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APERTURE OF PLANE CURVES

DAISUKE KAGATSUME AND TAKASHI NISHIMURA

Abstract. For any given C∞ immersion r : S1 → R2 such that the set

NSr = R2 − ∪s∈S1

(
r(s) + drs(Ts(S1))

)
is not empty, a simple geometric model of crystal growth is constructed. It is shown that our

geometric model of crystal growth never formulates a polygon while it is growing. Moreover,

it is shown also that our model always dissolves to a point.

1. Introduction

Let r : S1 → R2 be a C∞ immersion such that the set

(1.1) R2 −
⋃
s∈S1

(
r(s) + drs(Ts(S

1))
)

is not the empty set, where Tr(s)R2 is identified with R2. The perspective projection of the given

plane curve r(S1) from any point of (1.1) does not give the silhouette of r(S1) because it is
non-singular. By this reason, the set (1.1) is called the no-silhouette of r and is denoted by NSr
(see Figure 1). The notion of no-silhouette was first defined and studied from the viewpoint

Figure 1. The no-silhouette NSr.

of perspective projection in [10]. In [11] it has been shown that the topological closure of no-
silhouette is a Wulff shape, which is the well-known geometric model of crystal at equilibrium
introduced by G. Wulff in [14].

In this paper, we show that by rotating all tangent lines about their tangent points simulta-
neously with the same angle, we always obtain a geometric model of crystal growth (Proposition
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6), our model never formulates a polygon while it is growing (Theorem 1), our model always
dissolves to a point (Theorems 2), and our model is growing in a relatively simple way when the
given r has no inflection points (Theorem 3).

For any C∞ immersion r : S1 → R2 and any real number θ, define the new set

NSθ,r = R2 −
⋃
s∈S1

(
r(s) +Rθ

(
drs(Ts(S

1))
))
,

where Rθ : R2 → R2 is the rotation defined by Rθ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ)
(see Figure 2). When the given r has its no-silhouette NSr, by definition, it follows that

Figure 2. NSθ,r for several θs. Left top : θ = 0, right top : θ = π/12, left
bottom : θ = π/6, right bottom : θ = π/4.

NSr = NS0,r.

Lemma 1.1. For any C∞ immersion r : S1 → R2, NS π
2 ,r

is the empty set.

Proof of Lemma 1.1 For any point P ∈ R2, let FP : S1 → R be the function defined by

(1.2) FP (s) = (P − r(s)) · (P − r(s)),

where the dot in the center stands for the scalar product of two vectors. Since FP is a C∞

function and S1 is compact, there exist the maximum and the minimum of the set of images{
FP (s) | s ∈ S1

}
. Let s1 (resp., s2) be a point of S1 at which FP attains its maximum (resp.,

minimum). Then, both s1 and s2 are critical points of FP . Thus, differentiating (1.2) with
respect to s yields that the vector (P − r(si)) is perpendicular to the tangent line to r at r(si).
It follows that P ∈

(
r(si) +Rπ

2
(drsi(TsiS

1)
)
. 2

In Section 2, it turns out that with respect to the Pompeiu-Hausdorff metric the topological
closure of NSθ,r varies continuously depending on θ while NSθ,r is not empty (Proposition 7).
Therefore, by Lemma 1.1, the following notion of aperture angle θr (0 < θr ≤ π

2 ) is well-defined.
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Definition 1. Let r : S1 → R2 be a C∞ immersion with its no-silhouette NSr. Then, θr
(0 < θr ≤ π

2 ) is defined as the largest angle which satisfies NSθ,r 6= ∅ for any θ (0 ≤ θ < θr).
The angle θr is called the aperture angle of the given r.

In Section 2, it turns out also that NSθ,r is a Wulff shape for any θ (0 ≤ θ < θr), where

NSθ,r stands for the topological closure of NSθ,r (Proposition 6). We are interested in how the

Wulff shape NSθ,r dissolves as θ goes to θr from 0.

Theorem 1. Let r : S1 → R2 be a C∞ immersion with its no-silhouette NSr. Then, for any θ
(0 < θ < θr), NSθ, r is never a polygon even if the given NSr is a polygon.

By Theorem 1, none of NS π
12 ,r

, NS π
6 ,r

and NS π
4 ,r

in Figure 2 is a polygon although NS0,r is
a polygon constructed by four tangent lines to r at four inflection points.

