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MOTIVIC MILNOR CLASSES

SHOJI YOKURA(∗)

ABSTRACT. The Milnor class is a generalization of the Milnor number, defined as the dif-
ference (up to sign) of Chern–Schwartz–MacPherson’s class and Fulton–Johnson’s canon-
ical Chern class of a local complete intersection variety in a smooth variety. In this paper

we introduce a “motivic” Grothendieck group KProp
`.c.i (V/X h−→ S) and natural trans-

formations from this Grothendieck group to the homology theory. We capture the Milnor
class, more generally Milnor–Hirzebruch class, as a special value of a distinguished ele-
ment under these natural transformations. We also show a Verdier-type Riemann–Roch
formula for our motivic Milnor–Hirzebruch class. We use Fulton–MacPherson’s bivariant
theory and the motivic Hirzebruch class.

1. INTRODUCTION

The Milnor class is defined for a local complete intersection varietyX in a non-singular
variety M as follows. The local complete intersection variety X defines a normal bundle
NX in M , from which we can define the virtual tangent bundle TX of X by

TX := TM |X −NXM

which is a well-defined element of the Grothendieck groupK0(X). Then Fulton-Johnson’s
or Fulton’s canonical (Chern) class of X (see [FJ] and [Fu]) is defined by

cFJ∗ (X) := c(TX) ∩ [X].

Here c(TX) is the total Chern class of the virtual bundle TX .
In general, Fulton-Johnson’s and Fulton’s canonical (Chern) classes are defined for any

schemeX embedded as a closed subscheme of a non-singular varietyM (see [Fu, Example
4.2.6]): Fulton–Johnson’s canonical class cFJ∗ (X) ([Fu, Example 4.2.6 (c)]) is defined by

c(TM |X) ∩ s(NXM),

where TM is the tangent bundle of M and s(NXM) is the Segre class of the conormal
sheaf NXM of X in M [Fu, §4.2]. Fulton’s canonical class cF∗ (X) ([Fu, Example 4.2.6
(a)]) is defined by

c(TM |X) ∩ s(X,M),

where s(X,M) is the relative Segre class [Fu, §4.2]. As shown in [Fu, Example 4.2.6], for
a local complete intersection variety X in a non-singular variety M these two classes are
both equal to c(TX) ∩ [X].

On the other hand there is another well-known notion of Chern class for possibly singu-
lar varieties. That is Chern–Schwartz–MacPherson’s class c∗(X) [Mac1, Schw1, Schw2,
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Schw3, BrSc]. Then the Milnor class of the local complete intersection variety X , de-
noted by M(X), is defined by, up to sign, the difference of Fulton–Johnson’s class and
Chern–Schwartz–MacPherson’s class c∗(X); more precisely

M(X) := (−1)dimX
(
cFJ∗ (X)− c∗(X)

)
.

Since Chern–Schwartz–MacPherson’s class c∗(X) and Fulton–Johnson’s class cFJ∗ (X)
are identical for a nonsingular variety, the Milnor class is certainly supported on the sin-
gular locus of the given variety, thus is an invariant of singularities. Prototypes of the Mil-
nor class were studied by P. Aluffi [Alu1, Alu2], A. Parusiński [Pa1, Pa2], A. Parusiński
and P. Pragacz [PP2] and T. Suwa [Su3]. Many people have been investigating on the
Milnor class from their own viewpoints or interests, and many papers are now available
[Alu2, Alu3, Br, BLSS1, BLSS2, Max, Pa3, PP1, PP3, Sea1, SeSu, Su2, Yo2, Yo3]. A
category-functorial aspect of the Milnor class is its connection to the so-called Verdier–
Riemann–Roch theorem for MacPherson’s Chern class [Yo4, Sch1].

Some functoriality of the Milnor class was investigated in [Yo4], but so far it has never
been captured as a natural transformation from a certain covariant functor to the homology
theory. In this paper we try to capture the Milnor class from a motivic viewpoint and we
show that in fact we can capture it as a natural transformation from a pre-motivic covari-
ant functor to the homology theory. For this we need to use the motivic Hirzebruch class
[BSY1, BSY2] and a key idea comes from the construction of a universal bivariant theory
given in [Yo5].

In §2 we make a quick review of the motivic Hirzebruch class, following [BSY1] (also
see [Yo6] and [Sch4]). In §3 we construct the motivic Grothendieck groupKProp`.c.i (V/X h−→
S), motivated by the construction of an oriented bivariant theory [Yo5]. The main results
are given in §4 and §5. In §4 we construct a motivic Milnor–Hirzebruch class as a nat-
ural transformation from the above motivic Grothendieck group to Fulton–MacPherson’s
bivariant homology theory, a special case of which captures the Milnor class as a natural
transformation from the motivic Grothendieck group to the Borel–Moore homology theory.
In §5 we show a Verdier-type Riemann–Roch theorem for the motivic Milnor–Hirzebruch
class.

In [CMSS] (also see [CLMS1, CLMS2, CMS1, CMS2, CS2, CS3]) Sylvain Cappell
et al. independently consider the motivic Hirzebruch–Milnor class and they describe it in
terms of other invariants of singularities, thus dealing more with singularities. Our present
work is more category-functorial, compared with [CMSS]. A more general work is done
in [Yo8].

2. MOTIVIC HIRZEBRUCH CLASSES

In the following sections we use the motivic Hirzebruch class [BSY1, BSY2], thus we
very quickly recall some ingredients which are needed later.

Let V denote the category of complex algebraic varieties. The relative Grothendieck
group K0(V/X) of a variety X is the quotient of the free abelian group IsoProp(V/X) of
isomorphism classes [V

h−→ X] of proper morphisms toX , modulo the following additivity
relation:

[V
h−→ X] = [Z ↪→ V

h−→ X] + [V \ Z ↪→ Y
h−→ X]
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for Z ⊂ Y a closed subvariety of Y . We set the quotient homomorphism by

Θ : IsoProp(V/X)→ K0(V/X).

