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Families of Gauss indicatrices on smooth surfaces in

pseudo-spheres in the Minkowski 4-space

Farid Tari

Abstract

We study families of Gauss indicatrices on surfaces in pseudo-spheres in the Minkowski 4-
space and obtain the generic local models of the configurations of the foliations determined by
the fibres of their principal curvatures functions.

1 Introduction

In [9], Izumiya-Pei-Sano defined the hyperbolic Gauss indicatrix of a hypersurface in the Minkowski
space model of the hyperbolic space. The work in [9] set the foundations of applications of singularity
theory to the extrinsic geometry of submanifolds in the hyperbolic space. Given a point p on a
hypersurface M in the hyperbolic space Hn

+(−1), there is a well defined (at least locally) unit normal
vector e(p) to M at p; see §2. The vector e(p) is in the de Sitter space Sn1 and defines the de Sitter
Gauss indicatrix

E : M → Sn1
p → e(p)

The de Sitter Gauss-Kronecker curvature at p is Ke(p) := det(−(dE)p) and the totally umbilic
hypersurfaces with Ke ≡ 0 are the hyperplanes in Hn

+(−1). The de Sitter Gauss indicatrix on M is
related to the contact of M with hyperplanes ([9]).

Another Gauss indicatrix on M is introduced in [9] and is called the hyperbolic or lightcone Gauss
indicatrix; see §2. The vector p± e(p) is lightlike (i.e., belongs to the lightcone LC∗) and defines the
hyperbolic Gauss indicatrices

L± : M → LC∗

p → p± e(p)

The hyperbolic Gauss-Kronecker curvature at p is Kh(p) := det(−(dL±)p) and the totally umbilic
hypersurfaces with Kh ≡ 0 are the hyperhorospheres in Hn

+(−1). The hyperbolic Gauss indicatrix
on M is related to the contact of M with hyperhorospheres ([9]).

In [1] is constructed a 1-parameter family of Gauss indicatrices which links E and L±. The family
is given by Nθ(p) = cos θp± e(p) ∈ Sn(sin2(θ)), θ ∈ [0, π/2], and is called the Slant Gauss indicatrix.
Observe that Nθ(p) is always spacelike for θ 6= 0. The above family links the geometry of M related
to hyperplanes to that related to hyperhorospheres. See also [11] for slant geometry in the de Sitter
space and in the lightcone.

The work in this paper is inspired by that in [1, 11]. A hypersurface M in Hn
+(−1) can be viewed

as a codimension 2 spacelike submanifold in Rn+1
1 . It has then a timelike normal plane in Rn+1
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any of its points. For this reason, we consider normal vector fields (Gauss indicatrix) on M which are
not necessarily spacelike. We define two families of Gauss indicatrices on M . One is spacelike and is
given by Ns

θ = tanh(θ)p+ e(p) and the other is timelike and is given by N t
θ = tanh(θ)−1p+ e(p) (we

use hyperbolic angles here, see [17] for definition and properties). The families Nw
θ , w = s, t tend to

L± as θ tends to ±∞. We define the θw-Gauss-Kronecker curvature by Kw
θ (p) := det(−(dNw

θ )p).
We give in §3 general results about the families Nw

θ on hypersurfaces in Hn
+(−1) and deal in more

details with surfaces in H3
+(−1) in §3.1. We denote by κ1 and κ2 the eigenvalues of the de Sitter

shape operator and call them the de Sitter principal curvatures. It turns out that the θw-parabolic
sets (points where Kw

θ vanishes) are given by κi = constant. The θs-parabolic sets foliate the region
in M where |κi| < 1 and the θt-parabolic sets foliate the region in M where |κi| > 1; see Theorem
3.2. (One motivation behind considering the timelike Gauss indicatrices is that the θs-parabolic
sets do not cover the whole surface. The other is that N t

θ gives information about the contact of
M with hyperspheres.) Note that the parabolic sets of the limiting families Nw

±∞ = L± are the
horospherical parabolic sets given by κi = ±1. We obtain the generic local configurations of the
foliations κi = constant, i = 1, 2 (Theorem 3.7), and characterise geometrically their singularities
(Theorems 3.4, 3.5, 3.8).

One can view M ⊂ H3
+(−1) as a surface in R4

1. Asymptotic directions are defined via the contact
of M with lines. They are metric independent and we have thus well defined asymptotic curves on
M given by a quadratic binary differential equation (BDE for short). We show that these asymptotic
curves are in fact the lines of the de Sitter principal curvature. This is true for any spacelike or
timelike surface in a pseudo-sphere in the Minkowski 4-space (Theorem 3.9).

We consider in §4 families of Gauss indicatrices on timelike hypersurfaces in the de Sitter space Sn1 ,
with emphasis on timelike surfaces in S3

1 . The foliations κi = constant, i = 1, 2, behave differently
from those on spacelike surfaces (Theorem 4.1). We recall in the Appendix §5 the classification of
codimension ≤ 1 singularities of BDEs.

2 Preliminaries

We start by recalling some basic concepts in hyperbolic geometry (see for example [16, 19]). The
Minkowski (n+ 1)-space (Rn+1

1 , 〈, 〉) is the (n+ 1)-dimensional vector space Rn+1 endowed with the
pseudo scalar product 〈u,v〉 = −u0v0 +

∑n
i=1 uivi, for any u = (u0, . . . , un) and v = (v0, . . . , vn) in

Rn+1
1 . We say that a vector u in Rn+1

1 \ {0} is spacelike, lightlike or timelike if 〈u,u〉 > 0, = 0 or < 0

respectively. The norm of a vector u ∈ Rn+1
1 is defined by ‖u‖ =

√
|〈u,u〉|. Given a vector v ∈ Rn+1

1

and a real number c, a hyperplane with pseudo normal v is defined by

HP (v, c) = {u ∈ Rn+1
1 | 〈u,v〉 = c}.

We say that HP (v, c) is a spacelike, timelike or lightlike hyperplane if v is timelike, spacelike or
lightlike respectively. We have the following pseudo-spheres in Rn+1

1 with centre p ∈ Rn+1
1 and radius

r > 0,
Hn(p,−r) = {u ∈ Rn+1

1 | 〈u− p,u− p〉 = −r2},
Sn(p, r) = {u ∈ Rn+1

1 | 〈u− p,u− p〉 = r2},
LC∗(p) = {u ∈ Rn+1

1 | 〈u− p,u− p〉 = 0}.

We denote by Hn(−r) and Sn(r) the pseudo-spheres centred at the origin in Rn+1
1 . The pseudo sphere

Hn(−r) has two connected components. The hyperbolic space Hn
+(−1) is the connected component

of Hn(−1) whose points u have positive coordinate u0. The de Sitter space is Sn1 = Sn(1) and the
lightcone is LC∗ = LC∗(0).