Theorem 2. Let r : S1 → R2 be a C∞ immersion with its no-silhouette NSr. Then, there
exists the unique point Pr ∈ R2 such that, for any sequence {θi}i=1,2,... ⊂ [0, θr) satisfying
limi→∞ θi = θr, the following holds:

lim
i→∞

dH(NSθi , r, Pr) = 0.

.

Here, dH : H(R2) × H(R2) → R is the Pompeiu-Hausdorff metric (for the Pompeiu-Hausdorff
metric, see Section 2). Theorem 2 justifies the following definition.

Definition 2. Let r : S1 → R2 be a C∞ immersion with its no-silhouette NSr. Then, the set
∪θ∈[0,θr)NSθ,r is called the aperture of r and the unique point Pr = limθ→θr NSθ,r is called the
aperture point of r. Here, θr (0 < θr ≤ π

2 ) is the aperture angle of r.

The simplest example is a circle. The aperture of a circle is the topological closure of its inside
region and the aperture point of it is its center. In this case, the aperture angle is π/2. In
general, in the case of curves with no inflection points, the crystal growth is relatively simpler
than in the case of curves with inflections as follows.

Theorem 3. Let r : S1 → R2 be a C∞ immersion with its no-silhouette NSr. Suppose that
r has no inflection points. Then, for any two θ1, θ2 satisfying 0 ≤ θ1 < θ2 < θr, the following
inclusion holds:

NSθ1,r ⊃ NSθ2,r.

Figure 2 shows that in general it is impossible to expect the same property for a curve with
inflection points.

In Section 2, preliminaries are given. Theorems 1, 2 and 3 are proved in Sections 3, 4 and 5
respectively.

2. Preliminaries

2.1. Spherical curves. Let r̃ : S1 → S2 be a C∞ immersion. Let t̃ : S1 → S2 be the mapping
defined by

t̃(s) =
r̃′(s)

||r̃′(s)||
,

where r̃′(s) stands for differentiating r̃(s) with respect to s ∈ S1. Let ñ : S1 → S2 be the
mapping defined by

det
(
r̃(s), t̃(s), ñ(s)

)
= 1.
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The mapping ñ : S1 → S2 is called the spherical dual of r̃. The singularities of ñ belong
to the class of Legendrian singularities which are relatively well-investigated (for instance, see
[1, 2, 3]). Let U be an open arc of S1. Suppose that ||r̃′(s)|| = 1 for any s ∈ U . Then, for the
orthogonal moving frame {r(s), t(s),n(s)}, (s ∈ U), the following Serre-Frenet type formula has
been known.

Lemma 2.1 ([7, 8]). 
r̃′(s) = t̃(s)

t̃′(s) = −r̃(s) + κg(θ)ñ(s)

ñ′(s) = −κg(θ)t̃(s).

Here, κg(θ) is defined by

κg(θ) = det
(
r̃(s), t̃(s), t̃′(s)

)
.

Let N be the north pole (0, 0, 1) of the unit sphere S2 ⊂ R3 and let S2
N,+ be the northern

hemisphere {P ∈ S2 | N · P > 0}, where N · P stands for the scalar product of two vectors
N,P ∈ R3. Then, define the mapping αN : S2

N,+ → R2 × {1}, which is called the central
projection, as follows:

αN (P1, P2, P3) =

(
P1

P3
,
P2

P3
, 1

)
,

where P = (P1, P2, P3) ∈ S2
N,+. Let r : S1 → R2 be a C∞ immersion. Then, from r we can

naturally obtain a spherical curve r̃ : S1 → S2 as follows:

r̃ = α−1N ◦ Id ◦ r,

where Id : R2 → R2 × {1} is the mapping defined by Id(P ) = (P, 1). For any s ∈ S1, let GCr̃(s)

be the intersection (Rr̃(s) + Rt̃(s)) ∩ S2. The following clearly holds:

Lemma 2.2. By the central projection αN : S2
N,+ → R2 × {1}, GCr̃(s) ∩ S2

N,+ is mapped to the

line r(s) + drs(Ts(S
1)).

One of the merit of considering inside the sphere S2 is the following:

Lemma 2.3 ([10]). Let r̃ : S1 → S2 be a Legendrian mapping. Then, the following two are
equivalent conditions.

(1) The set

S2 −
⋃
s∈S2

GCr̃(s)

is not empty and N is inside this open set.
(2) The connected subset {ñ(s) | s ∈ S1} is inside S2

N,+, where ñ is the dual of r̃.