From now on the equivalence class Θ([V
h−→ X]) of the isomorphism class [V

h−→ X] is
denoted by the same symbol [V

h−→ X] unless some possible confusion occurs.

Remark 2.1. Furthermore it follows from Hironaka’s resolution of singularities that the re-
striction Θsm := Θ|IsoProp(Sm/X) of Θ to the subgroup IsoProp(Sm/X) of isomorphism

classes [V
h−→ X] of proper morphisms from smooth varieties V to X is surjective:

Θsm : IsoProp(Sm/X)→ K0(V/X).

Here we just remark that F. Bittner [Bit] identified the kernel of the above map Θsm :
IsoProp(Sm/X) → K0(V/X) by some “blow-up relation”, for the details of which see
[Bit]. This “blow-up relation” plays an important role for constructing a bivariant analogue
of the motivic Hirzebruch classes. Since we do not deal with this bivariant analogue, we
do not go further into details of this “blow-up relation”.

If we use the above “pre-motivic” group IsoProp(Sm/X) we can get the following
“pre-motivic” characteristic classes of singular varieties for an arbitrary characteristic
class c` of complex vector bundles.

For a proper morphism f : X → Y we have the obvious pushforward

f∗ : IsoProp(Sm/X)→ IsoProp(Sm/Y )

defined by f∗([V
h−→ X]) := [V

f◦h−−→ Y ]. Let c` be any characteristic class of complex
vector bundles with values in the cohomology theoryH∗( )⊗R, whereR is a coefficient
ring. Then we define

γc` : IsoProp(Sm/X)→ HBM
∗ (X)⊗R

by

γc`([V
h−→ X]) := h∗(c`(TV ) ∩ [V ]).

Then it is clear that

γc` : IsoProp(Sm/ )→ HBM
∗ ( )⊗R

is a unique natural transformation satisfying the normalization condition that for a smooth
variety X the homomorphism γc` : IsoProp(Sm/X)→ HBM

∗ (X)⊗R satisfies that

γc`([X
idX−−→ X]) := c`(TX) ∩ [X].

A naı̈ve question is whether γc` can be pushed down to the relative Grothendieck group
K0(V/X) , i.e., for some natural transformation ? : K0(V/X) → HBM

∗ ( )⊗ R so that
the following diagram commutes:

IsoProp(Sm/X)

Θsm

wwoooooooooooo
γc`

((QQQQQQQQQQQQQ

K0(V/X)
?

// HBM
∗ (X)⊗R
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If we require that c` is a multiplicative characteristic class, the above normalization
condition and another extra condition that the degree of the 0-dimensional component of
the class γc`(CPn) equals 1 − y + y2 + · · · (−y)n, then the characteristic class c` can be
identified as the Hirzebruch class. Namely, let αi’s be the Chern roots of a complex vector
bundle E over X . Then

td(E) =

rankE∏
i=1

αi
1− e−αi

∈ H2∗(X;Q)

is the Todd class of E, and its modified version of it

td(y)(V ) :=

rankE∏
i=1

(
αi(1 + y)

1− e−αi(1+y)
− αiy

)
∈ H∗(X)⊗Q[y]

is called the Hirzebruch class (see [Hir] and [HBJ]. In fact, the Hirzebruch class unifies
Chern class, Todd class and Thom–Hirzebruch L-class:

(1) y = −1: td(−1)(E) = c(E) Chern class,
(2) y = 0: td(0)(E) = td(E) Todd class,
(3) y = 1: td(1)(E) = L(E) Thom–Hirzebruch L-class.

Our previous paper [BSY1] (also see [BSY2] and [SY]) showed the following theorem
(originally using Saito’s theory of mixed Hodge modules [Sai]):

Theorem 2.2. (Motivic Hirzebruch class of singular varieties) There exists a unique nat-
ural transformation

Ty∗ : K0(V/ )→ HBM
∗ ( )⊗Q[y]

satisfying the normalization condition that for a smooth variety X

Ty∗([X
idX−−→ X]) = td(y)(TX) ∩ [X].

This motivic Hirzebruch class Ty∗ : K0(V/ )→ HBM
∗ ( )⊗Q[y] in a sense “unifies”

the following three well-known characteristic classes of singular varieties:

Theorem 2.3. (A “unification” of three characteristic classes)

(1) c = Chern class: There exists a unique natural transformation

γF : K0(V/ )→ F ( )

such that for X nonsingular γF ([X
id−→ X]) = 11X . And the following diagram

commutes

K0(V/X)

γF

yyssssssssss
T−1∗

''OOOOOOOOOOO

F (X)
c∗⊗Q

// HBM
∗ (X)⊗Q.

Here c∗ : F (X) → HBM
∗ (X) is MacPherson’s Chern class transformation

[Mac1] defined on the group F (X) of complex algebraically constructible func-
tions.
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(2) td = Todd class: There exists a unique natural transformation

γG0
: K0(V/ )→ G0( )

such that for X nonsingular γ([X
id−→ X]) = [OX ]. And the following diagram

commutes

K0(V/X)
γG0

yyssssssssss
T0∗

''OOOOOOOOOOO

G0(X)
td∗

// HBM
∗ (X)⊗Q.

Here td∗ : G0(X) → HBM
∗ (X) ⊗ Q is Baum–Fulton–MacPherson’s Todd class

(or Riemann–Roch) transformation [BFM1] defined on the Grothendieck group
G0(X) of coherent algebraic OX -sheaves.

(3) L = Thom-Hirzebruch L-class:There exists a unique natural transformation

γΩ : K0(V/ )→ Ω( )

such that for X nonsingular γΩ([X
id−→ X]) = [QX [dimX]] . And the following

diagram commutes

K0(V/X)

γΩ

yytttttttttt
T1∗

''OOOOOOOOOOO

Ω(X)
L∗

// HBM
∗ (X)⊗Q.

Here Ω(X) is the Cappell–Shaneson–Youssin’s cobordism group of self-dual con-
structible sheaves (see [CS1] and [You]) and L∗ : Ω(X) → HBM

∗ (X) ⊗ Q is
Cappell–Shaneson’s homology L-class transformation [CS1] (also see [GM]).