A hypersurface given by the intersection of Hn
+(−1) with a spacelike, timelike or lightlike hyper-

plane is called respectively hypersphere, equidistant hypersurface or hyperhorosphere. The intersection
of a hypersurface with a timelike hyperplane through the origin is called simply a hyperplane.
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The study of the extrinsic geometry of hypersurfaces in the hyperbolic space from the viewpoint
of Legendrian singularities was initiated in [9]. Let x : U → Hn

+(−1) be a local parametrisation of
a hypersurface M embedded in Hn

+(−1), where U is an open subset of Rn−1. We write M = x(U).
Since 〈x,x〉 ≡ −1, we have 〈xui ,x〉 ≡ 0, for i = 1, . . . , n − 1, where u = (u1, . . . , un−1) ∈ U. The
spacelike unit normal vector e(u) to M at x(u) is defined by

e(u) =
x(u) ∧ xu1

(u) ∧ . . . ∧ xun−1
(u)

‖x(u) ∧ xu1(u) ∧ . . . ∧ xun−1(u)‖
.

It follows that x(u) ± e(u) is a lightlike vector for all u ∈ U . The de Sitter and hyperbolic Gauss
indicatrices E and L± respectively are defined in the introduction. The linear transformation −(dE)p
at p = x(u) is called the de Sitter shape operator. Its eigenvalues κi, i = 1, . . . , n − 1, are called
the de Sitter principal curvatures and the corresponding eigenvectors pi, i = 1, . . . , n− 1, are called
the de Sitter principal directions. The linear transformation −(dL±)p is labelled the hyperbolic shape
operator of M at p. It has the same eigenvectors as −(dE)p but has distinct eigenvalues. In fact the
eigenvalues κ̄±i of −(dL±)p satisfy κ̄±i = −1± κi, i = 1, . . . , n− 1.

A smooth submanifold M of the Minkowski space is said to be spacelike (resp. timelike) if the
induced metric on M is Riemannian (resp. Lorentzian, i.e., of signature 1). For a spacelike (resp.
timelike) hypersurface in the de Sitter space Sn1 , the vector e(u) is timelike (resp. spacelike) and
defines a Gauss indicatrix with values in the hyperbolic (resp. de Sitter) space.

3 Hypersurfaces in Hn
+(−1)

We start with some general results on hypersurfaces M in Hn
+(−1). Let x : U → M be a local

parametrisation of M . At each point x(u), the normal plane Nx(u)M to M in Rn+1 is timelike and is
generated by e(u) and x(u). Any choice of a normal vector in Nx(u)M generates a Gauss indicatrix.
For instance, the hyperbolic Gauss indicatrix L± is given by x(u)±e(u). We can parametrise a circle
of vectors in Nx(u)M by cos(θ)x(u) + sin(θ)e(u) and get a family of Gauss indicatrices. However,
we would like the parameter to have some geometric meaning and also to distinguish between the
timelike and spacelike normal vectors as these lead to the contact of M with different models of
hypersurfaces. The differential of the Gauss indicatrix given by the vector x(u) is the identity map so
does not give any geometric information. For these reasons, we define the family of spacelike Gauss
indicatrices by

Ns
θ : U → Sn(cosh(θ)−2)

u 7→ tanh(θ)x(u) + e(u)

where θ ∈ R is the hyperbolic angle between Ns
θ (u) and x(u). If we take sinh(θ)x(u) + cosh(θ)e(u) ∈

Sn1 as a unit normal spacelike vector we will not get the desired limit Ns
θ → L± when θ → ±∞. We

define the family of timelike Gauss indicatrices by

N t
θ : U → Hn(− sinh(θ)−2)

u 7→ tanh(θ)−1x(u) + e(u)

where θ ∈ R \ {0} is the hyperbolic angle between N t
θ(u) and x(u). Again, if we take cosh(θ)x(u) +

sinh(θ)e(u) ∈ Hn(−1) as a unit normal timelike vector we will not get the desired limit N t
θ → L±

when θ → ±∞. (Observe that x is not a member of the family N t
θ.)

We have the following result which follows from the definitions of Nw
θ , w = s, t.

Theorem 3.1 The differential map −(dNs
θ )p = − tanh(θ)Ip − (dE)p is a self-adjoint operator on

TpM . Its eigenvalues are κsθi = − tanh(θ) + κi, where κi are the de Sitter principal curvatures. The
eigenvectors of −(dNs

θ )p, for any θ ∈ R, coincide with those of the de Sitter shape operator −(dE)p.
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Similarly, the differential map −(dN t
θ)p = − tanh(θ)−1Ip − (dE)p is a self-adjoint operator on

TpM . Its eigenvalues are κtθi = − tanh(θ)−1 + κi. The eigenvectors of −(dN t
θ)p, for any θ ∈ R \ {0},

also coincide with those of the de Sitter shape operator.

We call κwθi, w = s, t, the θw-principal curvatures and call Kw
θ (p) = det(−(dNw

θ )p) =
∏n−1
i=1 κ

w
θi

the θw-Gauss-Kronecker curvature of M at p = x(u). A point p on M is called (spacelike) θw-umbilic
(w = s or t) if κwθi = κwθj for all i, j at p. It is called θw-parabolic if Kw

θ (p) = 0.
We are interested in hypersurfaces whose points are all θw-umbilics, which we label totally θw-

umbilic hypersurfaces. These will form the “model” hypersurfaces in the hyperbolic space. One can
characterised θw-umbilic hypersurfaces in the same way as in Proposition 2.3 in [9]. For instance, if
a hypersurface M ⊂ Hn

+(−1) is totally θw-umbilic, then κwθi are all equal to the same constant, say
κwθ , on M . Then M is a subset of the intersection of Hn

+(−1) with a hyperplane and the type of the
hyperplane is determined by the value of the constant κwθ .

We consider the contact of M with model hypersurfaces in Hn
+(−1). We define the family of

spacelike height functions by

Hs
θ U × Sn(cosh(θ)−2) → R

(u,v) 7→ 〈x(u),v〉+ tanh(θ)

This measures the contact of M with the equidistant hypersurfaces HP (v,− tanh(θ))∩Hn
+(−1). We

have Hs
θ = ∂Hs

θ/∂ui = 0 if and only if v = Ns
θ (u). A point p = x(u) is a θs-parabolic point if and

only if the Hessian of Hs
θ (−,v), with v = Ns

θ (u), is singular. This means that the θs-parabolic set
is the set of points on M which correspond to the singular points of the discriminant of the family
Hs
θ . (One can show, using the same arguments in the proof of Proposition 4.2 in [9] that Hs

θ is a
Morse family. This yields a Legendrian immersion whose generating family is Hs

θ . The wavefront of
the Legendrian immersion is the Gauss indicatrix Ns

θ .)
We also define the family of timelike height functions

Ht
θ U ×Hn(− sinh(θ)−2) → R

(u,v) 7→ 〈x(u),v〉+ tanh(θ)−1

which measures the contact of M with the hyperspheres HP (v,− tanh−1(θ)) ∩ Hn
+(−1). We have

similar results to those for the family Hs
θ .