Let ΨN : S2 − {±N} → S2 be the mapping defined by

ΨN (P ) =
1√

1− (N · P )2
(N − (N · P )P ).

The mapping ΨN is very useful for studying spherical pedals, pedal unfoldings of spherical
pedals, hedgehogs, and Wulff shapes (see [7, 8, 9, 10, 11]). There is also a hyperbolic version of
ΨN ([6]). The fundamental properties of ΨN is as follows:

(1) For any P ∈ S2 − {±N}, the equality P ·ΨN (P ) = 0 holds,
(2) for any P ∈ S2 − {±N}, the property ΨN (P ) ∈ RN + RP holds,
(3) for any P ∈ S2 − {±N}, the property N ·ΨN (P ) > 0 holds,
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(4) the restriction ΨN |S2
N,+−{N} : S2

N,+ − {N} → S2
N,+ − {N} is a C∞ diffeomorphism.

By these properties, we have the following:

Lemma 2.4. The mapping αN ◦ΨN ◦α−1N : R2 × {1} − {N} → R2 × {1} − {N} is the inversion
of R2 × {1} − {N} with respect to N .

2.2. Spherical polar sets and the spherical polar transform. For any point P of S2, we
let H(P ) be the following set:

H(P ) = {Q ∈ S2 | P ·Q ≥ 0}.
Here, the dot in the center stands for the scalar product of P,Q ∈ R3.

Definition 3 ([11]). Let W be a subset of S2. Then, the set⋂
P∈W

H(P )

is called the spherical polar set of W and is denoted by W ◦.

Figure 3 illustrates Definition 3. It is clear that W ◦ = ∩P∈WH(P ) is closed for any W ⊂ S2.

P

Q

Figure 3. Spherical polar set {P,Q}◦ = (PQ)◦.

Definition 4 ([11]). A subset W ⊂ S2 is said to be hemispherical if there exists a point P ∈ S2

such that H(P ) ∩W = ∅.

Figure 4 illustrates Definition 4.

W

Figure 4. Not hemispherical W ⊂ S2.
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Definition 5 ([11]). A hemispherical subset W ⊂ S2 is said to be spherical convex if PQ ⊂W
for any P,Q ∈W .

Here, PQ stands for the following arc:

PQ =

{
(1− t)P + tQ

||(1− t)P + tQ||
∈ S2

∣∣∣∣ 0 ≤ t ≤ 1

}
.

Note that ||(1− t)P + tQ|| 6= 0 for any P,Q ∈W and any t ∈ [0, 1] if W ⊂ S2 is hemispherical.
Note further that W ◦ is spherical convex if W is hemispherical and it has an interior point.

Definition 6 ([11]). Let W be a hemispherical subset of S2. Then, the spherical convex hull of
W (denoted by s-conv(W )) is the following set.

s-conv(W ) =

{ ∑k
i=1 tiPi

||
∑k
i=1 tiPi||

∣∣∣∣∣ Pi ∈W,
k∑
i=1

ti = 1, ti ≥ 0, k ∈ N

}
.

Lemma 2.5 (Lemma 2.5 of [11]). For any hemispherical finite subset W = {P1, . . . , Pk} ⊂ Sn+1,
the following holds:{ ∑k

i=1 tiPi

||
∑k
i=1 tiPi||

∣∣∣∣∣ Pi ∈W,
k∑
i=1

ti = 1, ti ≥ 0

}◦
= H(P1) ∩ · · · ∩H(Pk).

Lemma 2.5 is called Maehara’s lemma (see [11]).

Definition 7 ([4]). Let (X, d) be a complete metric space.

(1) Let x be a point of X and let B a non-empty compact subset of X. Define

d(x,B) = min{d(x, y) | y ∈ B}.

Then, d(x,B) is called the distance from the point x to the set B.
(2) Let A,B be two non-empty compact subsets of X. Define

d(A,B) = max{d(x,B) | x ∈ A}.

Then, d(A,B) is called the distance from the set A to the set B.
(3) Let A,B be two non-empty compact subsets of X. Define

dH(A,B) = max{d(A,B), d(B,A)}.

Then, dH(A,B) is called the Pompeiu-Hausdorff distance between A and B.

Let (X, d) be a complete metric space. The set consisting of non-empty compact subsets of X
is denoted by H(X), which is the metric space with respect to the Pompeiu-Hausdorff metric
dH : H(X) × H(X) → R+ ∪ {0}, where dH is the metric naturally induced by the Pompeiu-
Hausdorff distance. It is well-known also that the metric space (H(X), dH) is complete. For
more details on the complete metric space (H(X), dH), see for instance [4, 5].

