FAST LOOPS ON SEMI-WEIGHTED HOMOGENEOUS HYPERSURFACE SINGULARITIES

ALEXANDRE FERNANDES

ABSTRACT. We show the existence of essential fast loops on semi-weighted homogeneous hypersurface singularities with weights $w_1 \ge w_2 > w_3$. In particular we show that semi-weighted homogeneous hypersurface singularities are metrically conical only if their two lowest weights are equal.

1. INTRODUCTION

Let $X \subset \mathbb{R}^n$ be a subanalytic set with a singularity at x. It is well-known for small real numbers $\epsilon > 0$ that there exists a homeomorphism from the Euclidean ball $B(x,\epsilon)$ to itself which maps $X \cap B(x,\epsilon)$ onto the straight cone over $X \cap S(x,\epsilon)$ with vertex at x. The homeomorphism h is called a *topologically conical structure* of X at x and, since John Milnor proved the existence of topologically conical structure for algebraic complex hypersurfaces with an isolated singularity [9], some authors say ϵ is a *Milnor radius* of X at x. Some developments of the Lipschitz geometry of complex algebraic singularities come from the following question: given an algebraic subset $X \subset \mathbb{C}^n$ with an isolated singularity at x, is there $\epsilon > 0$ such that $X \cap B(x,\epsilon)$ is bi-Lipschitz homeomorphic to the cone over $X \cap S(x,\epsilon)$ with vertex at x? When we have a positive answer for this question we say that (X, x)is metrically conical. Some motivations for this question were given in [3], [6] and, in the same papers, the above question was answered negatively. The strategy used in [6] to show that some examples of complex weighted homogeneous surface singularities (X, x) are not metrically conical was to exhibit nontrivial loops on $X \cap S(x, \epsilon)$ which the diameter goes to 0 faster than linearly as $\epsilon \to 0$. In this paper we analyze semi-weighted homogeneous hypersurface singularities under the same

¹⁹⁹¹ Mathematics Subject Classification. 14B05,14J17,32S25.

Key words and phrases. bi-Lipschitz, Complex Singularity.

This paper was written during my postdoctoral stage at Universidade de São Paulo and this research was partially supported by CNPq grant N 150578/2009-1.

point of view above and, in particular, we show that semi-weighted homogeneous hypersurface singularities are metrically conical only if its two lowest weights are equal.

I would like to thank the anonymous referee for useful suggestions.

2. Preliminaries

2.1. Inner metric. Given an arc $\gamma: [0,1] \to \mathbb{R}^n$, we remember that the *length of* γ is defined by

$$l(\gamma) = \inf \{ \sum_{i=1}^{m} |\gamma(t_i) - \gamma(t_{i-1})| : 0 = t_0 < t_1 < \dots < t_{m-1} < t_m = 1 \}.$$

Let $X \subset \mathbb{R}^n$ be a subanalytic connected subset. It is well-know that the function

$$d_X \colon X \times X \to [0, +\infty)$$

defined by

$$d_X(x,y) = \inf\{l(\gamma) : \gamma : [0,1] \to X; \ \gamma(0) = x, \ \gamma(1) = y\}$$

is a metric on X, so-called *inner metric* on X.

Theorem 2.1 (Pancake Decomposition [8]). Let $X \subset \mathbb{R}^n$ be a subanalytic connected subset. Then, there exist $\lambda > 0$ and X_1, \ldots, X_m subanalytic subsets such that:

a.
$$X = \bigcup_{i=1}^{m} X_i$$
,
b. $d_X(x,y) \le \lambda |x-y|$ for any $x, y \in X_i$, $i = 1, \dots, m$.

2.2. Horn exponents. Let $\beta \geq 1$ be a rational number. The germ of

$$H_{\beta} = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^{\beta}, z \ge 0 \}$$

at $0 \in \mathbb{R}^3$ is called a β -horn.

By results of [1], we know that a β_1 -horn is bi-Lipschitz equivalent, with respect to the inner metric, to a β_2 -horn if, and only if $\beta_1 = \beta_2$. Let $\Omega \subset \mathbb{R}^n$ be a 2dimensional subanalytic set. Let $x_0 \in \Omega$ be a point such that Ω is a topological 2-dimensional manifold without boundary near x_0 .