3.1 Surfaces in H3
+(−1)

We obtain in this section geometric information about the foliations determined by κwθi = constant,
i = 1, 2, w = s, t. As the θw-principal curvatures define the same foliations, we work with the de
Sitter curvatures κ1 and κ2. Let x : U ⊂ R2 → M ⊂ H3

+(−1) be a local parametrisation of M and
denote by (u, v) the coordinates in U . In this paper, subscripts involving the parameters u, v refer
to partial differentiation with respect to these parameters. The coefficients of the first fundamental
form with respect to x are denoted by

E = 〈xu,xu〉, F = 〈xu,xv〉, G = 〈xv,xv〉.

The θw-second fundamental form (w = s, t) at p = x(u, v), with associated shape operator
−(dNw

θ )p, is given by IIwθ (u,v) = 〈−(dNw
θ )p(u),v〉, for u,v ∈ TpM . We denote by

lwθ = 〈−(dNw
θ )p(xu),xu〉 = 〈Nw

θ ,xuu〉,
mw
θ = 〈−(dNw

θ )p(xu),xv〉 = 〈Nw
θ ,xuv〉,

nwθ = 〈−(dNw
θ )p(xv),xv〉 = 〈Nw

θ ,xvv〉
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its coefficients with respect to the basis {xu,xv}. We have

lwθ = − tanh(θ)εE + l,
mw
θ = − tanh(θ)εF +m,
nwθ = − tanh(θ)εG+ n,

with ε = 1 if w = s and ε = −1 if w = t and where l,m, n denote the coefficients of the second
fundamental form associated to the de Sitter shape operator −dE. Because the induced metric on
M is Riemannian, −(dNw

θ )p has always two real eigenvalues. The θw-lines of principal curvature are
the same for all θ and coincide with the de Sitter lines of principal curvature. These are given by a
BDE that can be represented in the following determinant form∣∣∣∣∣∣

dv2 −dudv du2

E F G
l m n

∣∣∣∣∣∣ = 0. (1)

For a generic surface, the discriminant of equation (1) (which is the set of points on the surface
where the equation determines a unique direction, see §5 for details) consists of the isolated umbilic
points. We write

Ke = κ1κ2 =
ln−m2

EG− F 2
,

He =
1

2
(κ1 + κ2) =

lG− 2mF + nE

2(EG− F 2)
,

for the de Sitter Gauss-Kronecker curvature and the de Sitter mean curvature, respectively. We have
the following result.

Theorem 3.2 (1) The θs-parabolic set is given by

tanh2(θ)− 2He tanh(θ) +Ke = 0.

It consists of the curves (which could be empty) κi = tanh(θ), i = 1, 2. Each family of these curves
foliate the region of M where |κi| < 1 as θ varies in R. The leaves of the foliations tend to the
horospherical parabolic set |κi| = 1 as θ tends to ±∞.

(2) The θt-parabolic set is given by

tanh2(θ)Ke − 2He tanh(θ) + 1 = 0.

It consists of the curves (which could be empty) κi = tanh(θ)−1, i = 1, 2. Each family of these curves
foliate the region of M where |κi| > 1 as θ varies in R \ {0}. The leaves of the foliations tend to the
horospherical parabolic set as θ tends to ±∞.

Proof The θw-Gauss-Kronecker curvature is given by

Kw
θ = det(−(dNw

θ )p) =
lwθ n

w
θ − (mw

θ )2

EG− F 2
= κwθ1κ

w
θ2.

The equations for the θw-parabolic sets follow from the fact that κwθi = − tanh(θ)ε + κi with ε = 1
if w = s and ε = −1 if w = t and observing that Ke = κ1κ2 and 2He = κ1 + κ2. If we take, for
example w = s, it follows that the θs-parabolic sets consists of the curves κi = tanh(θ), i = 1, 2. As
| tanh(θ)| < 1, these curves foliate the regions where |κi| < 1 as θ varies in R. The case w = t follows
similarly.

2
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Remark 3.3 It follows from Theorem 3.2 that the θs-parabolic sets do not cover the whole surface
M . This is one of the reasons why we need to consider the family N t

θ of timelike Gauss indicatrices.

A direction u ∈ TpM is said to be θw-asymptotic, w = s, t, if 〈(dNw
θ )p(u),u〉 = 0. The integral

curves of the θw-asymptotic directions are called the θw-asymptotic curves. It is not hard to show
that the θw-asymptotic curves are the solutions of the binary differential equation (BDE)

(Awθ ) : nwθ dv
2 + 2mw

θ dudv + lwθ du
2 = 0. (2)

Equation (2) determines two θw-asymptotic directions in the region where δwθ = lwθ n
w
θ −(mw

θ )2 > 0,
none where δwθ < 0, and a unique (double) θw-asymptotic direction on the θw-parabolic set δwθ = 0.
See Appendix (§5) for topological models of the solutions of a BDE.

We show below that the singularities of the foliations κi = constant, i = 1, 2, are picked up by the
families of height functions and by the BDE (2). This will allow us to determine their configurations
at their singular points. We start with the families of height functions. The contact group is denoted
by K, the K-singularities Ak are modelled by u2 ± vk+1 and the K-singularities Dk by u2v ± vk−1.

Theorem 3.4 Away from a discrete set of values of θ ∈ R, the height function Hw
θ (−,v), w = s, t,

along v = Nw
θ (p), has generically K-singularities of type A1, A2 and A3 at p. These are characterised

geometrically as follows:
A1 : p is not a θw-parabolic point.
A2 : p is a θw-parabolic point and the unique θw-asymptotic direction at p is transverse to

the θw-parabolic set.
A3 : p is a θw-parabolic point and the unique θw-asymptotic direction at p is tangent to

the θw-parabolic set.

Proof The height function Hw
θ (−,v) is singular at (u0, v0) if v = Nw

θ (u0, v0). (In fact it is singular
at (u0, v0) if and only if v is a normal vector to M at x(u0, v0).) We suppose that (u0, v0) is a
singularity of Hw

θ (−,v) with v = Nw
θ (u0, v0), and write Hw

θ for Hw
θ (−,v).

