
Journal of Singularities
Volume 1 (2010), 69-84

received 6 October 2009
in revised form 23 January 2010

DOI: 10.5427/jsing.2010.1e

SINGULARITIES OF PIECEWISE LINEAR SADDLE SPHERES

ON S3

GAIANE PANINA

Abstract. Segre’s theorem asserts the following: let a smooth closed simple
curve c ⊂ S2 have a non-empty intersection with any closed hemisphere. Then

c has at least 4 inflection points.
In the paper, we prove two Segre-type theorems. The first one is a version

of Segre’s theorem for piecewise linear closed curves on S2. Here we have

inflection edges instead of inflection points.
Next, we go one dimension higher: we replace S2 by S3. Instead of simple

curves, we treat immersed saddle surfaces which are homeomorphic to S2

(“saddle spheres”). We prove that a piecewise linear saddle sphere Γ ⊂ S3

necessarily has inflection or reflex faces. The latter replace inflection points
and should be considered as singular phenomena.

As an application, we prove that a piecewise linear saddle surface cannot
be altered in a neighborhood of its vertex maintaining its saddle property.

1. Introduction

Let us start with the following classical theorems.

Theorem 1.1. Segre’s theorem, see [12], [17].
Let a smooth closed simple (i.e., embedded) curve c ⊂ S2 have a non-empty

intersection with any closed hemisphere. Then c has at least four inflection points.
�

Here are its two famous corollaries:

Theorem 1.2. V. Arnold’s tennis ball theorem, see [3], [12].
Any smooth closed simple curve c ⊂ S2 bisecting the area of the sphere has at

least four inflection points. �

Theorem 1.3. Möbius theorem, see [12].
A smooth closed simple non-contractible curve c ⊂ RP 2 has at least three inflec-

tion points. �

Segre’s theorem has various applications, generalizations and refinements. In the
paper, we present one more Segre-type phenomenon. However, unlike the already
existent ones, it deals with closed saddle surfaces on S3 rather than closed curves.
This object is not chosen just by chance: the study of closed saddle surfaces was
originally motivated by A.D. Alexandrov’s problem (see ”Motivations” below).

Key words and phrases. Saddle surface, piecewise linear surface, inflection point, Segre’s
theorem.
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Definitions and the main result. By S3 ⊂ R4 we denote the unit sphere cen-
tered at the origin O. A plane on the sphere S3 is a plane in the sense of spherical
geometry, i.e., the intersection of S3 with a Euclidean hyperplane passing through
O.

Definition 1.4. A closed surface Γ immersed in S3 is called saddle if no (spherical)
plane intersects Γ locally at just one point.

Definition 1.5. A (spherical) polygon on the two-dimensional sphere S2 is a part
of S2 bounded by a piecewise geodesic closed simple curve.

An angle of a polygon is called convex (respectively, reflex) if it is smaller (re-
spectively, greater) than π.

A vertex of a polygon is called convex (respectively, reflex) if it is incident to a
convex (respectively, reflex) angle.

Definition 1.6. A piecewise linear saddle sphere (a PLS-sphere, for short) on S3

is an immersed piecewise linear saddle surface which is homeomorphic to S2.
To avoid degeneracies and non-interesting exceptions, we assume in addition

that all edges of a PLS-sphere are shorter than π, and that its vertex-edge graph
is 3-connected.

Besides, we assume that the dihedral angle at each edge does not equal π, so the
vertex-edge graph has no redundant edges.

Given an oriented PLS-sphere, we can speak of its convex and concave edges. In
the sequel, we paint all the convex (respectively, concave) edges red (respectively,
blue).

Definition 1.7. A PLS-sphere is called elementary Barner if there is a point p ∈ S3

such that each great semicircle with endpoints at p and at its antipode −p hits the
surface exactly once.

Equivalently, an elementary Barner PLS-sphere admits a bijective projection π
onto some equator S2 ⊂ S3, see Fig. 2.

Elementary Barner saddle spheres are of a particular interest because of a rela-
tionship to A.D. Alexandrov’s problem (see ”Motivations” below).

The interplay between PLS-spheres and smooth saddle spheres is not well un-
derstood yet. On the one hand, it seems plausible that a piecewise linear saddle
sphere can be approximated by a smooth saddle sphere and vice versa. On the
other hand, there is just one proven result (see [13]). It asserts that an elementary
Barner PLS-sphere with a trivalent vertex-edge graph has a C∞-smooth saddle
approximation.