Theorem 2.2. [1] There exists a unique rational number $\beta \ge 1$ such that the germ of Ω at x_0 is bi-Lipschitz equivalent, with respect to the inner metric, to a β -horn.

The number β is called the horn exponent of Ω at x_0 . We use the notation $\beta(\Omega, x_0)$. By Theorem 2.2, $\beta(\Omega, x_0)$ is a complete intrinsic bi-Lipschitz invariant of germs of subanalytic sets which are topological 2-dimensional manifold without boundary. In the following, we show a way to compute horn exponents.

According to [2], $\beta(\Omega, x_0) + 1$ is the volume growth number of Ω at x_0 , i. e.

$$\beta(\Omega, x_0) + 1 = \lim_{r \to 0+} \frac{\log \mathcal{H}^2[\Omega \cap B(x_0, r)]}{\log r}$$

where \mathcal{H}^2 denotes the 2-dimensional Hausdorff measure with respect to Euclidean metric on \mathbb{R}^n .

2.3. Order of contact of arcs. Let $\gamma_1: [0, \epsilon) \to \Omega$ and $\gamma_2: [0, \epsilon) \to \Omega$ be two continuous semianalytic arcs with $\gamma_1(0) = \gamma_2(0) = x_0$ and not identically equal to x_0 . We suppose that the arcs are parameterized in the following way:

$$\|\gamma_i(t) - x_0\| = t, \ i = 1, 2.$$

Let $\rho(t)$ be a function defined as follows: $\rho(t) = \|\gamma_1(t) - \gamma_2(t)\|$. Since ρ is a subanalytic function there exist numbers $\lambda \in \mathbb{Q}$ and $a \in \mathbb{R}$, $a \neq 0$, such that

$$\rho(t) = at^{\lambda} + o(t^{\lambda}).$$

The number λ is called an order of contact of γ_1 and γ_2 . We use the notation $\lambda(\gamma_1, \gamma_2)$ (see [4]).

Let K be the field of germs of subanalytic functions $f: (0, \epsilon) \to \mathbb{R}$. Let $\nu: K \to \mathbb{R}$ be a canonical valuation on K. Namely, if $f(t) = \alpha t^{\beta} + o(t^{\beta})$ with $\alpha \neq 0$ we put $ord_t(f(t)) = \beta$.

Lemma 2.3. Let γ_1, γ_2 be a pair of semianalytic continuous arcs such that $\gamma_1(0) = \gamma_2(0) = x_0$ and $\gamma_i \neq x_0$ (i = 1, 2). Let $\tilde{\gamma_1}(\tau)$ and $\tilde{\gamma_2}(\tau)$ be semianalytic parameterizations of γ_1 and γ_2 such that $\|\tilde{\gamma_i}(\tau) - x_0\| = \tau + o_i(\tau)$, i = 1, 2. Then $ord_{\tau} \|\tilde{\gamma_1}(\tau) - \tilde{\gamma_2}(\tau)\| \leq \lambda(\gamma_1, \gamma_2)$.

The following result is an alternative way to compute horn exponents of germs of subanalytic sets which are topological 2-dimensional manifold without boundary.

Theorem 2.4. Let $\Omega \subset \mathbb{R}^n$ be a 2-dimensional subanalytic set. Let $x_0 \in \Omega$ be a point such that Ω is a topological 2-dimensional manifold without boundary near x_0 . Then $\beta(\Omega, x_0) = \min\{\lambda(\gamma_1, \gamma_2) : \gamma_1, \gamma_2 \text{ are semianalytic arcs on } \Omega \text{ with } \gamma_1(0) = \gamma_2(0) = x_0\}.$

Lemma 2.3 and Theorem 2.4 were proved in [5].

3. Fast loops

Let $X \subset \mathbb{R}^n$ be a subanalytic set with a singularity at x. Let $\epsilon > 0$ be a Milnor radius of X at x and let us denote by X^* the set $X \cap B(x, \epsilon) \setminus \{x\}$. Given a positive real number α , a continuous map $\gamma \colon S^1 \to X^*$ is called an α -fast loop if there exists a homotopy $H \colon S^1 \times [0, 1] \to X \cap B(x, \epsilon)$ such that

 $\begin{array}{ll} (1) \ H(\theta,0) = x \ \text{and} \ H(\theta,1) = \gamma(\theta), \ \forall \ \theta \in S^1, \\ (2) \ \lim_{r \to 0^+} \frac{1}{r^a} \mathcal{H}^2(Im(H) \cap B(x,r)) = 0 \ \text{for each} \ 0 < a < \alpha, \end{array}$

where Im(H) denotes the image of H.