At (u0, v0), (Hw
θ )uu = lwθ = − tanh(θ)εE + l, (Hw

θ )uv = mw
θ = − tanh(θ)εF + m, and (Hw

θ )vv =
nwθ = − tanh(θ)εG + n. Thus the Hessian of Hw

θ at (u0, v0) is singular if and only if x(u0, v0) is a
θw-parabolic point. The singularity is of type A2 if the cubic part of the Taylor expansion of Hw

θ at
(u0, v0) does not divide Q, where Q2 is its quadratic part. To make the conditions more apparent,
we choose a special local parametrisation of M where the coordinate curves are the de Sitter lines of
principal curvature. (We can do this away from the de Sitter umbilic points and we can assume this
to be the case at x(u0, v0).) Then F ≡ 0, m ≡ 0 and (u0, v0) is a singularity of Hw

θ if and only if
(Hw

θ )uu(u0, v0) = 0 or (Hw
θ )vv(u0, v0) = 0. If both are zero we get a D4-singularity and this is dealt

with in Theorem 3.5. Suppose that (Hw
θ )uu(u0, v0) = 0 and (Hw

θ )vv(u0, v0) 6= 0. Then the singularity
is of type A2 if and only if (Hw

θ )uuu(u0, v0) 6= 0. We have Huu = 〈xuu,v〉, so at (u0, v0)

Huuu = 〈xuuu,v〉
= 〈xuuu, tanh(θ)εx + e〉
= tanh(θ)ε〈xuuu,x〉+ 〈xuuu, e〉.

By differentiating twice the identity 〈x,xu〉 = 0 we get

〈xuuu,x〉 = −3〈xu,xuu〉 = −3

2
Eu.

We have 〈xuu, e〉 = l, so 〈xuuu, e〉+ 〈xuu, eu〉 = lu. However,

〈xuu, eu〉 = 〈xuu,−κ1xu〉 = −1

2
κ1Eu.
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Thus

〈xuuu, e〉 = lu +
1

2
κ1Eu.

We have κ1 = tanh(θ)ε at (u0, v0), so at this point

Huuu = tanh(θ)ε〈xuuu,x〉+ 〈xuuu, e〉
= − 3

2 tanh(θ)εEu + lu + 1
2 tanh(θ)εEu

= − tanh(θ)εEu + lu.

Now the discriminant of the asymptotic curves (the θw-parabolic set) is given by lwθ = − tanhε(θ)E+
l = 0 and the unique asymptotic direction at (u0, v0) is along (1, 0). The direction (1, 0) is transverse
the the θw-parabolic set at (u0, v0) if and only if (− tanhε(θ)Eu + lu)(u0, v0) 6= 0, that is, if and only
if (Hw

θ )uuu(u0, v0) 6= 0. When (Hw
θ )uu = (Hw

θ )uuu = 0 at (u0, v0), we get and A3-singularity for
generic θ.

For θ fixed, the family Hw
θ is a 3-parameter family. Therefore, for a generic embedding of M

in H3
+(−1), only singularities of K-codimension ≤ 3 can occur. (See for example [14]. We are

interested in the discriminant of the family Hw
θ , this is why we consider the K-codimension and not

the Ke-codimension.) These are the A1, A2 and A3-singularities. If we let θ vary, we get generically
singularities of K-codimension 4 at isolated points, which can occur for a discrete set of values of θ.
2

Denote by S = {(θ,v) ∈ R× S3(cosh(θ)−2)} and T = {(θ,v) ∈ R \ {0} ×H3(− sinh(θ)−2)}. We
consider the “big” families of height functions given by

Hs U × S → R
((u, v), (θ,v)) 7→ 〈x(u, v),v〉+ tanh(θ)

and
Ht U × T → R

((u, v), (θ,v)) 7→ 〈x(u, v),v〉+ tanh(θ)−1

For a generic embedding of the surface the big family Hw, w = s, t, along Nw
θ (p) can have the

following local catastrophic events at p:
(i) an A3-singularity which is not K-versally unfolded by the family Hw

θ .
(ii) an A4-singularity of Hw

θ .
(iii) a D4-singularity of Hw

θ ; this occurs at an umbilic point with κ1 = κ2 = tanh(θ)ε.

Theorem 3.5 (1) The family Hw
θ , w = s, t, for θ fixed, is always a K-versal unfolding of the A1 and

A2 singularities of the height function at p along v = Nw
θ (p). It fails to be a K-versal unfolding of an

A3-singularity if and only if the θw-parabolic set is singular.
(2) The big family Hw is always a K-versal unfolding of a non-versal A3-singularity of Hw

θ along
v = Nw

θ (p).
(3) For a generic surface, the big family Hw is a K-versal unfolding of an A4-singularity of Hw

θ

at p along v = Nw
θ (p).

(4) For a generic surface, the big family Hw is a K-versal unfolding of a D4-singularity of Hw
θ at

p along v = Nw
θ (p).

Proof The proof is similar to those given in [3] for families of height functions on surfaces in
R3. We deal here with the D4-singularity case and with w = s. This occurs when κ1 = κ1 =
tanh(θ0), say at (u0, v0) = (0, 0). Every direction in Tx(0,0)M is a de Sitter principal direction, so we
cannot take a parametrisation with F ≡ 0,m ≡ 0. We take without loss of generality, j1x(u, v) =
(1, u, v, 0), e(0, 0) = (0, 0, 0, 1) and v0 = (tanh(θ0), 0, 0, 1). We write x = (x0, x1, x2, x3). For
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v = (v0, v1, v2, v3) ∈ S3(cosh(θ)−2) near v0, we can write v3 =
√

cosh−2(θ) + v20 − v21 − v22 . Then the

family Hs is a K-versal deformation of the D4-singularity of Hs
θ0

at (0, 0) if and only if

E2
〈
∂Hs

θ0

∂u
,
∂Hs

θ0

∂v
,Hs

θ0

〉
+ R.

{
∂Hs

∂v0
,
∂Hs

∂v1
,
∂Hs

∂v2
,
∂Hs

∂θ

}
= E2 (3)

where Hs
θ0

, ∂Hs/∂vi, i = 1, 2, 3, ∂Hs/∂θ are evaluated at (u, v, θ0,v0), and E2 denotes the ring of
germs of smooth functions at (0, 0).

The 2-jet of Hs
θ0

is identically zero and its 3-jet is a non-degenerate cubic (the singularity is of
type D4). Therefore, it is 3-K-determined. We can then work in the 3-jet space and show that all
degree 3 monomials in u and v are in the left hand side of (3). For degree ≤ 2 we proceed as follows.
We have

x(u, v) = (1, u, v, 0) +
1

2
(xuu(0, 0)u2 + 2xuv(0, 0)uv + 2xvv(0, 0)v2).