By topological reasons, a smooth saddle sphere necessarily has flattening points.
In some sense, the below defined inflection and reflex faces play the role of flattening
phenomena of a piecewise linear saddle sphere.

Definition 1.8. • A face f of a PLS-sphere Γ is an inflection face if
(1) f is bounded by two convex broken lines (say, by L1 and L2) such that

the convexity directions look like in Fig. 1.
(NB. A polygon with such convexity properties does not exist in Eu-
clidean plane.)

(2) All the edges of L1 are convex, whereas all the edges of L2 are concave.
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Figure 1. A fragment of an inflection face. An inflection arch of
a smooth saddle surface

• A face f of a PLS-sphere Γ is called a reflex face if it contains a (two-
dimensional) hemisphere.

Inflection faces as well as reflex faces represent a kind of singularity of the surface
Γ: none of them fits in a hemisphere (see Lemma 5.1).

The main result of the paper describes singularities of a saddle sphere:

Theorem 1.9. (1) Each saddle sphere Γ ⊂ S3 belongs to one of the following
disjoint classes:
(a) Γ has at least two reflex faces.
(b) Γ has exactly one reflex face and at least two inflection faces.
(c) Γ has no reflex faces and at least 4 inflection faces.

(2) There are saddle spheres with
(a) exactly two reflex faces.
(b) exactly one reflex face and exactly two inflection faces.
(c) no reflex faces and any number of inflection faces greater than 4.

(3) There are no embedded PLS-spheres on S3 of type (1a).
(4) There are no embedded PLS-spheres on RP 3.
(5) There exist immersed PLS-spheres on RP 3.
(6) There are no elementary Barner PLS-spheres of types (1a) and (1b).
(7) There exist elementary Barner PLS-spheres of type (1c) with any number

of inflection faces greater than 4. Moreover, the set of elementary Barner
PLS-spheres with a fixed number of inflection faces is disconnected. �

Outline of the proof. Combinatorially, a PLS-sphere is a planar graph with
additional equipment: its edges are colored and some of the angles (the reflex ones)
are marked. This equipment necessarily has some properties which follow from the
discrete Segre’s theorem proven in Section 2.

This leads to a combinatorial notion of a saddle graph. Reflex and inflection faces
are easily encoded in the combinatorial language, and we prove their existence using
just combinatorics. Some similar phenomena are already discussed in [5] and [6];
our approach combines in a sense these ideas.

Motivations.
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• The proof of the Theorem 1.9 is based on and generalizes the Segre’s theo-
rem. Here is one more link to the Segre’s theorem: a surface Γ is saddle if
and only if its intersection with a small sphere centered at any of its vertices
satisfies the condition of the discrete Segre’s theorem.

• There exist embedded saddle tori on RP 3. V. Arnold [2] formulated some
conjectures about them (and about their higher dimensional versions).
Some of the conjectures proved to be wrong [11], in partial cases some
of them are true [7, 8], but two of them still stand open for RP 3. In partic-
ular, Arnold conjectured that the set of all smooth saddle tori embedded
in RP 3 is connected (compare with Theorem 1.9, (7)). This paper sheds
no light to Arnold’s conjecture, but it treats some similar objects.

• Smooth elementary Barner saddle spheres arose originally in a relationship
(see [10, 13]) to the following uniqueness conjecture proven for analytic
surfaces by A. D. Alexandrov in [1]:

Let K ⊂ R3 be a smooth convex body. If for a constant C, at every point
of ∂K, we have R1 ≤ C ≤ R2, then K is a ball. (R1 and R2 stand for the
principal curvature radii of ∂K).

Here is the link: let K be a counterexample to the conjecture. Denote by
hK its support function and denote by hC the support function of the ball
of radius C. The graph γ of the difference hK − hC is a conical surface in
R4 with the apex at the origin O. Its intersection with S3 is an elementary
Barner saddle sphere (see Fig. 2).

Vice versa, a smooth elementary Barner saddle sphere yields a cone in
R4 which can be interpreted as the graph of some positively homogeneous
function h. For a sufficiently large C, the sum h + hC is a convex func-
tion. Then it is a support function of some convex body K which is a
counterexample to the conjecture.