Definition 8. Let © : H(S2)→ H(S2) be the mapping defined by

©(A) = A◦.

The mapping © : H(S2)→ H(S2) is called the spherical polar transform.

Proposition 1. The spherical polar transform is continuous with respect to the Pompeiu-
Hausdorff metric.
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Proof of Proposition 1 Let {Ai}i=1,2,... ⊂ H(S2) be a convergent sequence, and set
A = limi→∞Ai. In order to prove Proposition 1, it is sufficient to show that A◦ = limi→∞A◦i .

Suppose that there exists a real number ε > 0 such that for any n ∈ N there exists an in
(in > n) such that dH(A◦in , A

◦) > ε. Then, by Definition 7, it follows that for any n ∈ N, at
least one of d(A◦in , A

◦) > ε and d(A◦, A◦in) > ε holds. By taking a subsequence if necessary, from
the first we may assume that one of the following holds:

(1) d(A◦in , A
◦) > ε for any n ∈ N.

(2) d(A◦, A◦in) > ε for any n ∈ N,

We first show that (1) implies a contradiction. By Definition 7, it follows that for any n ∈ N
there exists a point xn ∈ A◦in such that d(xn, A

◦) > ε. Again by Definition 7, it follows that
for any n ∈ N there exists a point xn ∈ A◦in such that the inequality d(xn, y) > ε holds for any
y ∈ A◦. It is known that A can be characterized as follows ([4]).

(2.1) A =
{
P ∈ S2 | ∃Pn ∈ Ain(n ∈ N) such that lim

n→∞
Pn = P

}
.

Let P be a point of A. By (2.1), for any n ∈ N we may choose a point Pn ∈ Ain such that
limn→∞ Pn = P . Then, since xn ∈ A◦in , it follows that xn · Pn ≥ 0. Since S2 is compact, there
exists a convergent subsequence {xjn}n=1,2,... of the sequence {xn}n=1,2,.... Set x = limn→∞ xjn .
Then, the inequality d(xn, y) > ε implies the inequality d(x, y)≥ε for any y ∈ A◦. On the other
hand, the inequality xn · Pn ≥ 0 implies the inequality x · P ≥ 0 for any P ∈ A. Therefore, the
point x is an element of A◦ such that the inequality d(x, y)≥ε holds for any y ∈ A◦. This is a
contradiction.

We next show that (2) implies a contradiction. By the same argument as in (1), we have
that for any n ∈ N there exists a point xn ∈ A◦ such that the inequality d(xn, yn) > ε for
any yn ∈ A◦in . This implies that there exists an M ∈ N such that for any n ∈ N there exists

Pn ∈ Ain such that xn ·Pn < − ε
M . Since S2 is compact, there exists a subsequence {jn}n=1,2,...

of N such that both {xjn}n=1,2,..., {Pjn}n=1,2,... are convergent sequences. Set x = limn→∞ xjn
and P = limn→∞ Pjn . Then, the inequality xn · Pn < − ε

M implies the inequality x · P ≤ − ε
M .

On the other hand, since A◦ is compact, x belongs to A◦. Moreover, by (2.1), P belongs to A.
Hence, by Definition 3, the scalar product x · P must be non-negative. Therefore, we have a
contradiction. 2

2.3. Wulff shapes. Let R+ be the set {λ ∈ R | λ > 0} and let h : S1 → R+ be a continuous
function. For any s ∈ S1 ⊂ R2, set

Γh,s = {P ∈ R2 | P · s ≤ h(s)},

where the dot in the center stands for the scalar product of two vectors P, s ∈ R2. The following
set is called the Wulff shape associated with the support function h (see Figure 5):

Wh =
⋂
s∈S1

Γh,s.

For any crystal at equilibrium the shape of it can be constructed as the Wulff shape Wh by
an appropriate support function h ([14]). It is clear that any Wulff shape Wh is a convex body
(namely, it is compact, convex and the origin of R2 is contained in Wh as an interior point). It
has been known that its converse, too, holds as follows.

Proposition 2 (p. 573 of [13]). Let W be a subset of R2. Then, there exists a parallel translation
T : R2 → R2 such that T (W ) is the Wulff shape associated with an appropriate support function
if and only if W is a convex body.
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Figure 5. The Wulff shape associated with the support function h.