One can show that
xuu(0, 0) = (−E, 12Eu, Fv −

1
2Ev, tanh(θ0)E),

xuv(0, 0) = (−F, 12Ev,
1
2Gu, tanh(θ0)F ),

xvv(0, 0) = (−G,Fv − 1
2Gu,

1
2Gv, tanh(θ0)G).

We have ∂Hs/∂θ((u, v), (θ0,v0)) = cosh(θ0)−2, so the constant terms are in the left hand side of
(3) and we can work modulo these terms. We have

j2 ∂H
s

∂v0
((u, v), (θ0,v0))− 1 = j2(−x0(u, v) + tanh(θ)x3(u, v))− 1

= 1
2 (1 + tanh2(θ0))(Eu2 + 2Fuv +Gv2).

Also, by similar calculations to those in the proof of Theorem 3.4,

j2(Hs
θ0

)u(u, v) = 1
2

((Hs
θ0

)uuuu2 + 2(Hs
θ0

)uuvuv + (Hs
θ0

)uvvv2)

= 1
2

((− tanh(θ0)Eu + lu)u2 + 2(− tanh(θ0)Fu +mu)uv + (− tanh(θ0)Gu + nu)v2),

j2(Hs
θ0

)v(u, v) = 1
2

((Hs
θ0

)uuvu2 + 2(Hs
θ0

)uvvuv + (Hs
θ0

)vvvv2)

= 1
2

((− tanh(θ0)Ev + lv)u2 + 2(− tanh(θ0)Fv +mv)uv + (− tanh(θ0)Gv + nv)v2).

We put a multiple of the above three vectors in the following matrix form

u2 uv v2

2
1+tanh2(θ0)

j2 ∂H
s

∂v0
E 2F G

2j2(Hs
θ0

)u − tanh(θ0)Eu + lu 2(− tanh(θ0)Fu +mu) − tanh(θ0)Gu + nu
2j2(Hs

θ0
)v − tanh(θ0)Ev + lv 2(− tanh(θ0)Fv +mv) − tanh(θ0)Gv + nv

(4)

The determinant of the above matrix is not zero at a generic umbilic point. Therefore, u2, uv, , v2

are in the left hand side of (3). We can work now on the 1-jet level and obtain u, v using

j1
∂Hs

∂v1
((u, v), (θ0,v0)) = j1(x1(u, v)) = u and j1

∂Hs

∂v2
((u, v), (θ0,v0)) = j1x2(u, v) = v.

2

Remark 3.6 It follows from Theorem 3.5 that the de Sitter parabolic set can have singularities if
it is considered as a member of the θ-parabolic sets. This means that there is nothing special about
the de Sitter Gauss map E when considered as a member of the family Ns

θ .

Theorem 3.7 The curves κi = constant, i = 1, 2, undergo Morse transitions at a non-versal A3-
singularity of the height function (Figure 1, first two figures) and remain smooth at an A4-singularity.
At a D+

4 (resp. D−4 )-singularity (i.e., at an umbilic point) the generic configuration is as in the third
(resp. fourth) figure in Figure 1.
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Figure 1: The foliation κi = constant (i = 1 or 2) at a non-versal A3-singularity (first two figures).
The third (resp. fourth) figure is the generic configuration of the foliations κi = constant, i = 1, 2 at
a D+

4 (resp. D−4 )-singularity, continuous lines for κi and dashed for κj , j 6= i.

Proof The first two statements are a consequence of Theorem 3.5. At an umbilic point (u0, v0) with
tanh(θ0)ε = κ1 = κ2, the foliations κi = constant are given by tanh(α)2ε − 2He tanh(α)ε + Ke = 0
and tanh(α)ε = constant. The first equation determines a surface S in the (θ, u, v)-space which
has a cone singularity at q0 = (θ0, u0, v0). The projection π : S → U maps diffeomorphically each
connected component of S \ {q0} to U \ {(u0, v0)}. The foliations κi = constant are the images by
π of the traces of the planes θ = constant on S. The traces of these planes on one component on
S \ {q0} project to κ1 = constant and those on the other component project to κ2 = constant. The
plane θ = θ0 is generically not tangent to the cone, so we have two possible configurations for its trace
on the cone: it is either an isolated point (this is the case when the height function Hw

θ0
along Nw

θ0
(p)

has a D+
4 -singularity) or it is a pair of crossing curves (this is the case when the height function Hw

θ0

along Nw
θ0

(p) has a D−4 -singularity). As θ varies near θ0 we obtain generic cone sections. If the cone
sections are closed curves (resp. hyperbole), the configuration of their projections to the (u, v)-plane
is as in Figure 2, third (resp. fourth) figure. 2

We turn now the θw-asymptotic curves and their singularities (see Appendix for notation).

Theorem 3.8 For a generic surface M in H3
+(−1), the BDE (Awθ ) of the θw-asymptotic curves can

have singularities of codimension ≤ 1.
(1) The BDE (Awθ ) has a folded singularity (or worse) at p if and only if Hw

θ along Nw
θ (p) has an

A3-singularity (or worse) at p. The three types of the folded singularities of BDEs can occur in (Awθ )
(Figure 3).

(2) The BDE (Awθ ) has a folded saddle-node singularity at p for some θ = θ0 if and only if Hw
θ0

has an A4-singularity at p. The family (Awθ ), as θ varies near θ0, is generic if and only if the big
family Hw is a versal unfolding of the A4-singularity of Hw

θ0
(Figure 4, left).

(3) The BDE (Awθ ) can have a node-focus change at p for some θ = θ0. This is not detected by the
family Hw

θ . The family (Awθ ), as θ varies near θ0, is generic for generic surfaces in H3
+(−1) (Figure

4, right).
(4) The BDE (Awθ ) has a Morse Type 1 singularity at p for some θ = θ0 if and only if Hw

θ0
has

a non-versal A3-singularity at p. The family (Awθ ), as θ varies near θ0, is always a generic family
(Figure 5).

(5) At an umbilic point the BDE Awθ0 has a Morse Type 2 singularity with discriminant of type

A+
1 (Figure 6) or A−1 (Figure 7). The family (Awθ ) as θ varies near θ0 is a generic family if and only

if the family Hw is a versal unfolding of the D4-singularity of Hw
θ0

.