To summarize, each smooth elementary Barner saddle sphere yields a
counterexample to the conjecture. An observation was made that all sad-
dle spheres constructed in [10] and [13] have inflection arches. Later, the
existence of at least four inflection arches for elementary Barner saddle
spheres was proven in [14]. The above defined inflection faces represent a
piecewise linear counterpart of inflection arches.

• We were also motivated by the following toy problem:
Given a piecewise linear saddle surface in R3, is it possible to alter it

locally (i.e., in a neighborhood of a vertex), maintaining its saddle property?
In Section 5 we show that it is never possible.

A convention about figures. Fix a hyperplane H ⊂ R4 not passing through the
origin O. The projection from the origin pr : S3 → H maps bijectively some open
hemisphere onto H. Spherical planes and lines are mapped to Euclidean planes
and lines. Therefore, pr preserves convexity and saddle property. By this reason,
we will sometimes depict spherical objects as their images under pr and refer to the
convexity type of the image, as in Fig. 1, 3, 12.

Alternatively, if a spherical drawing does not fit in a hemisphere, it makes sense
to depict it schematically, as in Fig. 6, 14.
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p

Figure 2. Elementary Barner sphere

Figure 3. An inflection edge

2. Discrete Segre’s theorem

We consider piecewise linear simple closed curves c on the unit sphere S2. If an
edge of such a curve is shorter than π, it is called short. Otherwise, we call it long.

Definition 2.1. A closed simple (i.e., embedded) curve c ⊂ S2 is spanning if it
intersects each closed hemisphere.

A closed simple curve c is strongly spanning if it intersects each open hemisphere.

Definition 2.2. Let c ⊂ S2 be a piecewise linear simple closed curve. It splits S2

into two (spherical) polygons. After fixing one of them, it makes sense to speak of
convex and reflex angles of c.

An edge is called an inflection edge of c (see Fig. 3) if it is incident to both
convex and reflex angles.

Theorem 2.3. (Discrete Segre’s Theorem)

(1) A strongly spanning piecewise linear closed simple curve has at least 4 in-
flection edges.

(2) Let c ⊂ S2 be a spanning piecewise linear closed simple curve. We as-
sume that c has more than 2 vertices. Then one of the two (non-disjoint)
assertions hold:
(a) c has at least 4 inflection edges,
(b) c has a long edge (say, e) and at least 2 inflection edges among the

edges excluding e.
(3) Let c = (P1, ..., Pn) ⊂ S2 be a spanning piecewise linear closed simple curve

with vertices {P1, ..., Pn}. Assume that c has more than 2 vertices and at
least two long edges. Then for any two long edges PiPi+1 and PjPj+1, there
is at least one inflection edge among the edges lying between them (that is,
among the edges Pi+1Pi+2, Pi+2Pi+3, ..., Pj−1Pj).
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Proof. The idea of the proof is to approximate c by an appropriate smooth curve
c′ and to apply then Segre’s theorem. However, this needs some accuracy: if the
curve c is not strongly spanning, its smooth approximation c′ can be non-spanning.

(1) Suppose c is strongly spanning. Then it can be approximated by a smooth
curve c′ such that c′ has only isolated inflection points which are in a natural
bijection with inflection edges of c. It remains to observe that a sufficiently
close c′ is spanning, and to apply Segre’s theorem to the curve c′.

(2) Suppose c is spanning, but not strongly spanning. Then there exists a
closed hemisphere S+ containing c. Denote by b its boundary (b is a great
circle). We may assume that b ∩ c is a union of some geodesic segments
ei1 , ..., eim of non-zero length (see Fig. 4). Two cases should be treated
separately:
(a) Suppose all the edges ei1 , ..., eim are short.

Note first that each semicircle b+ ⊂ b intersects the curve c. Take a
smooth approximation c′ of the curve c such that c′ has only isolated
inflection points which are in a natural bijection with inflection edges
of c plus the following additional property: the curve c′ tangents each
of the segments ei1 , ..., eim , and each semicircle b+ contains at least one
tangent point (see Fig. 4). This is always possible by Caratheodory
theorem. This guarantees that c′ is spanning. It remains to apply
Segre’s theorem to the curve c′.