We also have the following

Corollary 2.4. The following diagram commutes:

IsoProp(Sm/X)

Θsm

wwoooooooooooo γtd(y)

((QQQQQQQQQQQQQ

K0(V/X)
Ty∗

// HBM
∗ (X)⊗R

Definition 2.5. For a complex algebraic variety X

Ty∗(X) := Ty∗([X
id−→ X]) ∈ HBM

∗ (X)⊗Q[y]

is called the motivic Hirzebruch class of X .

Remark 2.6. As to the homomorphism γF : K0(V/X) → F (X) we have that for any
variety X

γF ([X
id−→ X]) = 11X , therefore T−1∗(X) = c∗(X)⊗Q,
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whether X is singular or non-singular. However, as to the other two homomorphisms
γG0 : K0(V/X) → G0(X) and γΩ : K0(V/X) → Ω(X), if X is singular, in general we
have that

γG0([X
id−→ X]) 6= [OX ], γΩ([X

id−→ X]) 6= [ICX ],

where ICX is the middle intersection homology complex of Goresky–MacPherson [GM].
Hence, if X is singular, in general we have that

T0∗(X) 6= td∗(X), T1∗(X) 6= L∗(X).

If X is a Du Bois variety, i.e., a variety with Du Bois singularities, then we have that

γG0
([X

id−→ X]) = [OX ], therefore T0∗(X) = td∗(X).

If X is a rational homology manifold, then conjecturally

γΩ([X
id−→ X]) = [ICX ], therefore T1∗(X) = L∗(X).

For more details, see [BSY1] and also [CMSS, Theorem 4.3], where the conjecture is
proved in some special cases.

3. THE GROTHENDIECK GROUP KProp`.c.i (V/X h−→ S)

Let S be a complex algebraic variety and fixed. Let VS be the category of S-varieties,
i.e., an object is a morphism h : X → S and a morphism from h : X → S to k : Y → S
is a morphism f : X → Y such that the following diagram commutes:

X

h ��@
@@

@@
@@

f // Y

k����
��

��
�

S

.

A morphism f : X → Y is called a local complete intersection (`.c.i.) morphism if
f admits a factorization into a closed regular embedding followed by a smooth morphism
(e.g., see [Fu] or [FM]). In particular, regular embeddings and smooth morphisms are `.c.i.
morphisms. The composite of `.c.i. morphisms are again an `.c.i. morphism.

Definition 3.1. Let MProp`.c.i (V/X h−→ S) be the monoid consisting of isomorphism classes
[V

p−→ X] of proper morphisms p : V → X such that the composite h ◦ p : V → S is an
`.c.i. morphism, with the addition (+) and zero (0) defined by

• [V
h−→ X] + [V ′

h′−→ X] := [V t V ′ h+h′−−−→ X],
• 0 := [φ→ X].

Then we define
KProp`.c.i (V/X h−→ S)

to be the Grothendieck group of the monoid MProp`.c.i (V/X h−→ S).

Remark 3.2. In other words, KProp`.c.i (V/X h−→ S) is the free abelian group generated by
the set of all isomorphism classes of [V

p−→ X] of proper morphisms p : V → X such that
the composite h ◦ p : V → S is an `.c.i. morphism, modulo the subgroup generated by the
elements of the following form

[V
h−→ X] + [V ′

h′−→ X]− [V t V ′ h+h′−−−→ X].
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Lemma 3.3. (1) The Grothendieck group KProp`.c.i (V/X h−→ S) is a covariant functor
with pushforwards for proper morphisms, i.e., for a proper morhism f : X →
Y ∈ VS

X

h ��@
@@

@@
@@

f // Y

k����
��

��
�

S

the pushforward

f∗ : KProp`.c.i (V/X h−→ S)→ KProp`.c.i (V/Y k−→ S)

defined by

f∗([V
p−→ X]) := [V

f◦p−−→ Y ]

is covariantly functorial.
(2) The Grothendieck group KProp`.c.i (V/X h−→ S) is a contravariant functor with pull-

backs for smooth morphisms, i.e., for a smooth morhism f : X → Y ∈ VS the
pullback

f∗ : KProp`.c.i (V/Y k−→ S)→ KProp`.c.i (V/X h−→ S)

defined by

f∗([W
p−→ Y ]) := [W ′

p′−→ X]

is contravariantly functorial. Here we consider the following commutative dia-
grams whose top square is a fiber square:

W ′
f ′ //

p′

��

W

p

��
X

h !!B
BB

BB
BB

B
f // Y

k~~}}
}}

}}
}}

S.

Proof. (1) The well-definedness of the pushforward homomorphism f∗ is clear.
(2) In the diagram of Lemma 3.3 (2) , by the definition k ◦ p : W → S is an `.c.i.

morphism, and f ′ : W ′ → W is smooth since it is a base change of a smooth morphism
f : X → Y . The composite h ◦ p′ : W ′ → S is equal to the composite k ◦ p ◦ f ′, thus it is
an `.c.i. morphism because it is the composite of two `.c.i. morphisms. Thus the pullback
homomorphism f∗ is well-defined. �

Remark 3.4. (1) As to the contravariance of the Grothendieck groupKProp`.c.i (V/X h−→
S), one might be tempted to consider the pullback for a local complete intersec-
tion morphism f : X → Y instead of a smooth morphism. But a crucial problem
for this is that the pullback of a local complete intersection morphism is not neces-
sarily a local complete intersection morphism, thus in the diagram of Lemma 3.3
(2) f ′ : W ′ → W is not necessarily a local complete intersection morphism and
hence we do not know whether or not the composite k ◦ p ◦ f ′ = h ◦ p′ is a local
complete intersection morphism.
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(2) If we consider the finer class Sm of smooth morphisms instead of the class L.c.i
of local complete intersection morphisms, we do have a bivariant theory, from
which we can construct a motivic bivariant characteristic class [Yo7].