Proof The proofs here are also similar to those for surfaces in R3 ([2, 6]). For the case (5), the

124



condition for the family (Asθ) to be a generic family at an umbilic point is

aθ bθ cθ
au bu cu
av bv cv

6= 0,

where a, 2b, c are the coefficients of (Asθ) (see [6]). The above determinant is, up to a scalar multiple,
the determinant of the matrix (4) in the proof of Theorem 3.5. 2

3.2 Surfaces in H3
+(−1) viewed as surfaces in R4

1

In §3.1 we defined a θw-asymptotic direction u ∈ TpM by 〈(dNw
θ )p(u),u〉 = 0. This notion depends

on the shape operator −dNw
θ . For surfaces in R4, there is another notion of asymptotic directions

which is defined in terms of the contact of the surface with lines and hyperplanes ([4, 13]; see also
[12] for their definition in terms of the curvature ellipse). For this reason, these asymptotic directions
and their integral curves (the asymptotic curves) are affine properties of the surface, i.e., they do not
depend on the metric on R4 and can be defined in the same way on a surface in R4

1.
Let r : U ⊂ R2 → M ⊂ R4

1 be a local parametrisation of a spacelike or timelike surface M . We
have a well defined second fundamental form on M using the Levi-Civita connection on R4

1 (see for
example [16]). Let {e3, e4} be a frame in the normal plane NpM . Then the coefficient of this second
fundamental form are given by

ai = 〈ei, ruu〉, bi = 〈ei, ruv〉, ci = 〈ei, rvv〉, i = 3, 4.

Given any normal vector field µ, with coordinates (α, β) in the normal space NpM , the shape
operator Sµ : TpM → TpM along µ is represented, with respect to the basis {ru, rv}, by the matrix

Sµ =
1

EG− F 2

(
G −F
−F E

)(
αa3 + βa4 αb3 + βb4
αb3 + βb4 αc3 + βc4

)
.

We denote by

[Sµ] =

(
αa3 + βa4 αb3 + βb4
αb3 + βb4 αc3 + βc4

)
the symmetric matrix associated to Sµ (it completely determines Sµ). We call the eigenvectors of
Sµ (when they exist) the µ-principal directions and call their integral curves the µ-principal curves.
These are given by the binary differential equation∣∣∣∣∣∣

dv2 −dudv du2

E F G
αa3 + βa4 αb3 + βb4 αc3 + βc4

∣∣∣∣∣∣ = 0. (5)

Following [4], we say that a direction u ∈ TpM is asymptotic if the projection of M along u to a
transverse hyperplane has an A-singularity more degenerate than a cross-cap at p. It is not difficult
to show that the asymptotic curves on M ⊂ R4

1 are given by a BDE which has the same form as that
of a surface in R4, namely

(A) : (b3c4 − b4c3)dv2 + (a3c4 − a4c3)dudv + (a3b4 − a4b3)du2 = 0 (6)

where ai, bi, ci, i = 3, 4, are the coefficients of the second fundamental form at (u, v). This equation
can also be written in a determinant form∣∣∣∣∣∣

dv2 −dudv du2

a3 b3 c3
a4 b4 c4

∣∣∣∣∣∣ = 0. (7)
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We follow the notation for surfaces in R4 and label the discriminant of equation (6) by ∆. Points
where ∆ is singular (generically a Morse singularity A±1 ) are labelled inflection points. The generic
configurations of the asymptotic curves at inflection points are the same as those for surfaces in R4,
top figures in Figure 6 and Figure 7 (see [5, 7]).

Theorem 3.9 Let M be a spacelike or timelike surface contained in a pseudo-sphere in R4
1. Then

the µ-principal curves coincide for all normal vector fields µ on M and are precisely the asymptotic
curves of M when viewed as a surface in R4

1.

Proof Let x : U →M be a local parametrisation of M . Because the metric on M is not degenerate,
{x(u, v), e(u, v)} is a basis of the normal plane NpM at all points p = x(u, v). The coefficients of the
second fundamental form (with respect to {x, e}) are given by

a3 = 〈x,xuu〉 = −〈xu,xu〉 = −E,
b3 = 〈x,xuv〉 = −〈xu,xv〉 = −F,
c3 = 〈x,xvv〉 = −〈xv,xv〉 = −G,

a4 = 〈e,xuu〉 = l,
b4 = 〈e,xuv〉 = m,
c4 = 〈e,xvv〉 = n.

Let µ = αx + βe be a normal vector field to M (we assume that β 6= 0). Then the equation of the
µ-lines of principal curvature is given by∣∣∣∣∣∣

dv2 −dudv du2

E F G
−αE + βl −αF + βm −αG+ βn

∣∣∣∣∣∣ = 0 =

∣∣∣∣∣∣
dv2 −dudv du2

E F G
l m n

∣∣∣∣∣∣ .
The last determinant above is equation (7) of the asymptotic curves of M when viewed as a surface
in R4

1. 2

Remark 3.10 The proof of Theorem 3.9 is an alternative to that in [18] for surfaces in the Euclidean
4-space and for spacelike surfaces in the Minkowski 4-space [8].

We shall not distinguish between a general BDE (9) (see Appendix) and its non-zero multiples, so
at each point (u, v) ∈ U we can view the BDE as a quadratic form aβ2 + 2bβγ+ cγ2 = 0 (β = dv and
γ = du) and represent it by the point Q = (a : 2b : c) in the projective plane RP 2. In RP 2 there is a
conic Γ = {Q : b2 − ac = 0} of singular quadratic forms. These can be put in the form (a1β + b1γ)2.

The polar line Q̂ of a point Q (with respect to the conic Γ) is the line that contains all points O
such that Q and O are harmonic conjugate points with respect to the intersection points R1 and R2

of the conic Γ and a variable line through Q. Geometrically, if the polar line Q̂ meets Γ, then the
tangents to Γ at the points of intersection meet at Q.

The symmetric matrix [Sµ] associated to the shape operator Sµ can be represented by a point
Sµ = (αa3 + βa4 : αb3 + βb4 : αc3 + βc4) ∈ RP 2. Then these points trace at each point p ∈ M a

pencil in RP 2 (by varying α, β). This pencil is precisely the polar line Â of the asymptotic BDE (6),
[15, 21]. We also represent the metric Gdv2 + 2Fdudv + Edu2 by the point L = (G : F : E).

Corollary 3.11 Let M be a surface in H3
+(−1). The families of shape operators −dNw

θ , θ ∈ R, trace
the polar line of the de Sitter lines of principal curvature with the points L± and L removed. The
family −dNs

θ (resp. −dN t
θ) trace the part of the polar line corresponding to spacelike (resp. timelike)

shape operators. The hyperbolic shape operators L+ and L− form an obstruction for joining spacelike
and timelike shape operators.
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4 Timelike hypersurfaces in Sn1

Let M be a hypersurface in the de Sitter space Sn1 . If M is spacelike, then its normal plane in Rn+1
1

is timelike and we have similar results to those in §3 for a hypersurface in the hyperbolic space.
We deal here with the case when M is timelike. Then the normal plane NpM in Rn+1

1 is spacelike
for all p ∈ M . The vectors x(u) and e(u) form an orthonormal basis of NpM . Therefore, we can
parametrise the unit normal vectors in NpM by sin(α)x(u) + cos(α)e(u). However, the derivative of
the Gauss indicatrix x(u) is the identity map on Tx(u)M , so all points on M are umbilic points with
respect to this Gauss indicatrix. This is why we define the family of (spacelike) Gauss indicatrices by

Nα : U → Sn1 (cos(α)−2)
u 7→ tan(α)x(u) + e(u)

where α ∈ (−π/2, π/2) is the angle between Nα(u) and e(u). The family Nα does not contain the
normal vector x. We associate the same notions to −(dNα)p as those associated to −(dNw

θ )p in §3.
We have, for instance, the α-principal curvatures given by καi = − tan(α) + κi. The α-principal
directions do not depend on α.