Given a subanalytic set X and a singular point $x \in X$, according to [2], there exists a positive number c such that any α -fast loop $\gamma \colon S^1 \to X^*$ with $\alpha > c$ is necessarily homotopically trivial. Such a number c is called *distinguished for* (X, x). We define the v invariant in the following way:

 $v(X, x) = \inf\{c : c \text{ is distinguished for } (X, x)\}.$

The number v(X, x) defined above is inspired by the first characteristic exponent for the local metric homology presented in [2].

Example 3.1. Let $K \subset \mathbb{R}^n$ be a straight cone over a Nash submanifold $N \subset \mathbb{R}^n$, with vertex at p. Then every loop $\gamma \colon S^1 \to K^*$ is a 2-fast loop. Moreover, if $\alpha > 2$, then each α -fast loop $\gamma \colon S^1 \to K^*$ is homotopically trivial. We can sum up it saying v(K,p) = 2.

Proposition 3.2. Let (X, x) and (Y, y) be subanalytic germs. If there exists a germ of a bi-Lipschitz homeomorphism, with respect to inner metric, between (X, x) and (Y, y), then v(X, x) = v(Y, y). Proof. Let $f: (X, x) \to (Y, y)$ be a bi-Lipschitz homeomorphism, with respect to the inner metric. Given $A \subset X$, let us denote $\tilde{A} = f(A)$. In this case, $A = f^{-1}(\tilde{A})$, where f^{-1} denotes the inverse map of $f: (X, x) \to (Y, y)$.

Claim. There are positive constants $k_1, k_2, \lambda_1, \lambda_2$ such that

$$\frac{1}{k_1}\mathcal{H}^2(\tilde{A}\cap B(y,\frac{r}{\lambda_2})) \le \mathcal{H}^2(A\cap B(x,r)) \le k_2\mathcal{H}^2(\tilde{A}\cap B(y,\lambda_1r)).$$

In fact, using Pancake Decomposition Theorem (see Subsection 2.1) and using that f and f^{-1} are Lipschitz maps, we obtain positive constants λ_1, λ_2 such that

$$f(A \cap B(x,r)) \subset (\tilde{A} \cap B(y\lambda_1 r)) \text{ and } f(\tilde{A} \cap B(y,r)) \subset (A \cap B(x\lambda_2 r))$$

and we also obtain positive constants k_1, k_2 such that

$$\mathcal{H}^2(f(A \cap B(x,r))) \le k_1 \mathcal{H}^2(A \cap B(x,r)) \text{ and } \mathcal{H}^2(f^{-1}(\tilde{A} \cap B(y,r))) \le k_2 \mathcal{H}^2(\tilde{A} \cap B(y,r)).$$

Our claim follows from these two inequalities and the two inclusions above.

Now, we use this claim to show that given $\alpha > 0$, a loop $\gamma \colon S^1 \to X \setminus \{x\}$ is an α -fast loop if, and only if, $f \circ \gamma \colon S^1 \to Y \setminus \{y\}$ is an α -fast loop. In fact, let $\gamma \colon S^1 \to X \setminus \{x\}$ be a loop and $H \colon S^1 \times [0,1] \to X$ a homotopy such that $H(\theta, 0) = x$ and $H(\theta, 1) = \gamma(\theta), \forall \theta \in S^1$. Thus, $f \circ \gamma \colon S^1 \to Y \setminus \{y\}$ is a loop and $f \circ H \colon S^1 \times [0,1] \to Y$ is a homotopy such that $f \circ H(\theta, 0) = x$ and $f \circ H(\theta, 1) = f \circ \gamma(\theta), \forall \theta \in S^1$. Let us denote A = Im(H) and $\tilde{A} = Im(f \circ H)$, i. e., $\tilde{A} = f(A)$. Given $0 < a < \alpha$, by the above claim, we have that

$$\lim_{r \to 0^+} \frac{1}{r^a} \mathcal{H}^2(A \cap B(x, r)) = 0$$

if, and only if,

$$\lim_{r \to 0^+} \frac{1}{r^a} \mathcal{H}^2(\tilde{A} \cap B(y, r)) = 0.$$

In other words, it was shown that $\gamma \colon S^1 \to X \setminus \{x\}$ is an α -fast loop if, and only if, $f \circ \gamma \colon S^1 \to Y \setminus \{y\}$ is an α -fast loop, hence v(X, x) = v(Y, y). \Box

Corollary 3.3. Let $X \subset \mathbb{R}^n$ be a subanalytic set and $x \in X$ an isolated singular point. If v(X, x) > 2, then (X, x) is not metrically conical.