(b) Suppose one of the edges (say, e) is long. We may assume that |e| > π.
We approximate c by a smooth curve c′ such that c′ has only isolated
inflection points which are in a natural bijection with inflection edges
of c except for two extra inflection points lying on e (see Fig. 5). It
remains to apply Segre’s theorem to the curve c′.
We explore here the following phenomenon: suppose a (geodesic) seg-
ment in the plane is approximated by a smooth curve which tangents
the segment at the endpoints. Then by Möbius Theorem, the curve
has at least 2 inflection points (except for the endpoints). For a long
segment on the sphere, such a curve can have no inflection points.

(3) The curve c is strongly spanning and has therefore at least 4 inflection
edges.

Assume the contrary, i.e., that the chain Pi+1, Pi+2, ..., Pj contains no
inflection edges. The (non-closed) curve Pi+1, Pi+2, ..., Pj is contained in
the lune bounded by PiPi+1 and the extension of Pi+1Pi+2 (see Fig. 6).

Indeed, if not, i.e., if Pi+1, Pi+2, ..., Pj hits the extension of Pi+1Pi+2

(the dotted line) at a point A, then the curve c′′ depicted in Fig. 6, 2 has
at least two inflection edges. A contradiction.

Now prove the theorem. We replace the curve c by another curve c′ as is
depicted in Fig. 6, 1. By the above proven, c′ is simple. Since the curve c′

is strongly spanning, it has at least 4 inflection edges. A contradiction. �

3. Saddle graphs

By a graph we mean a tuple G = (V,E) where V is a (finite) set of vertices and
E is the set of edges (unordered pairs of different vertices).

For v ∈ V , denote by E(v) the set of edges incident to the vertex v.
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Figure 4. Smoothing of a curve without long edges

Figure 5. Smoothing of a non-strongly spanning curve with a
long edge

Let G = (V,E) be a 3-connected planar graph. All its embeddings in the sphere
S2 are known to have one and the same facial structure. Therefore, we have a
natural notion of a face of the graph and a cyclic ordering on the set E(V ). Besides,
we have a well-defined notion of angles:

Definition 3.1. An unordered pair of edges (e1, e2) is called an angle of G if the
edges e1 and e2 are consecutive edges of a face of the graph G. The set of all angles
we denote by A(G). The set of all angles incident to a vertex v we denote by A(v).

The next idea is to add the so called saddle structure to a graph G. Namely, we
paint convex edges red and we paint concave edges blue. Besides, we mark all the
reflex angles.

Till now, a graph G is just a combinatorial object, so in the below definition, the
combinatorial convexity and concavity have no geometrical meaning. The saddle
structure is defined axiomatically.

However, later we shall see that if a graph G together with a coloring on its
edges arise from some saddle sphere, then it satisfies the axioms from the below
definition.

Definition 3.2. Let G = (V,E) be a 3-connected planar graph.
Let Col : E → {red, blue} and Refl : A(G) → {0, 1} be some mappings.
Angles with Refl(a) = 1 we call (combinatorially) reflex angles.
We say that a triple (G,Col,Refl) is a graph equipped with a saddle structure

(a saddle graph, for short) if for any vertex v, we have the following (see Fig. 7):
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(1) ”No reflex angles condition” If Refl is identically 0 on A(v) (i.e.,
there are no reflex angles incident to v), then the number of changes of the
function Col when going around the vertex v is greater or equal than 4.

(2) ”Exactly one reflex angle condition” If there is exactly one reflex angle
at v, (say, Refl(ei, ej) = 1), then the function Col changes at least twice
when going around the vertex v from ei to ej .

(3) ”More than one reflex angle condition” If there are more than one
reflex angle at v, then we claim two things: (1) that the total number of
color changes when going around the vertex v is greater or equal than 4
and (2) that the color changes at least once when going from one edge of a
reflex angle to the edge of the next reflex angle.

Definition 3.3. For a face f of a saddle graph, we algorithmically define its index
i(f), see Fig. 8:

(1) At the beginning, put i(f) := 0. Start going along the boundary of the face
f .

(2) Once we pass by a vertex at which the color changes, put
i(f) := i(f) + 1.

(3) Once we pass by a vertex, if the color does not change and the angle we
are passing by is reflex, we keep i(f) unchanged.