We define the family of height functions

Hα U × Sn1 (cos(α)−2) → R
(u,v) 7→ 〈x(u),v〉 − tan(α)

We have similar results to those in §3 concerning the families Nα and Hα. In this section we deal
mainly with timelike surfaces in S3

1 and give only the results that are distinct from those in §3.1.

4.1 Surfaces in S3
1

Let x : U ⊂ R2 →M ⊂ S3
1 be a local parametrisation of M and let

lα = 〈−(dNα)p(xu),xu〉 = 〈Nα,xuu〉,
mα = 〈−(dNα)p(xu),xv〉 = 〈Nα,xuv〉,
nα = 〈−(dNα)p(xv),xv〉 = 〈Nα,xuv〉,

denote the coefficients of the α-second fundamental form at p = x(u, v) associated to the shape
operator −(dNα)p. We have

lα = − tan(α)E + l, mα = − tan(α)F +m, nα = − tan(α)G+ n,

where l,m, n denote the coefficients of second fundamental form associated to the de Sitter shape
operator −dE. We denote, as in §3.1, by Ke and He the de Sitter Gauss-Kronecker curvature and
the de Sitter mean curvature, respectively.

The (de Sitter) lines of principal curvature are given by the same equation as for the case of a
surface in H3

+(−1) (i.e., equation (1)). The difference here is that the induced metric on the surface
M is Lorentzian, so −dNα does not always have two real eigenvalues. For a generic surface, the
discriminant of the lines of principal curvature is a smooth curve except possibly at isolated points
where it has Morse singularities of type A−1 (node) ([10]). This discriminant is denoted by the LPL
in [10] (Lightlike Principal Locus) and consists of points where the two principal directions coincide
and become lightlike. The singular points of the LPL are labelled timelike umbilic points. In view of
Theorem 3.9, the LPL is precisely the ∆-set of M as a surface in R4

1.

Theorem 4.1 The α-parabolic set, α ∈ (−π/2, π/2), is given by

tan2(α)− 2He tan(α) +Ke = 0.

It consists of the curves κi = tan(α), i = 1, 2. Each of these curves foliate, as α varies in (−π/2, π/2),
the region of M where there are two principal directions.

127



Proof The proof is similar to that of Theorem 3.2. Here the de Sitter principal curvatures κ1 and
κ2 may be complex conjugate but Ke = κ1κ2 and He = (κ1 + κ2)/2 are always real numbers. 2

The α-asymptotic curves (which we define following §3.1) are given by

(Aα) : nαdv
2 + 2mαdudv + lαdu

2 = 0. (8)

The α-parabolic set is the discriminant of equation (8). Away from the LPL, the α-parabolic sets
behave as the θ-parabolic sets in §3.1 (we have similar results to those in Theorems 3.4, 3.5, 3.8). We
shall consider their behaviour at points on the LPL. We observe that the generic configurations of
the lines of principal curvature at points on the LPL are obtained in [10].

Theorem 4.2 Let M be a timelike surface in S3
1 and p a point on the LPL of M .

At most points on the LPL the height function Hα along the normal direction Nα has an A2-
singularity.

The singularity is of type A3 if and only if p is a folded singularity of the de Sitter lines of curvature
(and hence of all α-lines of curvature) and of an α-asymptotic curves.

The singularity is of type D4 if and only if p is a timelike umbilic point (i.e., a singularity of
the LPL) and tan(α) = κ1 = κ2. At such point, the de Sitter lines of curvature has a Morse Type
2 singularity with a discriminant having a singularity of type A−1 (Figure 7, top figures). The α-
asymptotic curves have a Morse Type 2 singularity with the discriminant of type A+

1 (Figure 6, top
figures) or A−1 (Figure 7, top figures).

Proof We take a special parametrisation of the surface where the coordinate curves coincide with
the lightlike curves, so E ≡ 0, F ≡ 0. The equation of the de Sitter lines of curvature becomes

ndv2 − ldu2 = 0,

and its discriminant (the LPL) is given by ln = 0. Suppose that p is a smooth point on the LPL,
and assume that l = 0 and n 6= 0. Then the de Sitter lines of curvature have (generically) a folded
singularity if and only if lu = 0.

At a singular point of the LPL (l = n = 0) both coefficients of the de Sitter lines of curvature
vanish. Thus, the de Sitter lines of curvature have generically a Morse Type 2 singularity with a
discriminant (ln = 0) having a singularity of type A−1 . The five generic configurations in Figure 7
(top figures) can occur.

The α-asymptotic curves are given by

ndv2 + 2(− tan(α)F +m)dudv + ldu2 = 0,

and the α-parabolic set (its discriminant) is given by (− tan(α)F + m)2 − ln = 0. With the same
setting as above, a smooth point x(u0, v0) on the α-parabolic set is also on the LPL if tan(α) =
(m/F )(u0, v0). Then the α-asymptotic curves, with tan(α) = (m/F )(u0, v0), have (generically) a
folded singularity if and only if lu = 0.

At a singular point of the LPL, all the coefficients of the α-asymptotic curves BDE, with tan(α) =
(m/F )(u0, v0), vanish. The discriminant can have either an A+

1 or an A−1 singularity, so the α-
asymptotic curves have generically a Morse Type 2 singularity with both discriminant types. All the
generic configurations of Morse Type 2 singularities can occur (Figures 6, 7, top figures).

The height function Hα(−,v) is singular at (u0, v0) if v = Nα(u0, v0). We write Hα for Hα(−,v).
We have at (u0, v0), (Hα)uu = l, (Hα)uv = − tan(α)F + m, and (Hα)vv = n, so on the LPL (and
with the setting above), (Hα)uu = 0 and the Hessian of Hα is degenerate if and only if (Hα)uv = 0,
that is, tan(α) = (m/F )(u0, v0). Calculations similar to those in the proof of Theorem 3.4 show that
the singularity is of type A2 if and only if (Hw

θ )uuu(u0, v0) = lu(u0, v0) 6= 0. When lu = 0, we get
generically an A3-singularity. At a timelike umbilic point l = n = 0, and with tan(α) = (m/F )(u0, v0),
the 2-jet of H vanishes, so the singularity is generically of type D4. 2
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Theorem 4.3 Let M be a timelike surface in S3
1 and p a point on the LPL of M .

