conjugate vector field written in a simpler and more convenient form. The method

is based on the reduction of this problem to computing kerAd kLt where Ad kL : ~P
k

V → ~P
k

V is the
homological operator defined by

(10) Ad kL (p)(x) = (dp)xLx− Lp(x), x ∈ V, 0,
where Lt is the adjoint of the linearization L. We refer to [16] for the details.

In [12], Elphick et al. give an alternative algebraic method to obtain the normal form devel-
oped by Belitskii, which consists of computing nonlinear terms that are equivariant under the
action of the group

(11) S = {esLt , s ∈ R}.
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The authors show that for each k ≥ 2, kerAd kLt = ~P
k

V (S) and, since AdkLt = (Ad kL )t, it follows
that

(12) ~P
k

V = ~P
k

V (S)⊕Ad kL (~P
k

V ).

From that, we show in [4, Theorem 4.1], that if the vector field h is Γ-reversible-equivariant,
with L = (dh)0, then for each k ≥ 2 we have

(13) ~Q
k

V (Γ) = ~Q
k

V (So Γ)⊕AdkL(~P
k

V (Γ)),

where the semidirect product is induced from the homomorphism µ : Γ→ Aut(S) given by

µ(γ)(esL
t

) = eσ(γ)L
t

.

Hence, the normal form deduction reduces to the computation of a basis for the vector space
~Q
k

V (So Γ) for each k ≥ 2. In practice, via algorithmic methods we can obtain the general form

of elements in ~QV (SoΓ) and, once this module is graded, we easily extract from this gradution

a basis for ~Q
k

V (So Γ). The main tools we use to obtain this general form are [1, Algorithm 3.7]
and [2, Theorem 3.2] which hold in particular if the group is compact. There are many cases for
which the group S fails to be compact; nevertheless, these tools can still be used as long as the

ring PV (S) and the module ~PV (S) are finitely generated.

3. The algebraic alternative for complete transversals

3.1. Nonsymmetric case. Let G be the group of formal changes of coordinates ξ : V, 0 → V ,

ξ = I + ξ̃, where I is the germ of the identity and ξ̃ ∈
⊕

l≥2
~P
l

V . For M denoting the maximal

ideal of EV , we consider the action of G on M~EV given as follows: for ξ ∈ G and h ∈M~EV ,

(14) (ξ · h) (x) = (dξ)−1ξ(x)h (ξ(x)) , x ∈ V, 0.

For each k ≥ 2, consider now the vector space Jk formed by all k−jets jkh of elements

h ∈ M~EV . We introduce the group JkG =
{
jkξ, ξ ∈ G

}
, which is a Lie group with an action

on Jk induced by (14), namely

jkξ · (jkh)(x) = jk(ξ · h)(x), ξ ∈ G, h ∈M~EV .

For this action, we define the tangent space TG ·h to the orbit of h by the set of elements of the
form

(15)
d

dt
φ(x, t)|t=0,

for the one-parameter family φ(·, t), where φ(x, t) = (dξ)−1(x,t)h (ξ(x, t)) and ξ(x, 0) = x.

The complete transversal method by Bruce et al. [8] is a tool for the classification of singu-
larities that is performed on each degree level in the Taylor expansion of the germ to be studied.
The main idea is to classify, at each step, k−jets on Jk, since Jk is isomorphic to a quotient of

EV−modules M~EV /Mk+1~EV . The result is transcribed below:

Proposition 3.1. ([8, Proposition 2.2]) For k ≥ 1, let h be a k−jet in the jet space Jk. If W

is a vector subspace of ~P
k+1

V such that

(16) Mk+1~EV ⊂W + TG · h+Mk+2~EV ,

then every k+1−jet g with jkg = h is in the same Jk+1G−orbit as some (k+1)−jet of the form
h+ ω, for some ω ∈W .
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The vector subspace W is the so-called complete transversal. In principle, the computation

of W requires the knowledge of TG ·h moduloMk+2~EV . Now, in an investigation of this result,
we have noticed the presence of a linear operator resembling the homological operator given in
(10). This has led us to obtain an alternative way to compute complete transversals through an
algebraic approach. The rest of the present work is devoted to developing the approach.

We start with the linear operator Adh : ~EV → ~EV ,
(17) Adh(ξ)(x) = (dξ)xh(x)− (dh)xξ(x),

and consider the restriction Ad kh = Adh|~P
k

V

. Write h = L+ h̃ with L = (dh)0 and h̃ ∈ M2~EV .

By linearity it follows that

(18) Ad kh (ξk) = Ad kL (ξk) +Ad k
h̃

(ξk), ξk ∈ ~P
k

V .

We can now characterize the tangent space TG · h:

Proposition 3.2. The tangent space to the orbit of h ∈M~EV is given by

TG · h =

{
Adh(ξ̃) + ϕ(−(dξ̃)x)h, ξ̃ ∈

l≥k⊕
~P
l

V , ϕ((dξ̃)x) as in (9), k ≥ 2

}
.

Proof: Let ξ(·, t) be a family on G, ξ(x, t) = x+ ξ̃(x, t), with ξ(x, 0) = x, and let

φ(x, t) = (dξ)−1ξ(x,t)h (ξ(x, t)) .