4. MOTIVIC MILNOR–HIRZEBRUCH CLASSES

For a morphism f : X → Y , H(X → Y ) is the Fulton–MacPherson bivariant homol-
ogy theory [FM]. Since the main theme of the present paper is not a bivariant theoretic, we
do not recall a general bivariant theory, thus see [FM] for details. In the paper • denotes
the bivariant product, i.e., for morphisms f : X → Y , g : Y → Z the bivariant product •
is

• : H(X
f−→ Y )×H(Y

g−→ Z)→ H(X
g◦f−−→ Z).

Then H(X
idX−−→ X) is the usual cohomology theory H∗(X) and H(X → pt) (for a

mapping to a point) is the Borel–Moore homology theory HBM
∗ (X).

Proposition 4.1. Let c` : K0 → H∗( )⊗ R be a characteristic class of complex vector
bundles with a suitable coefficients R. Then on the category VS we have that

(1) There exists a unique natural transformation (not a Grotendieck transformation)

γ̃c`∗ : KProp`.c.i (V/X h−→ S)→ H(X
h−→ S)⊗R

such that for a local complete intersection morphism h : X → S

γ̃c`∗([X
idX−−→ X]) = c`(Th) • Uh.

Here Th is the (virtual) relative tangent bundle of h and Uh ∈ H(X
h−→ S) is the

canonical orientation.
(2) There exists a unique natural transformation

γc`∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗ (X)⊗R

such that for a local complete intersection morphism h : X → S

γc`∗([X
idX−−→ X]) = c`(Th) ∩ [X].

Proof. (1) We define γ̃c`∗ : KProp`.c.i (V/X h−→ S)→ H(X
h−→ S)⊗R by

γ̃c`∗([V
p−→ X]) := p∗(c`(Th◦p) • Uh◦p).

First we observe that γ̃c`∗ is well-defined. Let p′ : V ′ → X be another representative
of [V

p−→ X], i.e., the composite h ◦ p′ is an `.c.i. morphism and there is an isomorphism
g : V ′ ∼= V such that the following diagram commutes:

V ′

p′ !!B
BB

BB
BB

B
g

∼=
// V

p
~~}}

}}
}}

}}

X.
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Then we have

γ̃c`∗([V
′ p
′

−→ X]) = p′∗(c`(Th◦p′) • Uh◦p′)
= p∗g∗(c`(g

∗Th◦p) • Uh◦p′)
= p∗g∗(c`(g

∗Th◦p) • Uh◦p′)
= p∗g∗(g

∗c`(Th◦p) • Uh◦p′)
= p∗(c`(Th◦p) • g∗Uh◦p′) (projection formula)

= p∗(c`(Th◦p) • Uh◦p) (since g is an isomorphism)

= γ̃c`∗([V
p−→ X]).

The equality g∗Uh◦p′ = Uh◦p is due to the following observation. By the definition or
the construction of Fulton–MacPherson’s bivariant homology theory H (see [FM]), for the
isomorphism g : V ′

∼=−→ V we have

• Hi(V ′ g−→ V ) = Hi(V )

• g∗ : Hi(V ′ g−→ V )→ Hi(V idV−−→ V ) is the identity map,
• Ug = 1V ∈ H0(V ).

Since h ◦ p′ = (h ◦ p) ◦ g and g is also an `.c.i. morphism, it follows from [FM, Part II,
§1.3] that we have

Uh◦p′ = U(h◦p)◦g = Ug • Uh◦p.

Then we have

g∗Uh◦p′ = g∗
(
Ug • Uh◦p

)
= g∗Ug • Uh◦p ([FM, A12, p.20])
= Uh◦p (since g∗Ug = 1V )

Thus γ̃c`∗ is well-defined.
Now, for a morphism f : X → Y , i.e., for the following commutative diagram

X

h ��@
@@

@@
@@

f // Y

k����
��

��
�

S

the following diagram commutes:

KProp`.c.i (V/X h−→ S)
γ̃c`∗−−−−→ H(X

h−→ S)⊗R

f∗

y yf∗
KProp`.c.i (V/Y k−→ S) −−−−→

γ̃c`∗

H(Y
k−→ S)⊗R,
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Indeed, for [V
p−→ X] ∈ KProp`.c.i (V/X h−→ S) we have that

f∗

(
γ̃c`∗([V

p−→ X])
)

= f∗ (p∗(c`(Th◦p) • Uh◦p))

= (f ◦ p)∗ (c`(Th◦p) • Uh◦p)
= (f ◦ p)∗ (c`(Tk◦f◦p) • Uk◦f◦p)
= (f ◦ p)∗ (c`(Tk◦f◦p) • Uk◦f◦p)

= γc`∗([V
f◦p−−→ Y ])

= γ̃c`∗

(
f∗([V

p−→ X])
)
.

Since, for a local complete intersection morphism h : X → S, by definition of γc`∗ we

have γc`∗([X
idX−−→ X]) = c`(Th) • Uh, the uniqueness of γc`∗ follows.

(2) We define γc`∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗ (X)⊗R by

γc`∗([V
p−→ X]) := p∗(c`(Th◦p) ∩ [V ]).

The well-definedness of γc`∗ is similar to the above, but more straightforward. Indeed, we
have

γc`∗([V
′ p−→ X]) = p′∗(c`(Th◦p′) ∩ [V ′])

= p∗g∗(c`(g
∗Th◦p) ∩ [V ′])

= p∗g∗(c`(g
∗Th◦p) ∩ [V ′])

= p∗g∗(g
∗c`(Th◦p) ∩ [V ′])

= p∗(c`(Th◦p) ∩ g∗[V ′])
= p∗(c`(Th◦p) ∩ [V ])

= γc`∗([V
p−→ X]).

Then the following diagram commutes:

KProp`.c.i (V/X h−→ S)
γc`∗−−−−→ HBM

∗ (X)⊗R

f∗

y yf∗
KProp`.c.i (V/Y k−→ S) −−−−→

γc`∗
HBM
∗ (Y )⊗R,

which follows from replacing •Uh◦p and •Uk◦f◦p by ∩[V ] in the proof of (1). �

Remark 4.2. For a local complete intersection morphism f : X → S, we have

•Uh • [S] = ∩[X].