Proof. Let N be the intersection $X \cap S(x, \epsilon)$ where $\epsilon > 0$ is chosen sufficiently small. Since x is an isolated singular point of X, we have $N \subset \mathbb{R}^n$ is a Nash submanifold. If (X, x) is metrically conical, $X \cap B(x, \epsilon)$ must be bi-Lipschitz homeomorphic (with

respect to the inner metric) to the straight cone over N with vertex at x. Thus, it follows from Proposition 3.2 that v(X, x) = 2.

4. Semi-weighted homogeneous hypersurface singularities

Remind that a polynomial function $f: \mathbb{C}^3 \to \mathbb{C}$ is called *semi-weighted homo*geneous of degree $d \in \mathbb{N}$ with respect to the weights $w_1, w_2, w_3 \in \mathbb{N}$ if f can be presented in the following form: $f = h + \theta$ where h is a weighted homogeneous polynomial of degree d with respect to the weights w_1, w_2, w_3 , the origin is an isolated singularity of h and θ contains only monomials $x_1^{m_1} x_2^{m_2} x_3^{m_3}$ such that $w_1 m_1 + w_2 m_2 + w_3 m_3 > d$.

An algebraic surface $S \subset \mathbb{C}^3$ is called *semi-weighted homogeneous* if there exists a semi-weighted homogeneous polynomial $f = h + \theta$ such that

$$S = \{ (x_1, x_2, x_3) \in \mathbb{C}^3 : f(x_1, x_2, x_3) = 0 \}.$$

The set

$$S_0 = \{ (x_1, x_2, x_3) \in \mathbb{C}^3 : f(x_1, x_2, x_3) = 0 \}$$

is called a *weighted approximation* of S.

Theorem 4.1. Let $S \subset \mathbb{C}^3$ be a semi-weighted homogeneous algebraic surface with an isolated singularity at origin $0 \in \mathbb{C}^3$. If the weights of S satisfy $w_1 \ge w_2 > w_3$, then v(S,0) > 2. In particular, (S,0) is not metrically conical.

Proof. Let $S \subset \mathbb{C}^3$ be defined by the semi-weighted polynomial $f = h + \theta$ of degree d and let S_0 be the following weighted homogeneous approximation of S:

$$S_0 = \{(x_1, x_2, x_3) \in \mathbb{C}^3 : h(x_1, x_2, x_3) = 0\}.$$

Let us consider a family of functions defined as follows:

$$F(X, u) = h(X) + u\theta(X),$$

where $u \in [0, 1]$, $X = (x_1, x_2, x_3)$. Let V(X, u) be the vector field defined by:

$$V(X,u) = -\sum_{i=1}^{3} \frac{Q_i(X,u)}{P(X,u)} \frac{\partial}{\partial x_i} + \frac{\partial}{\partial u}$$

where

$$P(X,u) = \sum_{i=1}^{3} \left| \frac{\partial F}{\partial x_i}(X,u) \right|^{2\alpha_i} \text{ and } Q_i(X,u) = \theta(X) \left| \frac{\partial F}{\partial x_i}(X,u) \right|^{2\alpha_i - 2} \overline{\frac{\partial F}{\partial x_i}}(X,u)$$

FAST LOOPS ON SEMI-WEIGHTED HOMOGENEOUS HYPERSURFACE SINGULARITIES 91

and $\alpha_i = \frac{(d-w_1)(d-w_2)(d-w_3)}{d-w_i}, i = 1, 2, 3.$

It was shown, by L. Fukui and L. Paunescu (see [7] p. 445), that the flow of this vector field gives a modified analytic trivialization [7] of the family $F^{-1}(0)$. In particular, we obtain a homeomorphism $\Phi: (S_0, 0) \to (S, 0)$ which defines a correspondence of subanalytic continuous arcs. Moreover, Φ satisfies the following equation

(4.1)
$$\Phi(X) = X + \int_0^1 W(\Phi(X), u) du$$

where $W(X, u) = V(X, u) - \frac{\partial}{\partial u}$.