Proposition 3 (Theorem 1.1 of [11]). Let {Whi}i=1,2,... be a Cauchy sequence of Wulff shapes

in Hconv(R2) with respect to the Pompeiu-Hausdorff metric dH . Suppose that limi→∞Whi does
not have an interior point. Then, it must be a point or a segment.

Proposition 4 (Theorem 1.2 of [11]). Let h : S1 → R+ be a continuous function. Then, for

the Wulff shape Wh, the set Id−1 ◦αN
((
α−1N ◦ Id(Wh)

)◦)
is the Wulff shape associated with an

appropriate support function.

The Wulff shape Id−1 ◦ αN
((
α−1N ◦ Id(Wh)

)◦)
is called the dual Wulff shape of Wh.

Proposition 5 (Theorem 1.3 of [11]). Let h : S1 → R+ be a function of class C1. Then, the
Wulff shape Wh is never a polygon.

Proposition 6. Let r : S1 → R2 be a C∞ immersion with its no-silhouette NSr. Then, for
any θ ∈ [0, θr), there exists a parallel translation Tθ : R2 → R2 such that Tθ(NSθ,r) is a Wulff
shape Whθ by an appropriate support function hθ : S1 → R+.

Proof of Proposition 6 We first show that NSθ,r is an open set for any θ ∈ [0, θr). Let P
be a point of NSθ,r. Suppose that for any positive integer n, there exists a point

Pn ∈ D(P,
1

n
) ∩
(
∪s∈S1

(
r(s) +Rθ

(
drs(Ts(S

1))
)))

,

where D(P, 1
n ) is the disc D(P, 1

n ) = {Q ∈ R2 | ||P − Q|| ≤ 1
n}. Then, since S1 is compact,

by taking a subsequence if necessary, we may assume that there exists a convergent sequence
sn ∈ S1 (n ∈ N) such that Pn belongs to D(P, 1

n ) ∩
(
r(sn) +Rθ

(
drsn(Tsn(S1))

))
. Then, we

have that P ∈ r(s) + Rθ
(
drs(Ts(S

1))
)

where s = limi→∞ si, which implies P 6∈ NSθ,r. Hence,
NSθ,r is an open set.

Since θ < θr, it follows that NSθ,r 6= ∅. Let P be a point of NSθ,r. Let

Ps ∈ r(s) +Rθdrs(Ts(S
1))

be the point such that the vector PPs is perpendicular to the line r(s) +Rθdrs(Ts(S
1)). Then,

by obtaining the concrete expression of Ps, it follows that the mapping f : S1 → R2 defined by
f(s) = Ps is of class C∞. By Subsection 2.1 and [7], the mapping f : S1 → R2 is exactly the pedal
curve of the family of lines

{
r(s) +Rθdrs(Ts(S

1))
}
s∈S1 relative to the pedal point P ∈ NSθ,r.

Let I : R2−{P} → R2−{P} be the plane inversion defined by I(Q) = P− 1
||Q−P ||2 (Q−P ). Since

P ∈ NSθ,r, the composed mapping n = I ◦ f is well-defined and of class C∞. The mapping
n is exactly the dual curve of the family of lines

{
r(s) +Rθdrs(Ts(S

1))
}
s∈S1 relative to the

point P ∈ NSθ,r. Let the boundary of convex hull of n(S1) be denoted by ∂conv
(
n(S1)

)
.
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Then, by the construction, ∂conv
(
n(S1)

)
intersect the half line {P + λs | λ ∈ R+} exactly at

one point for any s ∈ S1. Thus, the composed image I
(
∂conv

(
n(S1)

))
intersect the half line

{P +λs | λ ∈ R+} exactly at one point for any s ∈ S1. Moreover, the intersecting points depend
on s continuously. Hence, by corresponding s ∈ S1 to the distance between P and the unique
intersecting point I

(
∂conv

(
n(S1)

))
∩{P +λs | λ ∈ R+}, we obtain the well-defined continuous

function hθ : S1 → R+. Since n is of class C∞, it is easily seen that the obtained function hθ
satisfies the assumption of Theorem 6.3 in [11]. Let Tθ : R2 → R2 be the parallel translation
given by Tθ(x, y) = (x, y)− P . Then, by Theorem 6.3 of [11], it follows that

Tθ(NSθ,r) =Whθ .