Here [W ] is the fundamental class of W and [W ] ∈ H(W → pt) = HBM
∗ (W ). Thus the

relation between the above two natural transformations γ̃c`∗ and γc`∗ is that

γc`∗ = γ̃c`∗ • [S].

Remark 4.3. When the fixed variety S is a point, the above two natural transformations
γ̃c`∗ and γc`∗ are the same: γc`∗ : KProp`.c.i (V/X)→ HBM

∗ (X)⊗R.
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If S is a point and c` = c the Chern class, then for a local complete intersection variety
X in a smooth manifold, we have that

γc∗([X
idX−−→ X]) = c(TX) ∩ [X]

which is Fulton–Johnson’s class cFJ∗ (X). Thus the above natural transformations

γ̃c`∗ : KProp`.c.i (V/X h−→ S)→ H(X
h−→ S)⊗R

γc`∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗ (X)⊗R

are both generalizations of Fulton–Johnson’s class as natural transformations. They are re-
specively called a motivic “bivariant” FJ-c` class, denoted by c̃`FJ∗ , and a motivic FJ-c`
class, denoted by c`FJ∗ , since it is modelled after Fulton–Johnson’s class cFJ∗ .

From here on we consider the Hirzebruch class td(y), instead of an arbitrary char-
acteristic class c`, because we use the motivic Hirzebruch class Ty∗ : K0(V/X) →
HBM
∗ (X)⊗Q[y] below. We use the above natural transformations

γ̃td(y)∗ : KProp`.c.i (V/X h−→ S)→ H(X
h−→ S)⊗Q[y],

γtd(y)∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗ (X)⊗Q[y],

which are respectively called the motivic “bivariant” FJ-Hirzebruch class and the motivic

FJ-Hirzebruch class and denoted by T̃yFJ∗ and TyFJ∗ .

We define the twisted pushforward for homology as follows: for a morphism f : X →
Y , the relative dimension of f and the co-relative dimension of f are respectively defined
by

dim(f) := dimX − dimY codim(f) := dimY − dimX.

For the Borel–Moore homology theoryH∗, the twisted pushforward for a proper morphism
f : X → Y is define by

f∗∗ := (−1)codim(f)f∗ : HBM
∗ (X)→ HBM

∗ (Y ).

With this twisted pushforward the Borel–Moore homology theory is still a covariant func-
tor. To avoid a possible confusion we denote HBM

∗∗ (X) for the Borel–Moore homology
theory with the twisted pushforward.

Corollary 4.4. On the category VS there exists a unique natural transformation

MTy∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗∗ (X)⊗Q[y]

such that for a local complete intersection morphism h : X → S the homomorphism
MTy∗ : KProp`.c.i (V/X h−→ S)→ HBM

∗∗ (X)⊗Q[y] satisfies that

MTy∗([X
idX−−→ X]) = (−1)dimX

(
Ty

FJ
∗ − Ty∗ ◦Θ

)
([X

idX−−→ X]).

Proof. We defineMTy∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗∗ (X)⊗Q[y] by

MTy∗([V
p−→ X]) := (−1)dimV

(
Ty

FJ
∗ − Ty∗ ◦Θ

)
([V

p−→ X]).

This is equal to
(−1)dimXp∗

(
td(y)(Tp◦h) ∩ [V ]− Ty∗(V )

)
.

�
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From here on we denote Ty∗ ◦Θ simply by Ty∗. When S is a point, the above motivic
natural transformation

MTy∗ : KProp`.c.i (V/X)→ HBM
∗∗ (X)⊗Q[y]

shall be called a motivic Milnor–Hirzebruch class, even though KProp`.c.i (V/X) is not (a
subgroup of ) the motivic group K0(V/X), but because it is defined by using the motivic
Hirzebruch class Ty∗ : K0(V/X) → HBM

∗ (X) ⊗ Q[y] and because, if we specialize
MTy∗ to the case when y = −1 andX is a local complete intersection variety in a smooth
manifold, we have

MT−1∗([X
id−→ X])

= (−1)dimX
{
td(−1)(TX) ∩ [X]− T−1∗

(
Θ([X

id−→ X])
)}

= (−1)dimX
(
cFJ∗ (X)− c∗(X)

)
,

which is the Milnor classM(X) ofX . ThusMT−1∗ : KProp`.c.i (V/X)→ HBM
∗∗ (X)⊗Q[y]

is called the motivic Milnor class (or Milnor–Chern class). The more general one

MTy∗ : KProp`.c.i (V/X h−→ S)→ HBM
∗∗ (X)⊗Q[y]

is called a generalized motivic Milnor–Hirzebruch class.
In fact, if the base variety S is a Q-homology manifold or a rational homology manifold,

the fundamental class [S] ∈ H(S → pt) = HBM
∗ (S) is a strong orientation (see [FM, Part

I, §2.6]), namely we have the following isomorphism (see [BSY3])

•[S] : H(X
h−→ S)⊗Q

∼=→ H(X → pt)⊗Q = HBM
∗ (X)⊗Q.

Which is a generalized Poincaré duality isomorphism, hence denoted by PDh. Indeed,
when X is a rational homology compact manifold, for the identity idX : X → X , the
above isomorphism is nothing but the classical Poincaré duality isomorphism

∩[X] : H∗(X)⊗Q→ H∗(X)⊗Q.

Examples of a Q-homology manifold (e.g., see [BM, §1.4 Rational homology man-
ifolds]) are surfaces with Kleinian singularities, the moduli space of curves of a given
genus, Satake’s V -manifolds or orbifolds, in particular, the quotient of a nonsingular vari-
ety by a finite group action on.