(4) Once we pass by a vertex, if the color does not change and the angle we
are passing by is not reflex, put i(f) := i(f) + 2.
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Figure 8. A saddle graph and the values of i(f)

Definition 3.4. Let v be a vertex of a saddle graph. An edge e incident to v is
called superfluous with respect to the vertex v if its deletion maintains the properties
(1)–(3) of the Definition 3.2 at the vertex v.

We describe below some local graph transformations, the elementary splittings
of three types.

Definition 3.5. (1) For two neighbor edges of different colors, one of which is
superfluous, the local graph transformation depicted in Fig. 9 is called the
first elementary splitting.

Here are the formalities: if a blue edge av is superfluous with respect
to v and a red edge bv is neighbor to av at the vertex v, then the first
elementary splitting looks as follows:
(a) Remove from the graph the edges av and bv
(b) Add a new vertex d, red edges bd and dv, and a blue edge ad
(c) Mark the angle bdv as reflex.

(2) Suppose that a vertex v has no adjacent reflex angles and exactly 4 incident
edges. The local graph transformation depicted in Fig. 10, 1 is called the
second elementary splitting.
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Figure 9. Two elementary splittings of the first type. For the
first example, the index i is maintained. For one face of the second
example, it increases on 2.

More precisely, let a, b, c, and d be vertices adjacent to v. Assume that
the edges av and cv are red. We do the following:
(a) Remove from the graph the edges cv and bv
(b) Add a new vertex e, red edges ve and ce, and a blue edge be
(c) Mark the angles ave and vec as reflex.

Definition 3.6. Suppose a vertex v is incident to more than one reflex angles. The
following procedure describes the splitting which takes reflex angles apart.

(1) Choose two edges e and e′ of one and the same color (say, red) incident to
the vertex v such that the edges e and e′ are separated by reflex angles, see
Fig. 11.

(2) Split the vertex v into two vertices, split also the two edges e and e′ and
add one more edge of the other color (here it is blue) as is shown in Fig.
11. This local graph transformation is called the third elementary splitting.

More precisely, let av and bv be the edges e and e′. Assume that they
are red. We do the following:
(a) The set of all the edges incident to the vertex v (except for the edges

e and e′) is divided by the broken line avb into two parts E1 and E2.
(b) Add a new vertex v′, red edges av′ and bv′, and a blue edge vv′

(c) Each edge xv from E2 replace by the new edge xv′.

An easy check proves that:
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Figure 10. Second elementary splitting. All the indices are maintained.
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Figure 11. Third elementary splitting adds two faces with i =
4. All the other indices are maintained.

Lemma 3.7. (1) An elementary splitting of a saddle graph yields a saddle
graph.

(2) For any first or second elementary splitting, the faces of the new graph are
in a natural bijection with the faces of the original graph.

(3) A third elementary splitting adds two faces with i = 4.
(4) The index i of a face does not decrease after any elementary splitting. �

Lemma 3.8. Each saddle graph is reducible to a trivalent saddle graph via a chain
of elementary splittings.

Proof. Third elementary splittings enable us to get a graph with at most one
reflex angle at each vertex. Next, we treat all the vertices one by one. After fixing
a vertex v, we first get rid of all superfluous edges incident to v. We arrive at one
of the two possible cases depicted in Fig. 10. In the second case, we are done. In
the first case it remains to apply the second splitting. �

The following theorem is a combinatorial version of Theorem 1.9, (1).

Theorem 3.9. For each saddle graph, one of the following statements is valid:

(1) The graph has at least two faces with i(f) = 0.
(2) The graph has one face with i(f) = 0 and at least 2 faces with i(f) = 2.
(3) The graph has no faces with i(f) = 0 and at least 4 faces with i(f) = 2.

Proof. Due to Lemma 3.8 and Lemma 3.7, we may assume that the graph
is trivalent. At each of its vertex it looks like the graph in Fig. 10, 2 (up to
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color reverting). Count the total sum Σ of indices i(f) for all the faces f . The
contribution of each vertex equals 2, therefore we have Σ = 2 | V | . The Euler
formula for trivalent graphs 2 | F |=| V | +4 implies that Σ = 4 | F | −8. Since the
index i(f) is always positive and even, we are done. (Here | F | and | V | denote
the number of faces and vertices respectively.) �

Proof of Theorem 1.9, (1)

We associate a saddle graph SG(Γ) to a saddle sphere Γ:

(1) Set the graph G equal the vertex-edge graph of the surface Γ.
(2) Fix an orientation of Γ. Now it makes sense to speak of convex and concave

edges. For an edge e, set

Col(e) =

{
red, if e is convex;
blue, otherwise.