2

Proposition 7. Let r : S1 → R2 be a C∞ immersion with its no-silhouette NSr. Then, the
map ω : [0, θr)→ Hconv(R2) defined by ω(θ) = NSθ,r is continuous,

Proof of Proposition 7 Let C0(S1,R+) be the set consisting of continuous functions from

S1 to R+. The set C0(S1,R+) is a (non-complete) metric space with respect to the metric

dnorm(h1, h2) = max
s∈S1

|h1(s)− h2(s)|.

Let Γ : [0, θr) → C0(S1,R+) (resp. Ω : C0(S1,R+) → Hconv(R2)) be the mapping defined
by Γ(θ) = hθ (resp. Ω(h) = Wh), where hθ is the continuous function defined in the proof of
Proposition 6. Then, in order to show that ω is continuous, it is sufficient to show that both
Γ,Ω are continuous.

We first show that Γ is continuous. Let h̃ : S1 → R+ be the function defined by

h̃(cosλ, sinλ) = ||P − I
(
∂conv

(
n(S1)

))
∩ {P + t(cosλ, sinλ) | t ∈ R+}||,

where the set I
(
∂conv

(
n(S1)

))
∩ {P + t(cosλ, sinλ) | t ∈ R+}, which appeared in the proof

of Proposition 6, is a one point set and it is regarded as a point. By obtaining the concrete
expression of n given in the proof of Proposition 6, it is easily seen that n is smoothly depending

on θ ∈ [0, θr). Thus, h̃ is continuously depending on θ ∈ [0, θr). Since I is a C∞ diffeomorphism
of R2−{P}, it follows that hθ is continuously depending on θ ∈ [0, θr). Hence, Γ is a continuous
mapping.

We next show that Ω is continuous. Let {hi}i=1,2,... ⊂ C0(S1,R+) be a convergent sequence
to an element of C0(S1,R+). Set h = limi→∞ hi. We also set

W =
{
P ∈ R2

∣∣∣ ∃Pi ∈ Whi (i ∈ N); lim
i→∞

Pi = P
}
.

Then, it is easily seen that R2 −W is an open set. Thus, W is a closed set.
We show Wh = W . Let P be an interior point of Wh. Then, since h = limi→∞ hi, P must

be an interior point of Whi for any sufficiently large i. Thus, P is contained in W . Since both
Wh and W are closed, it follows that Wh ⊂ W . Next, Let Q be a point of W . Suppose that Q
is not contained in Wh. Then, there exists s0 ∈ S1 such that (Q · s0) > h(s0), where (Q · s0)
stands for the scalar product of two vectors Q, s0 ∈ R2. Set ε = (Q · s0) − h(s0) > 0. Since
h = limi→∞ hi, it follows that (Q · s0)− hi(s0) > ε

2 for any sufficiently large i. This contradicts
to the assumption that Q ∈W . Hence, we have that W ⊂ Wh, and it follows that Wh = W .

The remaining part of the proof that Ω is continuous is to show the following:

(2.2) lim
i→∞

dH(W,Whi) = 0.

In order to show (2.2), by the construction of W , it is sufficient to show that {Whi}i=1,2,... is
a Cauchy sequence of H(R2). Since {hi}i=1,2,... is a Cauchy sequence of C0(S1,R+), it is clear
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that {Whi}i=1,2,... is a Cauchy sequence. Therefore, we have that limi→∞ dH(W,Whi) = 0 and
it follows that Ω is continuous. 2

3. Proof of Theorem 1

By Proposition 6, there exists a parallel translation Tθ : R2 → R2 such that Tθ
(
NSθ,r

)
is a Wulff shape. In particular, Tθ

(
NSθ,r

)
contains the origin as an interior point. Set

r̃ = α−1N ◦ Id◦Tθ ◦ r and ñθ(s) = cos θñ(s)− sin θt̃(s) for s ∈ S1. We investigate the singularities
of ñθ. Let U be an open arc of S1. By using the arc-length parameter of r̃|U , without loss of
generality, from the first we may assume that ||r̃′(s)|| = 1 for s ∈ U . Then, by Lemma 2.1, we
have the following:

ñ′θ(s) = −κg(s) cos θ t̃(s) + sin θ r̃(s)− κg(s) sin θ ñ(s).

Since the angle θ satisfies 0 < θ < θr ≤ π
2 in Theorem 1, it follows that sin θ 6= 0. Therefore, ñθ

is non-singular even at the point s ∈ S1 such that κg(s) = 0.
Next, we show that ñθ(s) ·N > 0 for any s ∈ S1. Let the dual of ñθ be denoted by r̃θ. Then,

it follows that r̃θ is a Legendrian mapping and the following equality holds.