Thus we can get the following corollary:

Corollary 4.5. Let the base variety S be a Q-homology manifold. On the category VS
there exists a unique natural transformation

M̃Ty∗ : KProp`.c.i (V/X h−→ S)→ H∗∗(X
h−→ S)⊗Q[y]

such that for a local complete intersection morphism h : X → S the homomorphism
M̃Ty∗ : KProp`.c.i (V/X h−→ S)→ H(X

h−→ S)⊗Q[y] satisfies that

M̃Ty∗([X
idX−−→ X]) = (−1)dimX

(
T̃y

FJ
∗ − PD

−1
h ◦ Ty∗

)
([X

idX−−→ X]).

Here H∗∗(X
h−→ S) is the twisted bivariant homology theory with the twisted pushforward

f∗∗ := (−1)codim(f)f∗.
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Remark 4.6. (1) M̃Ty∗ : KProp`.c.i (V/X h−→ S) → H∗∗(X
h−→ S) ⊗ Q[y] shall be

called a motivic “bivariant” Milnor–Hirzebruch class, even thought the source
groupKProp`.c.i (V/X h−→ S) is not a bivariant theory, but the target group H∗∗(X

h−→
S)⊗Q[y] is a bivariant theory.

(2) Note that when the base variety S is a point, M̃Ty∗ : KProp`.c.i (V/X h−→ S) →
H∗∗(X

h−→ S)⊗Q[y] is the same asMTy∗ : KProp`.c.i (V/X)→ HBM
∗∗ (X)⊗Q[y].

Proposition 4.7. In the case when y = 0, the Milnor–Todd classMT0∗ : KProp`.c.i (V/X)→
HBM
∗ (X) ⊗ Q vanishes on the subgroup generated by [V

p−→ X] with V being Du Bois
varieties:

MT0∗([V
p−→ X]) = 0 if V is a Du Bois variety.

Proof. For a local complete intersection variety V in a smooth variety M , we have that

MT0∗([V
p−→ X])

= p∗∗MT0∗([V
id−→ V ])

= (−1)dimXp∗

(
td(TV ) ∩ [V ]− T0∗([V

id−→ V ])
)

= (−1)dimXp∗
(
td(TV ) ∩ [V ]− T0∗(V )

)
.

If V is a Du Bois variety, it follows from Remark 2.6 that T0∗(V ) = td∗(OV ). On the other
hand we observe that it follows from the properties of the Baum–Fulton–MacPherson’s
Riemann–Roch td∗ : G0(X) → HBM

∗ (X) ⊗ Q (see [Fu, Corollary 18.3.1 (b)], or more
generally [FM, PART II, §0.2 Summary of results]) that for a local complete intersection
variety V in a smooth variety M we have

td∗(OV ) = td(TV ) ∩ [V ],

for TV the virtual tangent bundle of V in M . Therefore, if V is a local complete intersec-
tion variety V in a smooth variety M and V is also a Du Bois variety, then we have

MT0∗([V
p−→ X]) = 0.

�

Corollary 4.8. If the base variety S is a Q-homology manifold, then the motivic bivariant
Milnor–Todd class M̃T0∗ : KProp`.c.i (V/X h−→ S) → H∗∗(X

h−→ S) ⊗ Q vanishes on the
subgroup generated by [V

p−→ X] with V being Du Bois varieties.

Proof. This follows from the fact that for an element [V
p−→ X] with V a Du Bois variety

M̃T0∗([V
p−→ X]) • [S] =MT0∗([V

p−→ X]) = 0 and •[S] : H(X
h−→ S)⊗Q

∼=→ H(X →
pt)⊗Q = HBM

∗ (X)⊗Q is an isomorphism when S is a Q-homology manifold. �

Remark 4.9. Let us compare with the results in Theorem 2.3. Neither of the following
three diagrams commutes in general:

• y = −1 :

KProp`.c.i (V/X)

γF

xxrrrrrrrrrr
T−1

FJ
∗

((PPPPPPPPPPPP

F (X)
c∗

// HBM
∗ (X)⊗Q.



52 SHOJI YOKURA(∗)

• y = 0 :

KProp`.c.i (V/X)
γG0

xxqqqqqqqqqq
T0

FJ
∗

((PPPPPPPPPPPP

G0(X)
td∗

// HBM
∗ (X)⊗Q.

• y = 1 :

KProp`.c.i (V/X)

γΩ

xxrrrrrrrrrr
T1

FJ
∗

((PPPPPPPPPPPP

Ω(X)
L∗

// HBM
∗ (X)⊗Q.

Hence it is natural or reasonable to consider the following commutative diagrams with the
corresponding Milnor classes and the corresponding looked-for natural transformations

MT−1∗ : KProp`.c.i (V/X)→ HBM
∗∗ (X)⊗Q, Mc∗ : F (X)→ HBM

∗∗ (X)⊗Q

MT0∗ : KProp`.c.i (V/X)→ HBM
∗∗ (X)⊗Q, Mtd∗ : G0(X)→ HBM

∗∗ (X)⊗Q,

MT1∗ : KProp`.c.i (V/X)→ HBM
∗∗ (X)⊗Q, ML∗ : Ω(X)→ HBM

∗∗ (X)⊗Q :

• y = −1 :

KProp`.c.i (V/X)

γF

xxrrrrrrrrrr MT−1∗

((PPPPPPPPPPPP

F (X)
Mc∗

// HBM
∗∗ (X)⊗Q.

• y = 0 :

KProp`.c.i (V/X)
γG0

xxqqqqqqqqqq MT0∗

((PPPPPPPPPPPP

G0(X)
Mtd∗

// HBM
∗∗ (X)⊗Q.

• y = 1 :

KProp`.c.i (V/X)

γΩ

xxrrrrrrrrrr MT1∗

((PPPPPPPPPPPP

Ω(X)
ML∗

// HBM
∗∗ (X)⊗Q.

5. VERDIER-TYPE RIEMANN–ROCH FORMULAS

In this section we show Verdier-type Riemann–Roch formulas.
First we show a Verdier-type Riemann–Roch formula for the motivic canonical c` class

for a smooth morphism. Here we emphasize that we need a smooth morphism instead of a
local complete intersection morphism:
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Proposition 5.1. Let f : X → Y be a smooth morphism in the category VS:

X

h   A
AA

AA
AA

f // Y

k~~~~
~~

~~
~

S.