Proposition 4.2. Let $\gamma(t) = (t^{w_1}x_1(t), t^{w_2}x_2(t), t^{w_3}x_3(t))$ be such that $x_1(t), x_2(t)$ and $x_3(t)$ are subanalytic continuous functions, $0 \le t < \epsilon$, with $(x_1(0), x_2(0), x_3(0)) \ne (0, 0, 0)$. If

$$\eta(t) = \int_0^1 W(\gamma(t), u) du$$

with $\eta(t) = (\eta_1(t), \eta_2(t), \eta_3(t))$, then $ord_t |\eta_i(t)| > w_i$ for all i = 1, 2, 3.

Proof of the proposition. Let $m = (d - w_1)(d - w_2)(d - w_3)$. Since h has isolated singularity at $0 \in \mathbb{C}^3$, $\exists \lambda_1 > 0$ such that

$$P(\gamma(t), u) \ge \lambda_1 \sum_{i=1}^3 |\frac{\partial h}{\partial x_i}(\gamma(t))|^{2\alpha_i}.$$

Moreover, since each $\frac{\partial h}{\partial x_i}$ is weighted homogeneous of degree $d - w_i$, $\exists \lambda_2 > 0$ such that

$$|\frac{\partial h}{\partial x_i}(\gamma(t))|^{2\alpha_i} \geq \lambda_2 t^{2m}$$

Hence, $ord_t P(\gamma(t), u) \leq 2m$. By hypothesis,

$$ord_t |\theta(\gamma(t))| > d$$
 and $ord_t |\frac{\partial F}{\partial x_i}(\gamma(t), u)|^{2\alpha_i - 1} \ge (2\alpha_i - 1)(d - w_i).$

Now, we can conclude that ord_t of $\frac{\theta}{P} |\frac{\partial F}{\partial x_i}|^{2\alpha_i - 1}$ on $\gamma(t)$ is bigger than

$$d + (2\alpha_i - 1)(d - w_i) - 2m = w_i.$$

Finally, since

$$\eta_i(t) = \int_0^1 \frac{\theta(\gamma(t))}{P(\gamma(t), u)} |\frac{\partial F}{\partial x_i}(\gamma(t), u)|^{2\alpha_i - 2} \overline{\frac{\partial F}{\partial x_i}}(\gamma(t), u) du,$$

we have proved the proposition.

According to Lemma 1 of [6], we can take an essential loop Γ from S^1 to the link of the weighted homogeneous approximation S_0 of S of the form:

$$\Gamma(\theta) = (x_1(\theta), x_2(\theta), 1).$$

Let $H_0: [0,1] \times S^1 \to S_0$ be defined by

$$H_0(r,\theta) = (r^{\frac{w_1}{w_3}} x_1(\theta), r^{\frac{w_2}{w_3}} x_2(\theta), r).$$

Then, $H \colon [0,1] \times S^1 \to S$ defined by

$$H(r,\theta) = \Phi \circ H_0(r,\theta)$$

is a subanalytic homotopy satisfying: $H(0,\theta) = x$ and $H(1,\theta) = \Phi \circ \Gamma(\theta)$. We are going to show the image of H ($Im(H) = \Omega$) has volume growth number at origin bigger than 2. Actually, since the volume growth number of Ω at 0 is $1 + \beta(\Omega, 0)$, we are going to show that $\beta(\Omega, 0)$ is bigger than 1. So, let us consider two arcs γ_1 and γ_2 on ($\Omega, 0$).

Claim. Each γ_i can be parameterized in the following form:

$$\gamma_i(s) = (s^{\frac{w_1}{w_3}} x_{i1}(s), s^{\frac{w_2}{w_3}} x_{i2}(s), sx_{i3}(s))$$

where $x_{i1}(s), x_{i2}(s)$ and $x_{i3}(s)$ are subanalytic continuous functions and $x_{i3}(0) = 1$, (i = 1, 2).