S2
N,+

⋂(
S2 −

⋃
s∈S1

GHr̃θ

)
= α−1N ◦ Id ◦ NSθ,r.

Since θ < θr, by Lemma 2.3, we have that ñθ(s) · N > 0 for any s ∈ S1. Thus, the spherical
convex hull of {ñθ(s)) | s ∈ S1} is well-defined. Since ñθ is non-singular, the boundary of
s-conv({ñθ(s)) | s ∈ S1}) is a submanifold of class C1 (for instance see [12, 15]). By the
property (4) of ΨN , the boundary of ΨN (s-conv({ñθ(s)) | s ∈ S1)) is a submanifold of class C1.
It follows that the boundary of Id−1 ◦ αN ◦ ΨN (s-conv({ñθ(s)) | s ∈ S1)) is a submanifold of
class C1.

On the other hand, by constructions, it follows that Tθ(NSθ,r) is a Wulff shape Wh with the
support function h whose graph with respect to the polar coordinate expression is the boundary
of Id−1 ◦ αN ◦ΨN (s-conv({ñθ(s)) | s ∈ S1)).

Therefore, the support function h for the Wulff shape Tθ(NSθ,r) is of class C1 and it follows
that Wh is never a polygon by Proposition 5. 2

4. Proof of Theorem 2

By Proposition 6, for any i ∈ N there exists a parallel translation Tθi : R2 → R2 such that
Tθi
(
NSθi,r

)
is a Wulff shape Whi by an appropriate support function hi. By Proposition 4, for

any i ∈ N the set Id−1 ◦αN
((
α−1N ◦ Id(Whi)

)◦)
is a Wulff shape too. Thus, by Proposition 2, it

follows that both α−1N ◦Id(Whi) and
(
α−1N ◦ Id(Whi)

)◦
belong to H(S2) for any i ∈ N. Moreover,

by Proposition 7, we may assume that {Tθi}i=1,2,... is a Cauchy sequence. Thus, we may assume

that both
{
α−1N ◦ Id(Whi)

}
i=1,2,...

and
{(
α−1N ◦ Id(Whi)

)◦}
i=1,2,...

are Cauchy sequences.

By Proposition 3, limi→∞NSθi,r is a point or segment. Suppose that it is a segment. Let
P1, P2 ∈ S2 be two boundary points of this segment. Then, by Proposition 1 and Lemma 2.5,
we have the following:

lim
i→∞

(
α−1N ◦ Id(Whi)

)◦
= H(P1) ∩H(P2).

Let ñθr : S1 → S2 be the C∞ mapping defined by ñθr(s) = cos θrñ(s) − sin θrt̃(s) for any

s ∈ S1, where ñ and t̃ are the same C∞ mapping as in the proof of Theorem 1. Then, notice that
ñθr(S1) ⊂ H(P1)∩H(P2). For any j (j = 1, 2), we let the set {Q ∈ S2 | Pj ·Q = 0} be denoted
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by ∂H(Pj). Then, the intersection ∂H(P1) ∩ ∂H(P2) consists of two antipodal points Q1, Q2.
By Lemma 2.3 and Proposition 2, there exists s1, s2 ∈ S1 (s1 6= s2) such that ñθr(s1) = Q1,
ñθr(s2) = Q2.

On the other hand, since 0 ≤ θr ≤ π
2 , similarly as in the proof of Theorem 1, it follows that

ñθr is non-singular. Thus, we have a contradiction. 2

5. Proof of Theorem 3

For any θ (0 ≤ θ < θr) and any s ∈ S1, set

`θ,s = r(s) +Rθ
(
drs(TsS

1)
)
.

Let fθ,s(x, y) be the affine function which define `θ,s. Set

H+
θ,s = {(x, y) ∈ R2 | fθ,s(x, y) > 0}, H−θ,s = {(x, y) ∈ R2 | fθ,s(x, y) < 0}.

Then, since NSθ,r is a convex body for any θ (0 ≤ θ < θr), it follows that one of

NSθ,r = ∩s∈S1H+
θ,s or NSθ,r = ∩s∈S1H−θ,s

holds. By Proposition 6, we may assume that the following holds for any θ (0 ≤ θ < θr).

NSθ,r =
⋂
s∈S1

H+
θ,s.