Then the following diagram commutes:

KProp`.c.i (V/Y k−→ S)
c`FJ
∗−−−−→ HBM

∗ (Y )⊗R

f∗
y yc`(Tf )∩f∗

KProp`.c.i (V/X h−→ S) −−−−→
c`FJ
∗

HBM
∗ (X)⊗R,

Here f∗ : HBM
∗ (Y )→ HBM

∗ (X) is the Gysin pullback homomorphism.

Proof. Let [W
p−→ Y ] ∈ KProp`.c.i (V/Y k−→ S) and consider the following diagram whose

top square is a fiber square:

(5.2) W ′
f ′ //

p′

��

W

p

��
X

h !!B
BB

BB
BB

B
f // Y

k~~}}
}}

}}
}}

S.

We want to show that

c`FJ∗ f∗([W
p−→ Y ]) = c`(Tf ) ∩ f∗

(
c`FJ∗ ([W

p−→ Y ])
)
.

c`FJ∗ f∗([W
p−→ Y ]) = c`FJ∗ ([W ′

p′−→ X])

= p′∗(c`(Th◦p′) ∩ [W ′]) (by definition of c`FJ∗ )

c`(Tf ) ∩ f∗
(
c`FJ∗ ([W

p−→ Y ])
)

= c`(Tf ) ∩ f∗ (p∗(c`(Tk◦p) ∩ [W ])) .

Since p : W → Y is proper and f : X → Y is smooth, hence flat, it follows from [Fu,
Proposition 1.7] that we have the base change formula:f∗p∗ = p′∗f

′∗. The above equality
continues as follows:

= c`(Tf ) ∩ p′∗f ′
∗
(c`(Tk◦p) ∩ [W ])

= p′∗
(
p′
∗
c`(Tf ) ∩ f ′∗(c`(Tk◦p) ∩ [W ])

)
(projection formula)

= p′∗
(
c`(p′

∗
Tf ) ∩ (c`(f ′

∗
Tk◦p) ∩ f ′

∗
[W ])

)
(by [Fu, Theorem 3.2])

= p′∗

(
(c`(Tf ′) ∪ c`(f ′

∗
Tk◦p)) ∩ [f ′

−1
(W )])

)
(by [Fu, Lemma1.7.1])

= p′∗
(
c`(Tf ′ + f ′

∗
Tk◦p) ∩ [W ′]

)
= p′∗ (c`(Tk◦p◦f ′) ∩ [W ′]) (Tk◦p◦f ′ = Tf ′ + f ′

∗
Tk◦p ∈ K0(W ′) )

= p′∗ (c`(Th◦p′) ∩ [W ′]) .
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Therefore we get that c`FJ∗ f∗([W
p−→ Y ]) = c`(Tf ) ∩ f∗

(
c`FJ∗ ([W

p−→ Y ]
)
. �

By the definition KProp`.c.i (V/X k−→ S) is the Grothendieck group of the monoid consist-
ing of some elements of IsoProp(V/X), hence a homomorphism

Ψ : KProp`.c.i (V/X k−→ S)→ HBM
∗ (X)⊗Q[y]

satisfying
Ψ([V

p−→ X]) = Ty∗([V
p−→ X]) (= Ty∗ ◦Θ([V

p−→ X]))

is uniquely determined. So we denote Ψ by the same symbol Ty∗:

Ty∗ : KProp`.c.i (V/X k−→ S)→ HBM
∗ (X)⊗Q[y],

which is also called a motivic Hirzebruch class in the present set-up.

Secondly we show a Verdier-type Riemann–Roch formula for the motivic Hirzebruch
class for a smooth morphism:

Proposition 5.3. Let f : X → Y be a smooth morphism in the category VS as in Propo-
sition 5.1. Then the following diagram commutes:

KProp`.c.i (V/Y k−→ S)
Ty∗−−−−→ HBM

∗ (Y )⊗Q[y]

f∗
y ytd(y)(Tf )∩f∗

KProp`.c.i (V/X h−→ S) −−−−→
Ty∗

HBM
∗ (X)⊗Q[y].

Proof. For the above diagram (5.2) we want to show that

Ty∗f
∗([W

p−→ Y ]) = td(y)(Tf ) ∩ f∗
(
Ty∗([W

p−→ Y ])
)
.

Since it follows from Hironaka’s resolution of singularities that any [W
p−→ Y ] can be

expressed as a linear combination ∑
V

aV [V
pV−−→ Y ]

where aV ∈ Z, V is a smooth variety , and pV : V → Y is proper, it suffices to show that

Ty∗f
∗([V

pV−−→ Y ]) = td(y)(Tf ) ∩ f∗
(
Ty∗([V

pV−−→ Y ])
)
.

Hence, from the beginning we can assume that in the above diagram 5.2 W is smooth
and p : W → Y is proper, but here note that we DO NOT need the requirement that the
composite k ◦ p : W → S is a local complete intersection morphism. Here it should be
noted that since W is smooth and f ′ : W ′ → W is smooth (because f ′ is the pullback of
the smooth morphism f : X → Y ), W ′ is also smooth, which is crucial below.

Ty∗f
∗([W

p−→ Y ]) = Ty∗([W
′ p
′

−→ X])

= Ty∗(p
′
∗[W

′ idW ′−−−→W ′])

= p′∗Ty∗([W
′ idW ′−−−→W ′])

= p′∗(td(y)(TW
′) ∩ [W ′]) (since W ′ is smooth).
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On the other hand we have

td(y)(Tf ) ∩ f∗Ty∗([W
p−→ Y ])

= td(y)(Tf ) ∩ f∗Ty∗(p∗[W
idW−−→W ])

= td(y)(Tf ) ∩ f∗p∗(Ty∗([W
idW−−→W ]))

= td(y)(Tf ) ∩ f∗p∗(td(y)(TW ) ∩ [W ])) (since W is smooth)

= td(y)(Tf ) ∩ p′∗f ′
∗
(td(y)(TW ) ∩ [W ]))

= p′∗
(
p′
∗
td(y)(Tf ) ∩ f ′∗(td(y)(TW ) ∩ [W ])

)
= p′∗

(
td(y)(p

′∗Tf ) ∩
(
f ′
∗
td(y)(TW ) ∩ f ′∗[W ]

))
= p′∗

((
td(y)(Tf ′) ∪ td(y)(f

′∗TW )
)
∩ [f ′

−1
W ])

)
= p′∗

(
td(y)(Tf ′ + f ′

∗
TW ) ∩ [W ′])

)
= p′∗

(
td(y)(TW

′) ∩ [W ′])
)

(since Tf ′ = TW ′ − f ′∗TW ).