In fact, first of all, let us fix *i* and denote $\gamma = \gamma_i$. For each s > 0, let $\gamma(s)$ be the point on the arc γ such that $\rho(\gamma(s)) = s^{\frac{1}{w_3}}$, where

$$\rho(x_1, x_2, x_3) := [|x_1|^{w_2 w_3} + |x_2|^{w_1 w_3} + |x_3|^{w_1 w_2}]^{\frac{1}{w_1 w_2 w_3}}$$

In particular, $\gamma(s) = (s^{\frac{w_1}{w_3}}x_1(s), s^{\frac{w_2}{w_3}}x_2(s), sx_3(s))$ where $x_1(s), x_2(s)$ and $x_3(s)$ are subanalytic continuous functions, with $(x_1(0), x_2(0), x_3(0)) \neq (0, 0, 0)$. For each s > 0, let $\xi(s)$ be the point on the image $Im(H_0) \subset S_0$ such that $\Phi(\xi(s)) = \gamma(s)$. It follows from eq. (4.1) that

$$\gamma(s) = \xi(s) + \eta(s)$$

where $\eta(s) = \int_0^1 W(\gamma(s), u) du$. By Proposition 4.2 (taking $s = t^{w_3}$), it follows that $\xi(s) = (s^{\frac{w_1}{w_3}} z_1(s), s^{\frac{w_2}{w_3}} z_2(s), sz_3(s))$ with $(z_1(0), z_2(0), z_3(0)) = (x_1(0), x_2(0), x_3(0)).$ Since the image $Im(H_0)$ is invariant by the \mathbb{R}_+ -action

$$s \cdot (x_1, x_2, x_3) = (s^{\frac{w_1}{w_3}} x_1, s^{\frac{w_2}{w_3}} x_2, sx_3)$$

and $\xi(s) \in Im(H_0)$ for all s > 0, we have that $(z_1(0), z_2(0), z_3(0)) \in Im(H_0)$, hence $z_3(0) = x_3(0) = a$ is a positive real number. Finally, via the simple change $s \mapsto a^{-1}s$, we show what was claimed above.

In order to finalize the proof of Theorem 4.1, by Lemma 2.3, we have

$$\lambda(\gamma_1, \gamma_2) \ge ord_s(|\gamma_1(s) - \gamma_2(s)|)$$

and, since

$$ord_s(|\gamma_1(s) - \gamma_2(s)|) > 1,$$

 $\lambda(\gamma_1, \gamma_2) > 1$. Therefore, we can use Theorem 2.4 to get $\beta(\Omega, 0) > 1$.

References

- L. Birbrair, Local bi-Lipschitz classification of 2-dimensional semialgebraic sets. Houston Journal of Mathematics 25 (1999), no. 3, 453-472.
- [2] L. Birbrair and J.-P. Brasselet, *Metric homology*. Comm. Pure Appl. Math. 53 (2000), no. 11, 1434–1447.
- [3] L. Birbrair and A. Fernandes, Inner metric geometry of complex algebraic surfaces with isolated singularities. Comm. Pure Appl. Math. 61 (2008), no. 11, 1483–1494.
- [4] L. Birbrair and A. Fernandes, *Metric theory of semialgebraic curves*. Rev. Mat. Complut. 13 (2000), no. 2, 369–382.
- [5] L. Birbrair and A. Fernandes Local metric properties of semi-quasihomogeneous real surfaces. Topology Appl. 155 (2008), no. 16, 1772–1776.
- [6] L. Birbrair, A. Fernandes and W. D. Neuamnn Bi-Lipschitz geometry of weighted homogeneous surface singularities. Math. Ann. 342 (2008), no. 1, 139–144.
- [7] T. Fukui and L. Paunescu, Modified analytic trivialization for weighted homogeneous function-germs. J. Math. Soc. Japan, 52, N2, (2000), pp. 433-446. DOI: 10.2969/jmsj/05220433
- [8] K. Kurdyka, On subanaytic stratification satisfying a Whitney property with exponent 1. Real Algebraic Geometry (Rennes 1991) Lecture Notes in Mathematics 1524 (Springer-Verlag 1992) 316-322.
- [9] J. Milnor, Singular Points of Complex Hypersurfaces. Ann. of Math. Stud. 61 (1968).

Departamento de Matemática, Universidade Federal do Ceará, Av. Mister Hull s/n,Campus do PICI, Bloco 914,CEP: 60.455-760 - Fortaleza - CE - Brasil.

E-mail address: alexandre.fernandes@ufc.br