Since r does not have inflection points, it follows that NS0,r contains NSθ,r for any θ such that
0 ≤ θ < θr. Thus, for any θ (0 ≤ θ < θr), we have the following:

NSθ,r = NSθ,r ∩NS0,r

=

( ⋂
s∈S1

H+
θ,s

)⋂
NS0,r

=
⋂
s∈S1

(
H+
θ,s

⋂
NS0,r

)
.

Since r does not have inflection points, we have that H+
θ1,s
∩ NS0,r contains H+

θ2,s
∩ NS0,r

for any two θ1, θ2 ∈ [0, θr) satisfying 0 ≤ θ1 < θ2 < θr. It follows that NSθ1,r ⊃ NSθ2,r if
0 ≤ θ1 < θ2 < θr. 2
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in Mathematics, 82, Birkhäuser, Boston Inc., Boston, MA, 1985. DOI: 10.1007/978-1-4612-5154-5
[4] M. Barnsley, Fractals everywhere 2nd edition, Morgan Kaufmann Pub., San Fransisco, 1993.
[5] K. Falconer, Fractal Geometry –Mathematical Foundations and applications 2nd edition, John Wiley & Sons

Ltd., Chichester, West Sussex, 2003. DOI: 10.1002/0470013850
[6] S. Izumiya and F. Tari, Projections of hypersurfaces in the hyperbolic space to hyperhorospheres and hyper-

planes, Rev. Mat. Iberoam. 24(2008), 895–920. DOI: 10.4171/RMI/559

[7] T. Nishimura, Normal forms for singularities of pedal curves produced by non-singular dual curve germs in
Sn, Geom Dedicata, 43 (2008) 59–66. DOI: 10.1007/s10711-008-9233-5

[8] T. Nishimura, Singularities of pedal curves produced by singular dual curve germs in Sn, Demonstratio
Math., 63 (2010), 447–459.

[9] T. Nishimura, Singularities of one-parameter pedal unfoldings of spherical pedal curves, J. Singul., 2(2010),

160–169. DOI: 10.5427/jsing.2010.2j

http://dx.doi.org/10.1070/RM1995v050n01ABEH001662
http://dx.doi.org/10.1007/978-1-4612-5154-5
http://dx.doi.org/10.1002/0470013850
http://dx.doi.org/10.4171/RMI/559
http://dx.doi.org/10.1007/s10711-008-9233-5
http://dx.doi.org/10.5427/jsing.2010.2j


APERTURE OF PLANE CURVES 91

[10] T. Nishimura and Y. Sakemi, View from inside, Hokkaido Math. J., 40 (2011) 361–373.

DOI: 10.14492/hokmj/1319595861
[11] T. Nishimura and Y. Sakemi, Topological aspect of Wulff shapes, J. Math. Soc. Japan, 66 (2014), 89–109.

DOI: 10.2969/jmsj/06610089

[12] S. A. Robertson and M. C. Romero-Fuster, The convex hull of a hypersurface, Proc. London Math. Soc.,
50(1985), 370–384. DOI: 10.1112/plms/s3-50.2.370

[13] J. E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc., 84 (1978), 568–588.

DOI: 10.1090/S0002-9904-1978-14499-1
[14] G. Wulff, Zur frage der geschwindindigkeit des wachstrums und der auflösung der krystallflachen, Z. Kristal-

lographine und Mineralogie, 34 (1901), 449–530.

[15] V. M. Zakalyukin, Singularities of convex hulls of smooth maniifolds, Functional Anal. Appl., 11(1977),
225–227(1978).

Machida Hall, Machida City, Tokyo 194-8520, Japan

E-mail address: kagatsume-daisuke-mt@ynu.jp

Research Group of Mathematical Sciences, Research Institute of Environment and Information

Sciences, Yokohama National University, Yokohama 240-8501, Japan

E-mail address: nishimura-takashi-yx@ynu.jp

http://dx.doi.org/10.14492/hokmj/1319595861
http://dx.doi.org/10.2969/jmsj/06610089
http://dx.doi.org/10.1112/plms/s3-50.2.370
http://dx.doi.org/10.1090/S0002-9904-1978-14499-1

	1. Introduction
	2. Preliminaries
	2.1. Spherical curves
	2.2. Spherical polar sets and the spherical polar transform
	2.3. Wulff shapes

	3. Proof of Theorem 1
	4. Proof of Theorem 2
	5. Proof of Theorem 3
	References