Therefore we get that Ty∗f
∗([W

p−→ Y ]) = td(y)(Tf ) ∩ f∗
(
Ty∗([W

p−→ Y ])
)
. �

Remark 5.4. The above proof of course implies that the following Verdier-type Riemann–
Roch formula holds for the motivic Hirzebruch class Ty∗ : K0(V/X)→ HBM

∗ (X)⊗Q[y]:
for a smooth morphism f : X → Y in the category V the following diagram commutes:

K0(V/Y )
Ty∗−−−−→ HBM

∗ (Y )⊗Q[y]

f∗
y ytd(y)(Tf )∩f∗

K0(V/X) −−−−→
Ty∗

HBM
∗ (X)⊗Q[y].

Definition 5.5. For a smooth morphism f : X → Y , the twisted Gysin pullback homo-
mophism f∗∗ : HBM

∗ (Y )→ HBM
∗ (X) is defined by

f∗∗ = (−)dim(f)f∗ = (−1)dimX−dimY f∗.

(In other words, (−)codim(f)f∗∗ = (−1)dimY−dimXf∗∗ = f∗.) The contravariant Borel–
Moore homology theory with this twisted pullback homomotphism for smoth morphisms
is denoted by HBM

∗∗ .

In [Yo4, Theorem 2.2] we obtained a Verdier-type Riemann–Roch formula of the Milnor
class in a special case. The following Verdier-type Riemann–Roch formula of the motivc
Milnor–Hirzebruch class is a generalization of this result:

Theorem 5.6. For a smooth morphism f : X → Y in the category VS as in Proposition
5.1, the following diagram commutes:

KProp`.c.i (V/Y k−→ S)
MTy∗−−−−→ HBM

∗∗ (Y )⊗Q[y]

f∗
y ytd(y)(Tf )∩f∗∗

KProp`.c.i (V/X h−→ S) −−−−→
MTy∗

HBM
∗∗ (X)⊗Q[y].
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Proof. Let [W
p−→ Y ] ∈ KProp`.c.i (V/Y k−→ S). Then we have that

MTy∗f
∗([W

p−→ Y ])

=MTy∗[W
′ p
′

−→ X])

= (−1)dimW ′
(
Ty

FJ
∗ − Ty∗

)
([W ′

p′−→ X])

= (−1)dimW ′
(
Ty

FJ
∗ − Ty∗

)
(f∗[W

p−→ Y ])

= (−1)dimW ′
(
Ty

FJ
∗ f∗ − Ty∗f

∗) ([W
p−→ Y ])

= (−1)dimW ′
(
td(y)(Tf ) ∩ f∗TyFJ∗ − td(y)(Tf ) ∩ f∗Ty∗

)
([W

p−→ Y ])

= (−1)dimW ′td(y)(Tf ) ∩ f∗
(
Ty

FJ
∗ − Ty∗

)
([W

p−→ Y ])

= (−1)dimW ′(−)codim(f)td(y)(Tf ) ∩ f∗∗
(
Ty

FJ
∗ − Ty∗

)
([W

p−→ Y ])

= (−1)dimW ′+dimY−dimXtd(y)(Tf ) ∩ f∗∗
(
Ty

FJ
∗ − Ty∗

)
([W

p−→ Y ])

= (−1)dimW td(y)(Tf ) ∩ f∗∗
(
Ty

FJ
∗ − Ty∗

)
([W

p−→ Y ])

= td(y)(Tf ) ∩ f∗∗
(

(−1)dimW
(
Ty

FJ
∗ − Ty∗

)
([W

p−→ Y ])
)

= td(y)(Tf ) ∩ f∗∗
(
MTy∗([W

p−→ Y ])
)
.

�

Finally we give a “bivariant version” of Theorem 5.6:

Corollary 5.7. For a smooth morphism f : X → Y in the category VS as in Proposition
5.1, the following diagram commutes:

KProp`.c.i (V/Y k−→ S)
M̃Ty∗−−−−→ H(Y

h−→ S)⊗Q[y]

f∗
y y(−1)dim(f)td(y)(Tf )•Uf•

KProp`.c.i (V/X h−→ S) −−−−→
M̃Ty∗

H(X
h−→ S)⊗Q[y],

Proof. The commutativity of the above diagram follows from Theorem 5.6, the following
commutative diagram

H(Y
k−→ S)⊗Q[y]

•[S]−−−−→ HBM∗ (Y )⊗Q[y]

(−1)dim(f)td(y)(Tf )•Uf•
y ytd(y)(Tf )∩f∗∗

H(X
h−→ S)⊗Q[y] −−−−→

•[S]
HBM∗ (X)⊗Q[y],

and the fact (see [FM]) that for any β ∈ H(Y → pt) = HBM
∗ (Y )

Uf • β = f∗β

and also using the fact that •[S] : H(X
h−→ S)

∼=−→ HBM
∗ (X) is an isomorphism.

�
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[Mac1] R. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. 100 (1974), 423–432.
[Max] L. Maxim, On the Milnor classes of complex hypersurfaces, to appear in the Proceedings of the 2008

MSRI Workshop “Topology of Stratified Spaces”.
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[Pa3] A. Parusiński, Characteristic classes of singular varieties, Singularity Theory and Its Applications,

Sapporo, September 16–25, 2003.
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