(1) At most points on the LPL the foliations κi = constant, i = 1, 2 are as in Figure 2, top left.
The leaves of κ1 = constant join those of κ2 = constant on the LPL and form smooth curves which
have ordinary tangency with the LPL. At isolated points on the smooth part of the LPL the foliation
κi = constant, i = 1, 2 are as in Figure 2, top right. These points are generically distinct from the
folded singularities of the de Sitter lines of principal curvature.

(3) There are generically three configurations of the foliations κi = constant, i = 1, 2 at a timelike
umbilic point. These are as in Figure 2, bottom figures.

Figure 2: Generic configurations of the foliations κi = constant, i = 1, 2 at points on the LPL
(continuous lines for κi and dashed for κj , j 6= i).

Proof The α-parabolic sets, which give the foliations κi = constant, are given by tan(α)2 −
2He tan(α)+Ke = 0. In a local chart with E ≡ 0 and F ≡ 0, this becomes (− tan(α)F+m)2−ln = 0.
To simplify notation, we denote by

φ(u, v, λ) = (−λF +m)2 − ln,

where λ = tan(α). The surface φ−1(0) is smooth at (u, v, λ) if and only if p = x(u, v) is not a timelike
umbilic point. At a timelike umbilic point with λ = m/F , φ−1(0) is generically diffeomorphic to a
cone. The projection π : φ−1(0)→ U is a fold map at (u, v, λ) when p = x(u, v) ∈ LPL and is not a
timelike umbilic point. The discriminant of π is the LPL. We call criminant the critical set of π.

Suppose that p ∈ LPL is not a timelike umbilic point. The α-parabolic sets are the images
by π of the intersection of φ−1(0) with the planes λ = constant. These planes are transverse to
φ−1(0). Therefore their traces on φ−1(0) is a family of smooth curves. We have two possible generic
configurations of their projections to the (u, v)-plane (i.e., of the α-parabolic sets) depending on
whether the criminant is transverse to the plane λ = constant (Figure 2, top left) or tangent to it
(Figure 2, top right). A condition for tangency is φuλφv − φvλφu = 0 (the tangency is ordinary in
general) and is distinct from that for having a folded singularity of the de Sitter lines of curvature. The
criminant splits φ−1(0) locally into two components. The projections of the traces of λ = constant in
one component give the foliation κ1 = constant and those in the other component give the foliation
κ2 = constant.

We consider now the case when p = x(u0, v0) is a timelike umbilic point with λ0 = tan(α0) =
(m/F )(u0, v0). Then φ−1(0) is a cone at (u0, v0, λ0). The plane λ = λ0 is not tangent to the cone, so
we have two possible configurations for its trace on the cone: it is either an isolated point (this is the
case when the α-parabolic set has a singularity of type A+

1 ) or it is a pair of crossing curves (this is
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the case when the α-parabolic set has a singularity of type A−1 ). As λ varies near λ0 we obtain generic
cone sections. The LPL lifts to two smooth curves on φ−1(0). If the cone sections are closed curves,
we have one possible configuration for their projections to the (u, v)-plane (Figure 2, last bottom
figure). If the cone sections are hyperbole, then we have two possible configurations depending on the
position of the lift of the LPL with respect to the plane λ = λ0. If both components of the LPL in
a connected component of the cone with the singularity removed are on one side of the plane λ = λ0,
then the projections to the (u, v)-plane of the λ = constant sections are as in Figure 2, first figure of
the bottom row. Otherwise they are as in Figure 2, middle figure of the bottom row. If we take the
special parametrisation E ≡ 0, G ≡ 0, the last two types of configurations are distinguished by the
sign of

((mulv −mvlu)F − (Fulv − Fvlu)m) ((munv −mvnu)F − (Funv − Fvnu)m)

at (u0, v0), positive for the first case and negative for the second. 2

5 Appendix: singularities of BDEs

We give a brief summary of results concerning the singularities of quadratic Binary Differential
Equations (BDEs) and their bifurcations (see [20] for a survey article and references). A BDE is
given in the form

a(u, v)dv2 + 2b(u, v)dudv + c(u, v)du2 = 0, (9)

with (u, v) ∈ U ⊂ R2. It determines a pair of transverse foliations away from the discriminant curve,
which is the set of points where the function δ = b2−ac vanishes. The pair of foliations together with
the discriminant curve are called the configuration of the solutions of the BDE. In all the figures, we
draw one foliation in continuous line and the other in dashed line. The discriminant curve is drawn
in thick black.

We consider here topological equivalence among BDEs and say that two BDEs are topologically
equivalent if there is a local homeomorphism in the plane taking the configuration of one equation to
the configuration of the other. We suppose the point of interest to be the origin. There are two cases
to consider depending on whether all the coefficients of the BDE vanish or not at the origin.

When the coefficients do not all vanish at the origin, the stable configurations are as shown in
Figure 3. The last three figures are called folded saddle, folded node and folded focus in that order.
Folded singularities occur when the unique direction determined by the BDE on the discriminant is
tangent to the discriminant.

O

Figure 3: Stable configurations of BDEs: last three figures are the folded saddle, folded node and
folded focus respectively.

Codimension 1 singularities can occur in three ways: (i) a folded saddle and a folded node coming
together and disappearing (folded saddle-node singularity) on a smooth discriminant (Figure 4, left);
(ii) a change from a folded saddle to a folded node on a smooth discriminant (Figure 4, right);
(iii) the discriminant undergoes a Morse transition of type A+

1 or A−1 . For each type we have two
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Figure 4: Folded saddle-node bifurcations (left) and a folded node-focus change (right).

cases depending on whether two folded saddles or two folded foci appear in the bifurcations. These
singularities are label Morse Type 1 (Figure 5).

When the coefficients of the BDE all vanish at the origin, the singularities are automatically of
codimension ≥ 1. If the discriminant has a Morse singularity, then we label the singularities of the
BDE Morse Type 2 singularities. We have three generic configurations when the singularity of the
discriminant is of type A+

1 (Figure 6) and five (one case splits into two sub-cases when deformed)
when it is of type A−1 (Figure 7). In Figures 6 and 7 only one side of the transition is drawn the
other side is symmetrical.

Figure 5: Bifurcations at a Morse Type 1 singularity: A−1 left and A+
1 right.

1S 3S 2S+1N

Figure 6: Bifurcations at a Morse Type 2 singularity (A+
1 ).

131



1S 1N 3S 1S+2N 2S+1N
case a

2S+1N
case b

Figure 7: Bifurcations at a Morse Type 2 singularity (A−1 ).
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