(3) For an angle a, set

Refl(a) =

{
1, a is a reflex angle on Γ;
0, otherwise.

For a saddle sphere, SG(Γ) is a saddle graph. Indeed, the properties from
Definition 3.2 follow from the discrete Segre’s theorem. Given a vertex v of the
surface Γ, take its Euclidean image and a small sphere Sv centered at the point v.
The intersection Γ∩Sv is a piecewise linear simple spanning curve with more than
two vertices.

Next, we apply Theorem 3.9 to the saddle graph SG(Γ). To conclude the proof,
it remains to understand the geometrical meaning of the index i(f).

Lemma 3.10. For a a face f of a saddle sphere Γ, we have:

(1) i(f) = 0 implies that f is a reflex face.
(2) i(f) = 2 implies that f is either a reflex face or an inflection face.

Proof. (1). i(f) = 0 implies that the complement of f is a (spherical) polygon
with convex angles. Such polygons are known to lie in an open hemisphere.

(2). If i(f) = 2, three cases are possible:

(1) The face f has no convex angles. Then its complement lies in an open
hemisphere.

(2) The face f has exactly one convex angle. This means that the boundary
of f has exactly 2 inflection edges (the ones adjacent to the only convex
vertex). By Segre’s Theorem, the boundary of f is not a strongly spanning
curve, and therefore, fits in an closed hemisphere.

(3) The face f has two convex angles. This implies that the boundary of f has
both blue and red edges and the color changes at the convex vertices. This
means by definition that f is an inflection face.

�

4. Proof of Theorem 1.9, (2-7)

(2,a). Here is the construction of a saddle sphere with two reflex faces (see Fig.
12): take two (spherical) planes an join them by a polytopal tube.
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Figure 12. A saddle sphere with two reflex faces

Figure 13. Saddle sphere with one reflex face and two inflection
faces. The shadowed tiles correspond to inflection faces

(2,b). The construction of a saddle sphere with just one reflex face and two in-
flection faces is based on Maxwell-Cremona theorem and Laman theory for planar
graphs embedded in S2 (see details in [4] and [16]).

Figure 13 depicts a tiling of the sphere S2 generated by an embedded graph.
The graph is a rigidity circuit, therefore it has a 3D lifting, that is, there exists a
piecewise linear surface Γ embedded in S3 whose bijective projection π (see Fig. 2)
onto S2 yields this tiling. All the vertices of Γ (except for a single one) have an
incident reflex angle. Therefore, the surface Γ is saddle everywhere except for just
one vertex (marked red in Fig. 13). Next, we truncate Γ at the convex vertex and
patch a reflex face. The result is the desired surface.

(2,c). An example of an elementary Barner sphere with any number of inflection
faces greater than 4 was constructed in [9].

(3). A saddle sphere with two reflex faces is never embedded since the reflex faces
necessarily have an intersection.
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(4). Suppose the contrary: there exists an embedded PLS-sphere Γ ⊂ RP 3. Con-
sider the standard covering φ : S3 → RP 3. The preimage of Γ is a union of two
embedded saddle spheres on S3. Each of them has either an inflection face or a
reflex face f . But φ is not injective on f .

(5). The mapping φ maps an immersed saddle sphere to an immersed saddle
sphere.

(6). Projections of two reflex faces (or a reflex face and an inflection face) on
any (spherical) plane necessarily have an intersection. This is because each such
projection necessarily contains a lune, see Lemma 5.1.

(7). The existence of an elementary Barner saddle sphere with any number of
inflection faces greater than 3 was proven in [9]. The set of all elementary Barner
saddle spheres with exactly 4 inflection faces is disconnected. This was proven in
[14].

Furthermore, paper [15] gives a combinatorial classification of elementary Barner
saddle sphere with any number of inflection faces greater than 3. Each elementary
Barner saddle sphere Γ ⊂ S3 generates an arrangement of (at least four) non-
crossing oriented great semicircles on S2. Namely, take the bijective projection of Γ
onto some equator S2 (it exists by definition). The projection of each inflection face
(see Lemma 5.1) contains a great semicircle which carries an orientation generated
by red-blue sides of the projection. If we take one oriented great semicircle for each
inflection face, we get an arrangement of non-crossing oriented great semicircles on
S2. In the paper [15] the converse is proven: each spanning arrangement of non-
crossing oriented great semicircles is generated by an elementary Barner saddle
sphere. Since there exist non-isotopic arrangements with one and the same number
of great semicircles, the theorem is proven.