We have
d

dt
φ(x, 0) =

(
− d

dt
(dξ̃)x + ϕ

(
d

dt
(dξ̃)x

))
h(x) + (dh)x

d

dt
ξ̃(x, 0),

with ϕ given by

(19) (dξ)−1ξ(x,t) = I − (dξ̃)ξ(x,t) + ϕ((dξ̃)(x,t)).

Rewriting

(20)
d

dt
(dξ̃)x ≡ (dξ̃)x , ϕ

(
d

dt
(dξ̃)x

)
≡ ϕ((dξ̃)x) and

d

dt
ξ̃(x, 0) ≡ ξ̃(x),

the result follows immediately.

The theorem below is now a direct consequence of Proposition 3.2:

Theorem 3.3. For k ≥ 1 let h ∈ Jk. Consider the vector subspace ~P
k+1

V (S) of ~P
k+1

V , with S
defined in (11) associated with L = (dh)0. Then,

Mk+1~EV ⊂ ~P
k+1

V (S) + TG · h+Mk+2~EV .

Proof: Let g ∈ Mk+1~EV . From the decomposition (12), for each degree-k term gk+1 in the
Taylor expansion of g we have

gk+1 = qk+1 + pk+1,

with qk+1 ∈ ~P
k+1

V (S) and pk+1 ∈ ImAd k+1
L . Then, pk+1 = Adk+1

L (ξk+1) for some ξk+1 ∈ ~P
k+1

V .

Consider ϕ(−(dξk+1)x) as in (9). We write h = L+ h̃, with L = (dh)0 and h̃ ∈M2~EV , to obtain

gk+1 = qk+1 +Adh(ξk+1) + ϕ(−(dξk+1)x)h−
(
Adh̃(ξk+1) + ϕ(−(dξk+1)x)h

)
.

By Proposition 3.2, Adh(ξk+1) + ϕ (−(dξk+1)x)h ∈ TG ·h. Furthermore, from the definition

of the linear operator and h̃ it follows that

Adh̃(ξk+1) + ϕ(−(dξk+1)x)h ∈Mk+2~EV .
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We remark that the choice of a vector subspace W satisfying (16) is obviously not unique;

however, from the decomposition (12) it follows that ~P
k

V (S) is among those with the smallest
dimension.

3.2. Reversible equivariant case. Let Γ be a compact Lie group and consider the homomor-
phism σ defined in (2). We extend the results of the previous subsection to the Γ-reversible-
equivariant context. In particular, if σ is trivial then the result reduces to the (purely) Γ-
equivariant context.

Let us denote by G̃ the subgroup of G of formal changes of coordinates ξ : V, 0→ V , ξ = I+ ξ̃,

where ξ̃ ∈
⊕

l≥2
~P
l

V (Γ), with its action on ~FV (Γ) defined as in (14).

Our space of germs is now ~FV (Γ). Let us denote by Jk(Γσ) the space of Γ-reversible-

equivariant k−jets and, for each k ≥ 1, we denote by ~FV k+1(Γ) the space Mk+1~EV ∩ ~FV (Γ).

Also, for each k ≥ 1, let JkG̃ denote the group of k−jets jkξ of elements ξ ∈ G̃. Consider now

the action of JkG̃ on Jk(Γσ) induced by (14): for ξ ∈ G̃, h ∈ ~FV (Γ), h(0) = 0,

jkξ ·
(
jkh
)

(x) = jk(ξ · h)(x).

Castro and du Plessis have stated in [9] the equivariant version of Proposition 3.1. The

reversible equivariant version adapts directly, just consider the group G̃:

Theorem 3.4. For k ≥ 1 let h be a k−jet in the jet space Jk(Γσ). If W is a vector subspace

of ~Q
k+1

V (Γ) such that

(21) ~FV k+1(Γ) ⊂W + T G̃ · h+ ~FV k+2(Γ),

then every Γ-reversible-equivariant k+1−jet g with jkg = h is in the same Jk+1G̃−orbit as some
(k + 1)−jet of the form h+ ω, for some ω ∈W .

As in the previous subsection, our aim here is to determine a subspace W satisfying (21). For

that, we first characterize the tangent space T G̃ · h for h ∈ ~FV (Γ), h(0) = 0 through the linear
operator defined in (17):

Proposition 3.5. For h ∈ ~FV (Γ) with h(0) = 0, the tangent space to the orbit of h is given by

T G̃ · h =

{
Adh(ξ̃) + ϕ((dξ̃)x)h, ξ̃ ∈

l≥k⊕
~P
l

V (Γ), ϕ((dξ̃)x) as in (9), k ≥ 2

}
.

The proof of this proposition follows the steps of the proof of Proposition 3.2, accompanied
with the Γ-equivariance.

The result below provides the complete transversal for the reversible equivariants:

Theorem 3.6. For k ≥ 1, let h ∈ Jk(Γσ), L = (dh)0. Consider the group S given in (11)
associated with L. Then,

~FV k+1(Γ) ⊂ ~Q
k+1

V (So Γ) + T G̃ · h+ ~FV k+2(Γ).

Proof: Use the decomposition (13) and follow the steps of the proof of Theorem 3.3.

As in the context without nontrivial symmetries, ~Q
k

V (S o Γ) is a complete transversal of
smallest dimension that satisfies (21).
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