In particular, this means the diversity of saddle spheres on S3. �

5. An application to saddle surfaces in Euclidean space

Lemma 5.1. (1) Two inflection faces of an elementary Barner saddle sphere
cannot have a common convex vertex.

(2) For an inflection face f , let s1 and s2 be linear segments lying on L1 and
L2 respectively (we use notation of Definition 1.8). Then the lune bounded
by extended s1 and s2 lies in f .

(3) An inflection face contains a geodesic arc (a great semicircle) joining two
antipodal points of S3.

Proof. (1). Indeed, in this case, projections of the faces to any spherical plane
have a nonempty intersection. (2) follows from convexity properties of L1 and L2

and implies (3). �

Consider a piecewise linear saddle surface M in R3 with the only vertex O (i.e.,
M is a conical surface, as in Fig. 15). Assume in addition that M can be bijectively
projected onto some plane E. A natural question which arose in attempts to develop
a saddle approximation technique was the following:

Can we alter M locally, maintaining its saddle properties?
The answer is ”No”:
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Proposition 5.2. In the above notation, suppose that for a piecewise linear saddle
surface M ′ ∈ R3 the following is true:

• M ′ coincides with M outside a ball centered at O;
• M ′ can be bijectively projected onto the plane E.

Then M = M ′.

Proof. Assume thatM ′ ̸= M . We raise the surfaceM ′ to the sphere S3. Namely,
we take the preimage pr−1(M ′) under the central projection pr : S3 → R3. The
closure of the preimage is some elementary Barner saddle sphereM ′

sph. By Theorem

1.9, surface M ′
sph necessarily has 4 inflection faces. The only candidates are those

coming from unbounded faces of M ′. But each two of them have an intersection,
which is impossible. �
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Acad. Sci., Paris, Ser.1, 332, No. 1 (2001), pp. 41-44.
[11] S. Orevkov, A la recherche de la topologie projective. Du cote de chez Arnold, Talk on the

International Conference ”Arnold-70”, Moscow, August 2007, pp. 20-25,.
[12] V. Ovsienko, S. Tabachnikov, Projective differential geometry old and new. From the

Schwarzian derivative to the cohomology of diffeomorphism groups, Cambridge Tracts in
Mathematics 165. Cambridge: Cambridge University Press (2005).

[13] G. Panina, New counterexamples to A.D. Alexandrov’s uniqueness hypothesis, Advances in
Geometry, 5, No. 2 (2005), pp. 301-317. DOI: 10.1515/advg.2005.5.2.301

[14] G. Panina, On non-isotopic saddle surfaces, European J. of Combinatorics, in press.
http://www.esi.ac.at/Preprint-shadows/esi1796.html

[15] G. Panina, On combinatorics of inflexion arches of saddle spheres, J. for Geometry and
Graphics, 13, No. 1 (2009), pp. 59-73.

[16] G. Panina , Pointed spherical tilings and hyperbolic polytopes, to appear in Zap. Nauchn.

Sem. POMI.
[17] B. Segre, Alcune proprieta differenziali in grande delle curve chiuse sghembe, (Italian), Rend.

Mat. 6 Ser. 1 (1968), pp. 237-297.
[18] Some 3D illustrations are available at

http://club.pdmi.ras.ru/∼panina/hyperbolicpolytopes.html

Gaiane Panina, Institute for Informatics and Automation, St.Petersburg

http://dx.doi.org/10.1016/j.comgeo.2004.07.003
http://dx.doi.org/10.1515/advg.2005.5.2.301

	1. Introduction
	Definitions and the main result
	Outline of the proof
	Motivations
	A convention about figures

	2. Discrete Segre's theorem
	3. Saddle graphs
	Proof of Theorem 1.9, (1)
	4. Proof of Theorem 1.9, (2-7)
	(2,a)
	(2,b)
	(2,c)
	(3)
	(4)
	(5)
	(6)
	(7)

	5. An application to saddle surfaces in Euclidean space
	References

